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Abstract. We present here a Haar wavelet method for numerical solution of convection-
diffusion equations. Haar wavelet is a powerful mathematical tool used to solve various
type of partial differential equations. The solutions obtained by Haar wavelet are more
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1. Introduction

It has been observed from the literature that many researchers are developing
fast, accurate and efficient numerical schemes to handle the different problems
arising in several areas of engineering and sciences. In the last few decades
wavelet approaches are becoming more popular in the field of numerical approxi-
mations. Wavelet, being a powerful mathematical tool, has been widely used in
image digital processing, quantum field theory and numerical analysis. Beginning
from 1980s, wavelet has been used to find the numerical solution of partial dif-
ferential equations. Wavelet methods attracts the interest of researchers to find
the numerical solution of partial differential equations. Haar wavelet which are
Daubechies wavelets of order 1 consists of piecewise constant functions. A draw-
back of Haar wavelet is their discontinuity. Since the derivatives do not exist in
the breaking points, so it is impossible to apply the Haar wavelet for the solution
of partial differential equation directly. Several definitions, concepts and modi-
fications of Haar functions and various generalizations have been published and
used. Galerkin and collocation techniques were applied to solve partial differential
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equations using Haar wavelet. The Haar wavelet method for solving partial diffe-
rential equations has many advantages features such as: it has very high accuracy,
small computational costs, sprase representation, fast transformation, simplicity
and possibility of implementation of fast algorithms especially if matrix represen-
tation is used. Also, it is very convenient for solving boundary value problems.
Convection-diffusion equation is a special partial differential equation occur in
numerous engineering problems. Convection-diffusion equation is a second order
parabolic partial differential equation.

Consider the partial differential equation of the form

(1)
∂u

∂t
+ ε

∂u

∂x
= γ

∂2u

∂x2
, 0 < x < 1, t > 0,

subject to the initial conditions u(x, 0) = f(x), 0 ≤ x ≤ 1 and boundary condi-
tions u(0, t) = 0, u(1, t) = 0, t ≥ 0, where γ represents the viscosity coefficient
and ε is the phase speed and both are assumed to be positive. The given function
f is sufficiently smooth.

Wavelet analysis ia a new branch of mathematics and widely applied in dif-
ferential equations. Several methods have been proposed to find the numerical
solution of different linear and nonlinear partial differential equations. A survey
of numerical solutions of differential equation is presented in Hariharan [7]. In
1910, Hungarian mathematicians Alfred Haar [6] introduced a function, known as
Haar function which presents a rectangular pulse pair. There are many wavelet
families such as Haar wavelet [6], Daubechies wavelet [5], Hermite-type trigono-
metric wavelet and many more. Among all these wavelet families, Haar is the
simplest orthonormal wavelet with compact support. The pioneer work was done
by Chen and Hsiao [3] in system analysis with Haar wavelet, who first derive
a Haar operational matrix for the integral of the Haar function vector and also
presented wavelet approach for optimising dynamic systems in [4]. Haar wavelet
has many attractive applications in image coding, edge extraction and binary
logic design. Hariharan et al. [10] presented the numerical solution of Fisher’s
equation using Haar wavelet. Also, Hariharan and Kannan [9] presented the nu-
merical solution of Fitzhugh-Nagumo equation using Haar wavelet. Berwal et al.
[1] presented the numerical solution of Telegraph equation. Celik [2] presented
the numerical solution of generalized Burger-Huxley equation with Haar wavelet
method. Lepik [12, 13] presented the numerical solution of differential and integral
equation with Haar wavelet method. Kheiri and Ghafouri [11] presented Haar and
Legendre wavelets collocation methods for the numerical solution of Schrondinger
and wave equation. Haar wavelet method for solving some nonlinear parabolic
equation is presented in [8].

In Section 2, we briefly describe the Haar wavelet method. In Section 3, we
have given function approximation. Section 4, a method for solving convection-
diffusion equation has been presented, and in Section 5, numerical examples have
been solved using the Haar wavelet method to illustrate the efficiency and accuracy
of the present method.
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2. Haar wavelet method

The Haar functions are an orthogonal family of switched rectangular waveforms
where amplitudes can differ from one function to another. They are defined in
the interval [0, 1].

(2) hi(x) =





1, α ≤ x < β,

−1, β ≤ x < γ,

0, otherwise,

where α = k
m

, β = k+0.5
m

and γ = k+1
m

. Integer m = 2j, (j = 0, 1, 2, 3, 4, ..., J)
indicates the level of the wavelet, and k = 0, 1, 2, 3, ..., m − 1 is the translation
parameter. Maximal level of resolution is J. The index i is calculated according
the formula i = m + k + 1. In the case of minimal values, m = 1, k = 0 we have
i = 2. The maximal value of i is i = 2M , where M = 2J . It is assumed that the
value i = 1, corresponding to the scaling function in [0, 1]

(3) h1(x) =

{
1, 0 ≤ x ≤ 1,

0, otherwise.

Let us define the collocation points xl = (l−0.5)
2M

, where l = 1, 2, 3, ..., 2M and
discretize the Haar function hi(x). Using the following four notations of Haar
functions:

h1(x) = [1, 1, 1, 1], h2(x) = [1, 1,−1,−1], h3 = [1,−1, 0, 0], h4 = [0, 0, 1,−1],

we introduce the following notation:

(4) H4(x) = [h1(x), h2(x), h3(x), h4(x)]T =




1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1




Here H4(x) is called Haar coefficient matrix. It is a square matrix of order 4, and
is defined as H(i, l) = (hi(xl)), which has dimension 2M×2M .

Let us integrate equation (2). We get

(5) P1,i(x) =





x− α, xε[α, β),

γ − x, xε[β, γ),

0, elsewhere.

(6) P2,i(x) =





1
2
(x− α)2, xε[α, β),
1

4m2 − 1
2
(γ − x)2, xε[β, γ),

1
4m2 , xε[γ, 1),

0, elsewhere.
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3. Function approximation

Any square integrable function y(x) in the interval [0, 1] can be expanded by a
Haar series of infinite terms:

(7) y(x) =
∞∑
i=1

cihi(x),

where the Haar coefficients ci are determined as:

c0 =

∫ 1

0

y(x)h0(x)dx,(8)

ci = 2j

∫ 1

0

y(x)hi(x)dx,(9)

where i = 2j + k, j ≥ 0 and 0 ≤ k < 2j, x ∈ [0, 1] such that the following integral
square error ε is minimized:

(10) ε =

∫ 1

0

[
y(x)−

m∑
i=1

cihi(x)

]2

dx,

where m = 2j and j = 0, 1, 2, 3, .... Usually, the series expansion of (7) contains
infinite terms. If y(x) is piecewise constant by itself or may be approximated as
piecewise constant during each subinterval, then y(x) will be terminated at finite
m terms. This means

(11) y(x) ∼=
m∑

i=1

cihi(x) = cm
T hm(x),

where the coefficients cm
T and the Haar function vectors hm(x) are defined as:

cm
T = [c1, c2, ..., cm] and hm(x) = [h1(x), h2(x), ..., hm(x)]T ,

4. Method for solving the convection-diffusion equation

Consider the convection-diffusion equation (1) with initial conditions u(x, 0) =
f(x) and boundary conditions are u(0, t) = g0(t), u(1, t) = g1(t). Assume that
u̇′′(x, t) can be expanded in term of Haar wavelets as follows:

(12) u̇′′(x, t) =
2M∑
i=1

aihi(x), tε(ts, ts+1].

Integrating the above equation with respect to t from ts to t, and twice with
respect to x, from 0 to x, we get
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u′′(x, t) = (t− ts)
2M∑
i=1

aihi(x) + u′′(x, ts),(13)

u′(x, t) = (t− ts)
2M∑
i=1

aiP1,i(x) + u′(x, ts)− u′(0, ts) + u′(0, t),(14)

u(x, t) = (t− ts)
2M∑
i=1

aiP2,i(x) + u(x, ts)− u(0, ts)(15)

−x[u′(0, ts)− u′(0, t)] + u(0, t),

u̇(x, t) =
2M∑
i=1

aiP2,i(x) + xu̇′(0, t) + u̇(0, t).(16)

From the initial and boundary conditions, we have the following equations as:

u(x, 0) = f(x), u(0, t) = g0(t), u(1, t) = g1(t), u(0, ts) = g0(ts),

u(1, ts) = g1(ts), u̇(0, t) = ġ0(t), u̇(1, t) = ġ1(t).

At x = 1 in the formulae (15) and (16) and by using conditions, we have

u′(0, t)− u′(0, ts) = −(t− ts)
2M∑
i=1

aiP2,i(1) + g1(t)(17)

−g1(ts) + g0(ts)− g0(t),

u̇′(0, t) = −
2M∑
i=1

aiP2,i(1)− ġ0(t) + ġ1(t).(18)

If the equations (17) and (18) are substituted into equations (13)− (16), and the
results are discretized by assuming x → xl and t → ts+1, we obtain

u′′(xl, ts+1) = (ts+1 − ts)
2M∑
i=1

aihi(xl) + u′′(xl, ts),(19)

u′(xl, ts+1) = (ts+1 − ts)
2M∑
i=1

aiP1,i(xl) + g1(ts+1)− g1(ts) + g0(ts)(20)

−g0(ts+1)− (ts+1 − ts)
2M∑
i=1

aiP2,i(1) + u′(xl, ts),

u(xl, ts+1) = (ts+1 − ts)
2M∑
i=1

aiP2,i(xl) + u(xl, ts) + g0(ts+1)− g0(ts)(21)

+xl

[
− (ts+1 − ts)

2M∑
i=1

aiP2,i(1) + g1(ts+1)

−g0(ts+1)− g1(ts) + g0(ts)
]
,
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(22)

u̇(xl, ts+1) =
2M∑
i=1

aiP2,i(xl)

+xl

[
−

2M∑
i=1

aiP2,i(1)−ġ0(ts+1)+ġ1(ts+1)
]
+ġ0(ts+1).

But, we know that

(23) P2,i(1) =





1

2
, i = 1,

1

4m2
, i > 1.

In the given scheme

(24) u̇(xl, ts+1) + εu′(xl, ts+1) = γu′′(xl, ts+1),

which leads us from the time layer ts to ts+1 is used. From here, wavelet coefficients
are calculated and solution of wave equation is obtained.

5. Numerical examples

We present here, some numerical examples of Convection-diffusion equation, which
shows the accuracy and efficiency of Haar wavelet method.

Example 1: Consider the convection-diffusion equation of the form

(25)
∂u

∂t
+ 0.1

∂u

∂x
= 0.01

∂2u

∂x2
, 0 < x < 1, t > 0,

subject to the initial conditions u(x, 0) = e5xsinπx, 0 ≤ x ≤ 1 and boundary
conditions u(0, t) = 0, u(1, t) = 0, t ≥ 0. The exact solution of this problem is:

(26) u(x, t) = e5x−(0.25−0.01π2)tsinπx.

The process is started with u(xl, 0) = f(xl), u′(xl, 0) = f ′(xl), u′′(xl, 0) = f ′′(xl).
Numerical results are presented graphically in Figure 1 for t = 0.1, 0.2, 0.3 and
5.0. The value of ∆t = 0.00001. Absolute errors for t = 0.1, t = 0.2 and t = 0.3
are presented in Table 1.
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xL/64 t= 0.1 t=0.2 t=0.3
1 1.0E-006 3.2E-006 5.9E-006
3 2.2E-006 7.7E-006 1.5E-005
5 2.7E-006 1.0E-005 2.1E-005
7 3.0E-006 1.1E-005 2.4E-005
9 3.3E-006 1.2E-005 2.7E-005
11 3.4E-006 1.3E-005 2.9E-005
13 3.6E-006 1.3E-005 3.0E-005
15 3.6E-006 1.3E-005 3.0E-005
17 3.5E-006 1.3E-005 2.9E-005
29 3.0E-006 1.2E-005 2.8E-005
31 5.8E-006 2.4E-005 5.3E-005
33 9.5E-006 3.8E-005 8.6E-005
59 2.1E-004 8.1E-004 1.7E-003
61 2.3E-004 8.1E-004 1.6E-003
63 1.4E-004 4.4E-004 8.5E-004

Table 1: Comparison of maximum absolute errors for Example 1.

Example 2: Consider the convection-diffusion equation of the form

(27)
∂u

∂t
+ 0.22

∂u

∂x
= 0.5

∂2u

∂x2
, 0 < x < 1, t > 0,

subject to the initial conditions u(x, 0) = e0.22xsinπx, 0 ≤ x ≤ 1 and boundary
conditions u(0, t) = 0, u(1, t) = 0, t ≥ 0. The exact solution of this problem is:

(28) u(x, t) = e0.22x−(0.0242−0.5π2)tsinπx.

The process is started with u(xl, 0) = f(xl), u′(xl, 0) = f ′(xl), u′′(xl, 0) = f ′′(xl).
Numerical results are presented graphically in Figure 2 for t = 0.1, 0.2, 0.3. The
value of ∆t = 0.00001. Absolute errors for t = 0.1, t = 0.2 and t = 0.3 are
presented in Table 2.

Example 3: Consider the convection-diffusion equation of the form

(29)
∂u

∂t
+ 0.1

∂u

∂x
= 0.2

∂2u

∂x2
, 0 < x < 1, t > 0,

subject to the initial conditions u(x, 0) = e0.25xsinπx, 0 ≤ x ≤ 1 and boundary
conditions u(0, t) = 0, u(1, t) = 0, t ≥ 0. The exact solution of this problem is:

(30) u(x, t) = e0.25x−(0.0125−0.2π2)tsinπx.

The process is started with u(xl, 0) = f(xl), u′(xl, 0) = f ′(xl), u′′(xl, 0) = f ′′(xl).
Numerical results are presented graphically in Figure 3 for t = 0.1, 0.2, 0.3. The
value of ∆t = 0.00001. Absolute errors for t = 0.1, t = 0.2 and t = 0.3 are
presented in Table 3.
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xL/64 t= 0.1 t=0.2 t=0.3
1 7.0E-007 2.6E-006 5.0E-006
3 2.3E-006 8.4E-006 1.5E-005
5 4.5E-006 1.5E-005 2.7E-005
7 7.2E-006 2.2E-005 4.0E-005
9 1.0E-005 3.0E-005 5.3E-005
11 1.3E-005 3.9E-005 6.7E-005
13 1.6E-005 4.8E-005 8.2E-005
15 2.0E-005 5.7E-005 9.6E-005
17 2.3E-005 6.6E-005 1.1E-004
29 4.2E-005 1.1E-004 1.8E-004
31 4.4E-005 1.1E-004 1.8E-004
33 4.6E-005 1.2E-004 1.9E-004
59 1.8E-005 4.5E-005 6.9E-005
61 1.1E-005 2.8E-005 4.3E-005
63 4.1E-006 9.7E-006 1.4E-005

Table 2: Comparison of maximum absolute errors for Example 2.

xL/64 t= 0.1 t=0.2 t=0.3
1 6.0E-008 9.4E-008 5.2E-007
3 5.0E-008 5.4E-007 1.9E-006
5 1.9E-007 1.4E-006 4.0E-006
7 6.1E-007 2.7E-006 6.7E-006
9 1.1E-006 4.4E-006 9.9E-006
11 1.8E-006 6.3E-006 1.3E-005
13 2.5E-006 8.4E-006 1.7E-005
15 3.3E-006 1.0E-005 2.1E-005
17 4.1E-006 1.3E-005 2.5E-005
29 8.3E-006 2.6E-005 4.9E-005
31 8.8E-006 2.7E-005 5.2E-005
33 9.2E-006 2.9E-005 5.5E-005
59 4.6E-006 1.3E-005 2.4E-005
61 3.0E-006 8.6E-006 1.5E-005
63 1.0E-006 3.0E-006 5.3E-006

Table 3: Comparison of maximum absolute errors for Example 3.
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Conclusion

It is conclude that Haar wavelet method is more accurate, simple, fast and com-
putationally attractive than other known methods to solve convection-diffusion
equation. The above examples demonstrates the simplicity of the Haar wavelet
solution. For getting the necessary accuracy the number of collocation points and
the value of M in Equation (12) may be increased.
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Figure 2: Comparison of numerical and exact solution for Example 2 at t =
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