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1. Introduction

Let M, be the space of nxn complex matrices. We shall always denote the singular
values of A by s; (A) > ... > s, (A) > 0, that is, the eigenvalues of the positive

semidefinite matrix |A| = (AA*)%, arranged in decreasing order and repeated

A+ A Al — A
according to multiplicity. For A € M, let AT = 4]+ AT = L Let

A, B € M, be Hermitian, the order relation A > B means, as usual, that A — B is
positive semidefinite. We use the direct sum notation A@® B for the block-diagonal

defined on M, & M,,.

operator 0
P 0 B
The well-known arithmetic-geometric mean inequality for singular values due
to Bhatia and Kittaneh [1] says that
2s; (AB*) < s; (A*A+ B*B)
forany A, B € M, and j = 1,...,n. We state this in another form: Let A, B € M,
be positive semidefinite, then

(1.1) 2s; (AB) < s; (A* + B?)

for j = 1,...,n. For more information on singular values and unitarily invariant
norms inequalities the reader is referred to [2]-[9].
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In section 2, we first give a generalization of inequality (1.1). After that, we
give a new equivalent form of inequality (1.1). Section 3 contains some remarks.

2. Main results
To generalize inequality (1.1), we need the following result [5, Theorem 1].

Lemma 2.1. Let A, X, B € M, such that A and B are positive semidefinite.
Then
5 (AX — XB) < |[X||s; (A B)

for j =1,...,n, where ||-|| denotes the usual operator norm on M,

Theorem 2.1. Let A, B € M, be positive semidefinite and suppose that f (t), g (t)
are polynomials. Then

sj (ABg (B) + f (A) AB) < max (||f (A)||. llg (B)I]) 5; (A*+B°)

forj=1,..n.
Proof. Let
Klz[A oHA BHX1 0 }:[mxl AJ};XQ}
B 0 0 0 0 Xy BAX, B°X,
and

oo [ X0 A 0 A -B] [ x4 -—-X\AB
270X, —B 0 0 0 | | —XoBA X,B? |~

It follows that

i 2
KK, — | A% ABXQ}_{

X, A2 —X,AB
| BAX, B’X,

—Xy,BA  X,B?

[ A’X, — XA ABX,+ X,AB
| BAX; + X,BA  B*X, — XoB? |

So, by Lemma 2.1, we have

Sj(Kl_Kg)gy\XleaXQHdeA2 AB] {A2 _ABD

BA B? —BA B?
A2 AB A2 —AB
. —max (1) s (| 5 5 | @ | pa B )

A2 AB A? AB
= max (|| X4]|, [| X2l]) s; ({ BA B2 } @ { BA B? D

= max (|| Xy[|, [ X2l]) 5; ((A*+B*) & (A*+B?)
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for j =1,...,n. Let

X1 = f(A), X = g(B), K = ABg (B) + [ (A) AB.

Then, we have

Note that
10 K| ‘ K 0
il Kk 0| "% 0 K|’

so, by inequality (2.1), we get

S; { K 0 } <max ([ f (A, llg (B)|]) s; ((A2+BQ> o (A2+BZ))

0 K

for j = 1,...,n. Thus, we obtain

s (ABg (B) + f (A) AB) < max (|f (Al llg (B} s, (A*+B?)

for 7 = 1,...,n. This completes the proof.
Theorem 2.2. The following statements are equivalent:
(i) Let A, B € M, be positive semidefinite. Then
(2.2) s;i(A—B)<s;(A® B)
forj=1..n.
(i) Let A, B € M, be positive semidefinite. Then

25; (AB) < s; (A* + B?)

forj=1,..n.

iii) Let A, B, X € M, such that A* X > 0. Then
X* B

A X
QSJ(X)SSj[X* B:|
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forj=1,...n. Let A, B € M, such that A is self-adjoint, B > 0, and +A < B.

Then
2s5;(A) <s;(B+A) & (B-A))

forg=1,..n.
(iv) Let A, B € M,, such that A and B are self-adjoint. Then
(2.3) s;i(A+B) <s; (A*+B")® (A~ +B7))

forj=1..n.
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Proof. Note that (i), (ii), (iii), and (iv) are equivalent by [4, Theorem 2.6]. We
will prove that (i) is equivalent to (v), and this will complete the proof of this
theorem.

(i) = (v). Since A and B are Hermitian, it follows that
+(A+ B) < |A|+|B|.

Let
Vi =A+B, Y, = |A[+|B]|.

Now, applying inequality (2.2) to the matrices Yo + Y7 and Y3 — Y, we have
5 (Yo +Y1) = (Yo —11) € 5, (o + Y1) & (Yo = 1)),
which is equivalent to
s;i(A+B)<s; ((A*+B") @ (A~ +B"))

for j =1,...,n. So, we know that inequality (2.2) implies inequality (2.3).

(v) = (i). Audeh and Kittaneh [4, p.2521] pointed out that inequality (2.3)
implies inequality (2.2). So, (i) is equivalent to (v). This completes the proof. =

3. Remarks

Remark 3.1. Let f(t) = ¢g(t) = 1 in Theorem 2.1, we obtain inequality (1.1).
Let f (t) = g (t) =t in Theorem 2.1, we get

sj (A(A+ B) B) < max (| All, || BI)) s; (A*+5?)
for y = 1,...,n. This is a matrix version of the following inequality:
a(a+b)b < max(a,b) (a*+b%),a>0,b> 0.

Remark 3.2. Let A, B, X € M, such that A and B are positive semidefinite.
A natural extension of inequality (1.1) is

25; (AXB) < s; (A°’X+XB?)
for y = 1,...,n. This is not always true. For example, if we choose

[ 0.7380 0.6634 0.7481 ]
A= | 06634 1.0265 0.7836
| 0.7481 0.7836 1.0908 |

[ 0.1820 0.2744 0.8627 |
X = | 0.8027 0.3597 0.5781 |,
| 0.0095 0.5384 0.2392 |
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1.7006 0.9132 0.3608
B = 09132 0.8945 0.5280
0.3608 0.5280 0.9509

Y

then, we have
255 (AXB) = 0.0289 > 0.0106 = s3 (A>’X+XB?) .

Remark 3.3. Let A, B, X € M, such that A and B are positive semidefinite.
Another possible extension of inequality (1.1) is

2s; (AXB) < || X|| s; (A°+B?)
for 5 =1,...,n. This is refused by

A 0.4327 0.6051 P 0.5730 0.2149 B 1.1111 0.1476
~ 1 06051 0.9762 | © | 0.6816 0.1522 |’ — | 0.1476 0.0361 |’

In fact, we have
251 (AX B) = 2.8102 > 2.4311 = || X|| 5, (A*+B?).
It should be note that the inequality
25 (AXB) < || X| s; (A*+B?)
holds when X is positive semidefinite [10].

Remark 3.4. Let A, B, X, Y € M, such that A and B are positive semidefinite.
A possible generalization of Theorem 2.1 is

s; (ABX + YAB) <max (| X|,||Y]) s; (A>+B?)

for 7 =1,...,n. This is not always true. For example, if we choose

0.0286 0.0414 0.0472 0.5992 0.7265 0.6529
A= 0.0414 0.7134 0.5265 |, X = | 0.4480 0.0524 0.8624
0.0472 0.5265 0.6030 0.1893 0.6981 0.8502
0.2547 0.9273 0.1140 0.3508 0.2981 0.3669
Y = 07466 0.1075 0.5175 |, B =] 0.2981 1.0854 0.9269 |,
0.1717 0.2464 0.2433 0.3669 0.9269 1.2541

then, we have

2 (ABX + Y AB) = 0.3924 > 0.2220 = max (| X ||, |Y]]) s2 (A*+B?) .
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