NOTES ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY FOR SINGULAR VALUES

Jiechang Ruan
Basic Education Department
Yibin Vocational and Technical College
Yibin, Sichuan, 644003
P.R. China
e-mail: 369610703@qq.com

Abstract

In this short note, we present a generalization and a new equivalent form of the arithmetic-geometric mean inequality for singular values. Meanwhile, we also show some remarks related to generalizations of the arithmetic-geometric mean inequality for singular values.

Keywords: arithmetic-geometric mean inequality, positive semidefinite matrices, singular values.
MSC (2010) Subject Classification: 15A42, 47A63, 47B15.

1. Introduction

Let M_{n} be the space of $n \times n$ complex matrices. We shall always denote the singular values of A by $s_{1}(A) \geq \ldots \geq s_{n}(A) \geq 0$, that is, the eigenvalues of the positive semidefinite matrix $|A|=\left(A A^{*}\right)^{\frac{1}{2}}$, arranged in decreasing order and repeated according to multiplicity. For $A \in M_{n}$, let $A^{+}=\frac{|A|+A}{2}, A^{-}=\frac{|A|-A}{2}$. Let $A, B \in M_{n}$ be Hermitian, the order relation $A \geq B$ means, as usual, that $A-B$ is positive semidefinite. We use the direct sum notation $A \oplus B$ for the block-diagonal operator $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$ defined on $M_{n} \oplus M_{n}$.

The well-known arithmetic-geometric mean inequality for singular values due to Bhatia and Kittaneh [1] says that

$$
2 s_{j}\left(A B^{*}\right) \leq s_{j}\left(A^{*} A+B^{*} B\right)
$$

for any $A, B \in M_{n}$ and $j=1, \ldots, n$. We state this in another form: Let $A, B \in M_{n}$ be positive semidefinite, then

$$
\begin{equation*}
2 s_{j}(A B) \leq s_{j}\left(A^{2}+B^{2}\right) \tag{1.1}
\end{equation*}
$$

for $j=1, \ldots, n$. For more information on singular values and unitarily invariant norms inequalities the reader is referred to [2]-[9].

In section 2, we first give a generalization of inequality (1.1). After that, we give a new equivalent form of inequality (1.1). Section 3 contains some remarks.

2. Main results

To generalize inequality (1.1), we need the following result [5, Theorem 1].
Lemma 2.1. Let $A, X, B \in M_{n}$ such that A and B are positive semidefinite. Then

$$
s_{j}(A X-X B) \leq\|X\| s_{j}(A \oplus B)
$$

for $j=1, \ldots, n$, where $\|\cdot\|$ denotes the usual operator norm on M_{n}.
Theorem 2.1. Let $A, B \in M_{n}$ be positive semidefinite and suppose that $f(t), g(t)$ are polynomials. Then

$$
s_{j}(A B g(B)+f(A) A B) \leq \max (\|f(A)\|,\|g(B)\|) s_{j}\left(A^{2}+B^{2}\right)
$$

for $j=1, \ldots, n$.
Proof. Let

$$
K_{1}=\left[\begin{array}{ll}
A & 0 \\
B & 0
\end{array}\right]\left[\begin{array}{cc}
A & B \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right]=\left[\begin{array}{cc}
A^{2} X_{1} & A B X_{2} \\
B A X_{1} & B^{2} X_{2}
\end{array}\right]
$$

and

$$
K_{2}=\left[\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
-B & 0
\end{array}\right]\left[\begin{array}{cc}
A & -B \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
X_{1} A^{2} & -X_{1} A B \\
-X_{2} B A & X_{2} B^{2}
\end{array}\right]
$$

It follows that

$$
\begin{aligned}
K_{1}-K_{2} & =\left[\begin{array}{cc}
A^{2} X_{1} & A B X_{2} \\
B A X_{1} & B^{2} X_{2}
\end{array}\right]-\left[\begin{array}{cc}
X_{1} A^{2} & -X_{1} A B \\
-X_{2} B A & X_{2} B^{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A^{2} X_{1}-X_{1} A^{2} & A B X_{2}+X_{1} A B \\
B A X_{1}+X_{2} B A & B^{2} X_{2}-X_{2} B^{2}
\end{array}\right]
\end{aligned}
$$

So, by Lemma 2.1, we have

$$
\begin{aligned}
s_{j}\left(K_{1}-K_{2}\right) & \leq\left\|X_{1} \oplus X_{2}\right\| s_{j}\left(\left[\begin{array}{cc}
A^{2} & A B \\
B A & B^{2}
\end{array}\right] \oplus\left[\begin{array}{cc}
A^{2} & -A B \\
-B A & B^{2}
\end{array}\right]\right) \\
& =\max \left(\left\|X_{1}\right\|,\left\|X_{2}\right\|\right) s_{j}\left(\left[\begin{array}{cc}
A^{2} & A B \\
B A & B^{2}
\end{array}\right] \oplus\left[\begin{array}{cc}
A^{2} & -A B \\
-B A & B^{2}
\end{array}\right]\right) \\
& =\max \left(\left\|X_{1}\right\|,\left\|X_{2}\right\|\right) s_{j}\left(\left[\begin{array}{cc}
A^{2} & A B \\
B A & B^{2}
\end{array}\right] \oplus\left[\begin{array}{cc}
A^{2} & A B \\
B A & B^{2}
\end{array}\right]\right) \\
& =\max \left(\left\|X_{1}\right\|,\left\|X_{2}\right\|\right) s_{j}\left(\left(A^{2}+B^{2}\right) \oplus\left(A^{2}+B^{2}\right)\right)
\end{aligned}
$$

for $j=1, \ldots, n$. Let

$$
X_{1}=f(A), X_{2}=g(B), K=A B g(B)+f(A) A B
$$

Then, we have

$$
K_{1}-K_{2}=\left[\begin{array}{cc}
0 & K \\
K^{*} & 0
\end{array}\right] .
$$

Note that

$$
s_{j}\left[\begin{array}{cc}
0 & K \\
K^{*} & 0
\end{array}\right]=s_{j}\left[\begin{array}{cc}
K & 0 \\
0 & K^{*}
\end{array}\right],
$$

so, by inequality (2.1), we get

$$
s_{j}\left[\begin{array}{cc}
K & 0 \\
0 & K^{*}
\end{array}\right] \leq \max (\|f(A)\|,\|g(B)\|) s_{j}\left(\left(A^{2}+B^{2}\right) \oplus\left(A^{2}+B^{2}\right)\right)
$$

for $j=1, \ldots, n$. Thus, we obtain

$$
s_{j}(A B g(B)+f(A) A B) \leq \max (\|f(A)\|,\|g(B)\|) s_{j}\left(A^{2}+B^{2}\right)
$$

for $j=1, \ldots, n$. This completes the proof.
Theorem 2.2. The following statements are equivalent:
(i) Let $A, B \in M_{n}$ be positive semidefinite. Then

$$
\begin{equation*}
s_{j}(A-B) \leq s_{j}(A \oplus B) \tag{2.2}
\end{equation*}
$$

for $j=1, \ldots, n$.
(ii) Let $A, B \in M_{n}$ be positive semidefinite. Then

$$
2 s_{j}(A B) \leq s_{j}\left(A^{2}+B^{2}\right)
$$

for $j=1, \ldots, n$.
(iii) Let $A, B, X \in M_{n}$ such that $\left[\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right] \geq 0$. Then

$$
2 s_{j}(X) \leq s_{j}\left[\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}\right]
$$

for $j=1, \ldots, n$. Let $A, B \in M_{n}$ such that A is self-adjoint, $B \geqslant 0$, and $\pm A \leqslant B$. Then

$$
2 s_{j}(A) \leq s_{j}((B+A) \oplus(B-A))
$$

for $j=1, \ldots, n$.
(iv) Let $A, B \in M_{n}$ such that A and B are self-adjoint. Then

$$
\begin{equation*}
s_{j}(A+B) \leq s_{j}\left(\left(A^{+}+B^{+}\right) \oplus\left(A^{-}+B^{-}\right)\right) \tag{2.3}
\end{equation*}
$$

for $j=1, \ldots, n$.

Proof. Note that (i), (ii), (iii), and (iv) are equivalent by [4, Theorem 2.6]. We will prove that (i) is equivalent to (v), and this will complete the proof of this theorem.
(i) $\Rightarrow(\mathrm{v})$. Since A and B are Hermitian, it follows that

$$
\pm(A+B) \leq|A|+|B|
$$

Let

$$
Y_{1}=A+B, Y_{2}=|A|+|B| .
$$

Now, applying inequality (2.2) to the matrices $Y_{2}+Y_{1}$ and $Y_{2}-Y_{1}$, we have

$$
s_{j}\left(\left(Y_{2}+Y_{1}\right)-\left(Y_{2}-Y_{1}\right)\right) \leq s_{j}\left(\left(Y_{2}+Y_{1}\right) \oplus\left(Y_{2}-Y_{1}\right)\right)
$$

which is equivalent to

$$
s_{j}(A+B) \leq s_{j}\left(\left(A^{+}+B^{+}\right) \oplus\left(A^{-}+B^{-}\right)\right)
$$

for $j=1, \ldots, n$. So, we know that inequality (2.2) implies inequality (2.3).
(v) \Rightarrow (i). Audeh and Kittaneh [4, p.2521] pointed out that inequality (2.3) implies inequality (2.2). So, (i) is equivalent to (v). This completes the proof.

3. Remarks

Remark 3.1. Let $f(t)=g(t)=1$ in Theorem 2.1, we obtain inequality (1.1). Let $f(t)=g(t)=t$ in Theorem 2.1, we get

$$
s_{j}(A(A+B) B) \leq \max (\|A\|,\|B\|) s_{j}\left(A^{2}+B^{2}\right)
$$

for $j=1, \ldots, n$. This is a matrix version of the following inequality:

$$
a(a+b) b \leq \max (a, b)\left(a^{2}+b^{2}\right), a \geq 0, b \geq 0 .
$$

Remark 3.2. Let $A, B, X \in M_{n}$ such that A and B are positive semidefinite. A natural extension of inequality (1.1) is

$$
2 s_{j}(A X B) \leq s_{j}\left(A^{2} X+X B^{2}\right)
$$

for $j=1, \ldots, n$. This is not always true. For example, if we choose

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
0.7389 & 0.6634 & 0.7481 \\
0.6634 & 1.0265 & 0.7836 \\
0.7481 & 0.7836 & 1.0908
\end{array}\right], \\
& X=\left[\begin{array}{lll}
0.1820 & 0.2744 & 0.8627 \\
0.8027 & 0.3597 & 0.5781 \\
0.0095 & 0.5384 & 0.2392
\end{array}\right],
\end{aligned}
$$

$$
B=\left[\begin{array}{lll}
1.7006 & 0.9132 & 0.3608 \\
0.9132 & 0.8945 & 0.5280 \\
0.3608 & 0.5280 & 0.9509
\end{array}\right],
$$

then, we have

$$
2 s_{3}(A X B)=0.0289 \geq 0.0106=s_{3}\left(A^{2} X+X B^{2}\right) .
$$

Remark 3.3. Let $A, B, X \in M_{n}$ such that A and B are positive semidefinite. Another possible extension of inequality (1.1) is

$$
2 s_{j}(A X B) \leq\|X\| s_{j}\left(A^{2}+B^{2}\right)
$$

for $j=1, \ldots, n$. This is refused by

$$
A=\left[\begin{array}{ll}
0.4327 & 0.6051 \\
0.6051 & 0.9762
\end{array}\right], \quad X=\left[\begin{array}{ll}
0.5730 & 0.2149 \\
0.6816 & 0.1522
\end{array}\right], B=\left[\begin{array}{ll}
1.1111 & 0.1476 \\
0.1476 & 0.0361
\end{array}\right] .
$$

In fact, we have

$$
2 s_{1}(A X B)=2.8102 \geq 2.4311=\|X\| s_{1}\left(A^{2}+B^{2}\right)
$$

It should be note that the inequality

$$
2 s_{j}(A X B) \leq\|X\| s_{j}\left(A^{2}+B^{2}\right)
$$

holds when X is positive semidefinite [10].
Remark 3.4. Let $A, B, X, Y \in M_{n}$ such that A and B are positive semidefinite. A possible generalization of Theorem 2.1 is

$$
s_{j}(A B X+Y A B) \leq \max (\|X\|,\|Y\|) s_{j}\left(A^{2}+B^{2}\right)
$$

for $j=1, \ldots, n$. This is not always true. For example, if we choose

$$
\begin{array}{ll}
A=\left[\begin{array}{lll}
0.0286 & 0.0414 & 0.0472 \\
0.0414 & 0.7134 & 0.5265 \\
0.0472 & 0.5265 & 0.6030
\end{array}\right], \quad X=\left[\begin{array}{ccc}
0.5992 & 0.7265 & 0.6529 \\
0.4480 & 0.0524 & 0.8624 \\
0.1893 & 0.6981 & 0.8502
\end{array}\right] \\
Y=\left[\begin{array}{lll}
0.2547 & 0.9273 & 0.1140 \\
0.7466 & 0.1075 & 0.5175 \\
0.1717 & 0.2464 & 0.2433
\end{array}\right], \quad B=\left[\begin{array}{lll}
0.3508 & 0.2981 & 0.3669 \\
0.2981 & 1.0854 & 0.9269 \\
0.3669 & 0.9269 & 1.2541
\end{array}\right],
\end{array}
$$

then, we have

$$
s_{2}(A B X+Y A B)=0.3924 \geq 0.2220=\max (\|X\|,\|Y\|) s_{2}\left(A^{2}+B^{2}\right) .
$$

References

[1] Bhatia, R., Kittaneh, F., On the singular values of a product of operators, SIAM J. Matrix Anal. Appl., 11 (1990), 272-277.
[2] TaO, Y., More results on singular value inequalities, Linear Algebra Appl., 416 (2006), 724-729.
[3] Bhatia, R., Kittaneh, F., The matrix arithmetic-geometric mean inequality revisited, Linear Algebra Appl., 428 (2008), 2177-2191.
[4] Audeh, W., Kittaneh, F., Singular value inequalities for compact operators, Linear Algebra Appl., 437 (2012), 2516-2522.
[5] Kittaneh, F., Inequalities for commutators of positive operators, J. Funct. Anal., 250 (2007), 132-143.
[6] Zou, L., He, C., Weak majorization inequalities for singular values, Oper. Matrices, 7 (2013), 733-737.
[7] Zou, L., He, C., On some inequalities for unitarily invariant norms and singular values, Linear Algebra Appl., 436 (2012), 3354-3361.
[8] Hu, X., Some inequalities for unitarily invariant norms, J. Math. Inequal., 6 (2012), 615-623.
[9] Fu, X., He, C., On some inequalities for unitarily invariant norms, J. Math. Inequal., 7 (2013), 727-737.
[10] Albadawi, H., Singular value and arithmetic-geometric mean inequalities for operators, Ann. Funct. Anal., 3 (2012), 10-18.

Accepted: 02.04.2015

