SOME REFINEMENTS OF THE HEINZ INEQUALITIES

Jianming Xue

Oxbridge College
Kunming University of Science and Technology
Kunming, Yunnan 650106
P.R. China
e-mail: xuejianming104@163.com

Keywords: Heinz inequality; convex function; unitarily invariant norm.

1. Introduction

Let $M_{m,n}$ be the space of $m \times n$ complex matrices and $M_n = M_{n,n}$. Let $||| \cdot |||$ denote any unitarily invariant norm on M_n. So, $|||UAV||| = |||A|||$ for all $A \in M_n$ and for all unitary matrices $U, V \in M_n$. The Ky Fan k-norm $||| \cdot |||_{(k)}$ is defined as

$$|||A|||_{(k)} = \sum_{j=1}^{k} s_j(A), \quad k = 1, \cdots, n,$$

where $s_1(A) \geq s_2(A) \geq \cdots \geq s_{n-1}(A) \geq s_n(A)$ are the singular values of A, that is, the eigenvalues of the positive semidefinite matrix $|A| = (AA^*)^{1/2}$, arranged in decreasing order and repeated according to multiplicity. The Schatten-p-norm $||| \cdot |||_p$ is defined as

$$|||A|||_p = \left(\sum_{j=1}^{n} s_j^p(A) \right)^{1/p} = (\text{tr} |A|^p)^{1/p}, \quad 1 \leq p < \infty.$$

It is known that these norms are unitarily invariant [1].
Let $A, B, X \in M_n$ such that A and B are positive semidefinite. Then, for every unitarily invariant norm, the function

$$\varphi(v) = \|A^v XB^{1-v} + A^{1-v}XB^v\|$$

is convex on $[0, 1]$, attains its minimum at $v = \frac{1}{2}$ and attains its maximum at $v = 0$ and $v = 1$. Moreover, $\varphi(v) = \varphi(1-v)$ for $0 \leq v \leq 1$.

Bhatia and Davis proved Heinz inequalities in [2] that if $A, B, X \in M_n$ such that A and B are positive semidefinite, for $0 \leq v \leq 1$ and for every unitarily invariant norm, then

$$2\|A^{\frac{1}{2}}XB^{\frac{1}{2}}\| \leq \|A^v XB^{1-v} + A^{1-v}XB^v\| \leq \|AX + AB\|.$$

For more information on Heinz inequality for matrices, the reader is referred to [2]-[7].

By the convexity of function $\varphi(v) = \|A^v XB^{1-v} + A^{1-v}XB^v\|$, Kittaneh [3], Feng [4], Wang [5] and Yan et al [6] got some refinements of (1). In this paper, we also present several refinements of (1). Our results are generalization of results shown in [3]-[6].

2. Main results

In this section, we present several improvement refinements of the Heinz inequalities, to do this, we need the following lemmas.

Lemma 1. (Hermite-Hadamard Integral Inequality) [3] Let f be a real valued convex function on the interval $[a, b]$. Then

$$f \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(t) \, dt \leq f(a) + f(b).$$

Lemma 2. Let f be a real valued convex function on the interval $[a, b]$. Then

$$f \left(\frac{a+b}{2} \right) \leq \frac{1}{b-a} \int_a^b f(t) \, dt \leq \frac{1}{2n} \left[(n-1) f(a) + 2f \left(\frac{a+b}{2} \right) + (n-1) f(b) \right] \leq \frac{f(a) + f(b)}{2},$$

where $n \geq 2$ is an integer.
Proof. By Lemma 1, we can easily verify the inequality
\[\frac{1}{2n} \left[(n-1) f(a) + 2f \left(\frac{a+b}{2} \right) + (n-1) f(b) \right] \leq f(a) + f(b). \]

Then, we will prove the following inequality:
\[\frac{1}{b-a} \int_a^b f(t) dt \leq \frac{1}{2n} \left[(n-1) f(a) + 2f \left(\frac{a+b}{2} \right) + (n-1) f(b) \right]. \]

Using Lemma 1, we have
\[\frac{1}{b-a} \int_a^b f(t) dt = \frac{1}{b-a} \int_a^{\alpha b} f(t) dt + \frac{1}{b-a} \int_{\alpha b}^b f(t) dt \]
\[\leq \frac{1}{b-a} \left[f(a) + f \left(\frac{a+b}{2} \right) \cdot \frac{b-a}{2} + f \left(\frac{a+b}{2} \right) \cdot \frac{b-a}{2} \right] \]
\[= \frac{1}{4} \left[f(a) + 2f \left(\frac{a+b}{2} \right) + f(b) \right] \]
\[= \frac{1}{2n} \left[\frac{n}{2} f(a) + nf \left(\frac{a+b}{2} \right) + \frac{n}{2} f(b) \right] \]
\[\leq \frac{1}{2n} \left[\frac{n}{2} f(a) + 2f \left(\frac{a+b}{2} \right) + \frac{n-2}{2} (f(a) + f(b)) + \frac{n}{2} f(b) \right] \]
\[= \frac{1}{2n} \left[(n-1) f(a) + 2f \left(\frac{a+b}{2} \right) + (n-1) f(b) \right]. \]

This completes the proof. \[\Box \]

Applying Lemma 2 to the function \(\varphi(v) = |||A^v XB^{1-v} + A^{1-v} XB^v||| \) on the interval \([u, 1-u]\) when \(0 \leq u < \frac{1}{2}\), and on the interval \([1-u, u]\) when \(\frac{1}{2} < u \leq 1\), we achieve a refinement of the first inequality in (1).

Theorem 1. Let \(A, B, X \in M_n\) such that \(A\) and \(B\) are positive definite, for \(0 \leq u \leq 1\) and for every unitarily invariant norm. Then
\[2|||A^{1/2}XB^{1/2}||| \leq \frac{1}{1-2u} \left| \int_u^{1-u} |||A^v XB^{1-v} + A^{1-v} XB^v||| dv \right| \]
\[\leq \frac{1}{n} \left[(n-1)|||A^u XB^{1-u} + A^{1-u} XB^u||| + 2|||A^{1/2}XB^{1/2}||| \right] \]
\[\leq |||A^u XB^{1-u} + A^{1-u} XB^u|||, \]
where \(n \geq 2\) is an integer.
Proof. If $0 \leq u < \frac{1}{2}$, then, by Lemma 2, we have

\[
\varphi\left(\frac{1 - u + u}{2}\right) \leq \frac{1}{1 - 2u} \int_u^{1-u} \varphi(v) \, dv \\
\leq \frac{1}{2n} \left[(n-1) \varphi(u) + 2\varphi\left(\frac{1 - u + u}{2}\right) + (n-1) \varphi(1 - u) \right] \\
\leq \varphi(u) + \varphi(1 - u).
\]

That is,

\[
\varphi\left(\frac{1}{2}\right) \leq \frac{1}{1 - 2u} \int_u^{1-u} \varphi(v) \, dv \\
\leq \frac{1}{n} \left[(n-1) \varphi(u) + \varphi\left(\frac{1}{2}\right) \right] \\
\leq \varphi(u),
\]

where $\varphi(v) = |||A^vXB^{1-v} + A^{1-v}XB^v|||$. Thus

\[
2|||A^{\frac{1}{2}}XB^{\frac{3}{2}}||| \leq \frac{1}{1 - 2u} \int_u^{1-u} |||A^vXB^{1-v} + A^{1-v}XB^v||| \, dv \\
\leq \frac{1}{n} \left[(n-1)|||A^uXB^{1-u} + A^{1-u}XB^u||| + 2|||A^{\frac{1}{2}}XB^{\frac{3}{2}}||| \right] \\
\leq |||A^uXB^{1-u} + A^{1-u}XB^u|||.
\]

If $\frac{1}{2} < u \leq 1$, then the proof is similar to the case $0 \leq u < \frac{1}{2}$, so we obtain

\[
2|||A^{\frac{1}{2}}XB^{\frac{3}{2}}||| \leq \frac{1}{2u - 1} \int_{1-u}^{u} |||A^vXB^{1-v} + A^{1-v}XB^v||| \, dv \\
\leq \frac{1}{n} \left[(n-1)|||A^uXB^{1-u} + A^{1-u}XB^u||| + 2|||A^{\frac{1}{2}}XB^{\frac{3}{2}}||| \right] \\
\leq |||A^uXB^{1-u} + A^{1-u}XB^u|||.
\]

Hence,

\[
\lim_{u \to \frac{1}{2}} \frac{1}{1 - 2u} \int_u^{1-u} |||A^vXB^{1-v} + A^{1-v}XB^v||| \, dv = \lim_{u \to \frac{1}{2}} \frac{1}{n} \left[(n-1)|||A^uXB^{1-u} + A^{1-u}XB^u||| + 2|||A^{\frac{1}{2}}XB^{\frac{3}{2}}||| \right] \\
= 2|||A^{\frac{1}{2}}XB^{\frac{3}{2}}|||.
\]

The inequalities in (2) follow by combining the inequalities (3) and (4). This completes the proof.
Applying Lemma 2 to the function $\varphi(v) = \|A^vXB^{1-v} + A^{1-v}XB^v\|$ on the interval $[u, \frac{1}{2}]$ when $0 \leq u < \frac{1}{2}$, and on the interval $[\frac{1}{2}, u]$ when $\frac{1}{2} < u \leq 1$, we obtain the following result.

Theorem 2. Let $A, B, X \in M_n$ such that A and B are positive definite. For $0 \leq u \leq 1$ and for every unitarily invariant norm. Then

$$
\|A^{\frac{1+2u}{4}}XB^{\frac{3-2u}{4}} + A^{\frac{3-2u}{4}}XB^{\frac{1+2u}{4}}\| \\
\leq \frac{2}{1-2u} \left| \int_u^{\frac{1}{2}} \|A^vXB^{1-v} + A^{1-v}XB^v\| dv \right| \\
\leq \frac{1}{2n} \left[(n-1)\|A^uXB^{1-u} + A^{1-u}XB^u\| + 2\|A^{\frac{1+2u}{4}}XB^{\frac{3-2u}{4}} + A^{\frac{3-2u}{4}}XB^{\frac{1+2u}{4}}\| + 2(n-1)\|A^\frac{3}{2}XB^\frac{1}{2}\| \right] \\
\leq \frac{1}{2} \left(\|A^uXB^{1-u} + A^{1-u}XB^u\| + 2\|A^\frac{3}{2}XB^\frac{1}{2}\| \right),
$$

where $n \geq 2$ is an integer.

Proof. The proof is similar to Theorem 1, so we omit it.

Inequalities (5) and the first inequality in (1) yield the following refinement of the first inequality in (1).

Corollary 1. Let $A, B, X \in M_n$ such that A and B are positive definite. For $0 \leq u \leq 1$ and for every unitarily invariant norm. Then

$$
2\|A^\frac{1}{2}XB^\frac{1}{2}\| \leq \|A^{\frac{1+2u}{4}}XB^{\frac{3-2u}{4}} + A^{\frac{3-2u}{4}}XB^{\frac{1+2u}{4}}\| \\
\leq \frac{2}{1-2u} \left| \int_u^{\frac{1}{2}} \|A^vXB^{1-v} + A^{1-v}XB^v\| dv \right| \\
\leq \frac{1}{2n} \left[(n-1)\|A^uXB^{1-u} + A^{1-u}XB^u\| + 2\|A^{\frac{1+2u}{4}}XB^{\frac{3-2u}{4}} + A^{\frac{3-2u}{4}}XB^{\frac{1+2u}{4}}\| + 2(n-1)\|A^\frac{3}{2}XB^\frac{1}{2}\| \right] \\
\leq \frac{1}{2} \left(\|A^uXB^{1-u} + A^{1-u}XB^u\| + 2\|A^\frac{3}{2}XB^\frac{1}{2}\| \right) \\
\leq \|A^uXB^{1-u} + A^{1-u}XB^u\|,
$$

where $n \geq 2$ is an integer.

It should be noticed here that in the inequalities (5) and (6)

$$
\lim_{u \to \frac{1}{2}} \frac{1}{1-2u} \left| \int_u^{\frac{1}{2}} \|A^vXB^{1-v} + A^{1-v}XB^v\| dv \right| = \|A^\frac{3}{2}XB^\frac{1}{2}\|.
$$
In the sequel, we get another refinement of the second inequality in (1).

Applying Lemma 2 to the function \(\varphi (v) = \| |A^v XB^{1-v} + A^{1-v}XB^v| | \) on the interval \([0, u]\) when \(0 < u \leq \frac{1}{2}\), and on the interval \([u, 1]\) when \(\frac{1}{2} \leq u < 1\), we obtain the following theorem.

Theorem 3. Let \(A, B, X \in M_n\) such that \(A\) and \(B\) are positive definite. Then

1. for \(0 \leq u \leq \frac{1}{2}\) and for every unitarily invariant norm,

\[
\| |A^{\frac{u}{2}} XB^{\frac{1-u}{2}} + A^{\frac{1-u}{2}}XB^{\frac{u}{2}}| | \leq \frac{1}{u} \int_0^u \| |A^v XB^{1-v} + A^{1-v}XB^v| | \, dv
\]

\[
\leq \frac{1}{2n} [(n-1)\| |AX + XB| | + 2\| |A^{\frac{u}{2}} XB^{\frac{1-u}{2}} + A^{\frac{1-u}{2}}XB^{\frac{u}{2}}| | + (n-1)\| |AX + XB| | + \| |AX + XB| | + \| |AX + XB| |] \),
\]

where \(n \geq 2\) is an integer,

2. for \(\frac{1}{2} \leq u \leq 1\) and for every unitarily invariant norm,

\[
\| |A^{\frac{1+u}{2}} XB^{\frac{1-u}{2}} + A^{\frac{1-u}{2}}XB^{\frac{1+u}{2}}| | \leq \frac{1}{1-u} \int_u^1 \| |A^v XB^{1-v} + A^{1-v}XB^v| | \, dv
\]

\[
\leq \frac{1}{2n} [(n-1)\| |AX + XB| | + 2\| |A^{\frac{1+u}{2}} XB^{\frac{1-u}{2}} + A^{\frac{1-u}{2}}XB^{\frac{1+u}{2}}| | + (n-1)\| |AX + XB| | + \| |AX + XB| | + \| |AX +XB| |] \),
\]

where \(n \geq 2\) is an integer.

Proof. The proof is similar to Theorem 1, so we omit it.

In view of the fact that the function \(\varphi (v) = \| |A^v XB^{1-v} + A^{1-v}XB^v| | \) is decreasing on the interval \([0, \frac{1}{2}]\) and increasing on the interval \([\frac{1}{2}, 1]\), by Theorem 3, we have the following result, which is a refinement of the second inequality in (1).
Corollary 2. Let $A, B, X \in M_n$ such that A and B are positive definite. Then

1. for $0 \leq u \leq \frac{1}{2}$ and for every unitarily invariant norm

$$
\begin{align*}
|||A^uXB^{1-u} + A^{1-u}XB^u||| \\
&\leq |||A^{\frac{u}{2}}XB^{1-\frac{u}{2}} + A^{1-\frac{u}{2}}XB^{\frac{u}{2}}||| \\
&\leq \frac{1}{u} \int_0^u |||A^vXB^{1-v} + A^{1-v}XB^v|||\,dv \\
&\leq \frac{1}{2n}[(n-1)|||AX + XB||| + 2|||A^{\frac{u}{2}}XB^{1-\frac{u}{2}} + A^{1-\frac{u}{2}}XB^{\frac{u}{2}}||| \\
&\quad + (n-1)|||A^uXB^{1-u} + A^{1-u}XB^u|||] \\
&\leq \frac{1}{2} (|||AX + XB||| + |||A^uXB^{1-u} + A^{1-u}XB^u|||) \\
&\leq |||AX + XB|||,
\end{align*}
$$

where $n \geq 2$ is an integer.

2. for $\frac{1}{2} \leq u \leq 1$ and for every unitarily invariant norm

$$
\begin{align*}
|||A^uXB^{1-u} + A^{1-u}XB^u||| \\
&\leq |||A^{\frac{1-u}{2}}XB^{\frac{1-u}{2}} + A^{\frac{1-u}{2}}XB^{\frac{1-u}{2}}||| \\
&\leq \frac{1}{1-u} \int_u^1 |||A^vXB^{1-v} + A^{1-v}XB^v|||\,dv \\
&\leq \frac{1}{2n}[(n-1)|||AX + XB||| + 2|||A^{\frac{1-u}{2}}XB^{\frac{1-u}{2}} + A^{\frac{1-u}{2}}XB^{\frac{1-u}{2}}||| \\
&\quad + (n-1)|||A^uXB^{1-u} + A^{1-u}XB^u|||] \\
&\leq \frac{1}{2} (|||AX + XB||| + |||A^uXB^{1-u} + A^{1-u}XB^u|||) \\
&\leq |||AX + XB|||,
\end{align*}
$$

where $n \geq 2$ is an integer.

It should be noticed that in the inequalities (7) to (10), we have

$$
\lim_{u \to 0} \frac{1}{u} \int_0^u |||A^vXB^{1-v} + A^{1-v}XB^v|||\,dv
= \lim_{u \to 1} \frac{1}{1-u} \int_u^1 |||A^vXB^{1-v} + A^{1-v}XB^v|||\,dv
= |||AX + XB|||.
$$
Remark 1. The three special values $n = 2$, $n = 16$ and $n = 4$ give the refinements of Heinz inequalities obtained in [4], [5] and [6], respectively.

Acknowledgments. This research was supported by Scientific Research Fund of Yunnan Provincial Education Department (No. 2013C157).

References

Accepted: 22.12.2014