ON 2-ABSORBING PRIMARY AND WEAKLY 2-ABSORBING ELEMENTS IN MULTIPLICATIVE LATTICES

Fethi Çallialp
Beykent University
Faculty of Science and Art
Ayazağa-Maslak, Istanbul
Turkey
e-mail: fethicallialp@beykent.edu.tr

Ece Yetkin
Unsal Tekir
Marmara University
Department of Mathematics
Ziverbey, Goztepe, 34722, Istanbul
Turkey
e-mails: yetkinece@gmail.com and
utekir@marmara.edu.tr

Abstract. In this paper, we introduce the concept of 2-absorbing primary and weakly 2-absorbing primary elements which are generalizations of primary and weakly primary elements in multiplicative lattices. Let L be a multiplicative lattice. A proper element q of L is said to be a (weakly) 2-absorbing primary element of L if whenever $a, b, c \in L$ with $(0 \neq abc \leq q)$ $abc \leq q$ implies either $ab \leq q$ or $ac \leq \sqrt{q}$ or $bc \leq \sqrt{q}$. Some properties of 2-absorbing primary and weakly 2-absorbing primary elements are presented and relations among prime, primary, 2-absorbing, weakly 2-absorbing, 2-absorbing primary and weakly 2-absorbing primary elements are investigated. Furthermore, we determine 2-absorbing primary elements in some special lattices and give a new characterization for principal element domains in terms of 2-absorbing primary elements.

Keywords: prime element, primary element, 2-absorbing element, 2-absorbing primary element, multiplicative lattice.

1991 Mathematics Subject Classification: Primary 16F10; Secondary 16F05, 13A15.

1. Introduction

The concept of 2-absorbing ideal in a commutative ring with identity, which is a generalization of prime ideal, was introduced by Badawi in [7] and studied in [8], [12], and [1]. Various generalizations of prime ideals are also studied in
As a generalization of primary ideals the concept of 2-absorbing primary ideals and weakly 2-absorbing primary ideals are introduced in [9] and [10]. Our aim is to extend the concept of 2-absorbing primary ideals of commutative rings to 2-absorbing primary elements of non modular multiplicative lattices and give a characterization for principal element domains in terms of 2-absorbing primary elements.

A multiplicative lattice is a complete lattice L with the least element 0 and compact greatest element 1, on which there is defined a commutative, associative, completely join distributive product for which 1 is a multiplicative identity. An element a of L is said to be compact if whenever $a \leq \bigvee_{\alpha \in I_a} a_\alpha$ implies $a \leq \bigvee_{\alpha \in I_0} a_\alpha$ for some finite subset I_0 of I. By a C-lattice we mean a (not necessarily modular) multiplicative lattice which is generated under joins by a multiplicatively closed subset C of compact elements. C-lattices can be localized. For any prime element p of L, L_p denotes the localization at $F = \{ x \in C \mid x \notin p \}$. For details on C-lattices and their localization theory, the reader is referred to [15] and [19]. We note that in a C-lattice, a finite product of compact elements is again compact. Throughout this paper, L denotes a C-lattice and the set of all compact elements of L is shown by L_*. An element $e \in L$ is said to be principal [13], if it satisfies the meet principal property (i) $a \land be = ((a : e) \land b)e$ and join principal property (ii) $(ae \lor b) : e = (b : e) \lor a$. A finite product of meet (join) principal elements of L is again meet (join) principal from [13, Lemma 3.3 and Lemma 3.4].

If every element of L is principal, then L is called a principal element lattice. For more information about principal element lattices, the reader is referred to [3], [16] and [17]. L is called a totally ordered lattice, if any two elements of L are comparable. L is said to be a Prüfer lattice if every compact element is principal.

An element $a \in L$ is said to be proper if $a < 1$. A proper element p of L (weakly, [4]) prime if $(0 \neq ab \leq p)$ $ab \leq p$ implies either $a \leq p$ or $b \leq p$. If 0 is prime, then L is said to be a domain. An element $m < 1$ in L is said to be maximal if $m < x \leq 1$ implies $x = 1$. It can be easily shown that maximal elements are prime. A maximal element m of L is said to be simple, if there is no element $a \in L$ such that $m^2 < a < m$. L is said to be quasi-local if it contains a unique maximal element. If $L = \{0, 1\}$, then L is called a field. An element $a \in L$ is said to be a strong compact element if both a and $a^\omega = \bigwedge_{n=1}^\infty a^n$ are compact elements of L. Strong compact elements have been studied in [16]. For $a \in L$, we define radical of a as $\sqrt{a} = \wedge\{p \in L : p$ is prime and $a \leq p\}$. Note that in a C-lattice L, $\sqrt{a} = \wedge\{p \in L : p$ is prime and $a \leq p\} = \vee\{x \in L_* \mid x^n \leq a$ for some $n \in \mathbb{Z}^+\}$. (See also Theorem 3.6 of [21]). A proper element q is said to be (weakly) primary if for every $a, b \in L$, $(0 \neq ab \leq q)$ $ab \leq q$ implies either $a \leq q$ or $b^n \leq q$ for some $n \in \mathbb{Z}^+$, [6]. If q is primary and if $\sqrt{q} = p$ is a prime element, then q is called a p-primary element. A principally generated C-lattice domain L is said to be a Dedekind domain, if every element of L is a finite product of prime elements of L.

Recall from [18] that a proper element q of L is called a (weakly) 2-absorbing element of L if whenever $a, b, c \in L$ with $(0 \neq abc \leq q)$ $abc \leq q$, then $ab \leq q$ or
ac ≤ q or bc ≤ q. In this paper, we introduce the concepts of 2-absorbing primary and weakly 2-absorbing primary element which are generalizations of primary and weakly primary elements. A proper element \(q \) of \(L \) is said to be a (weakly) 2-absorbing primary element of \(L \) if whenever \(a, b, c \in L \) with \(0 \neq abc \leq q \) \(abc \leq q \), then \(ab \leq q \) or \(ac \leq \sqrt{q} \) or \(bc \leq \sqrt{q} \).

Among many results in this paper, it is shown (Theorem 2.4) that the radical of a 2-absorbing primary element of \(L \) is a 2-absorbing element of \(L \). It is shown (Theorem 2.6) that if \(q_1 \) is a \(p_1 \)-primary element of \(L \) for some prime element \(p_1 \) of \(L \) and \(q_2 \) is a \(p_2 \)-primary element of \(L \) for some prime element \(p_2 \) of \(L \), then \(q_1q_2 \) and \(q_1 \wedge q_2 \) are 2-absorbing primary elements of \(L \). It is shown (Theorem 2.7) that if radical of \(q \) is primary, then \(q \) is a 2-absorbing primary element. 2-absorbing primary and weakly 2-absorbing primary elements of cartesian product of multiplicative lattices are presented (Theorem 2.20-2.24). A new characterization for principal element domains in terms of 2-absorbing primary elements is established (Theorem 3.30).

2. 2-absorbing primary and Weakly 2-absorbing primary elements

Definition 2.1

(1) A proper element \(q \) of \(L \) is called a 2-absorbing primary element of \(L \) if whenever \(a, b, c \in L \) and \(abc \leq q \), then \(ab \leq q \) or \(bc \leq \sqrt{q} \) or \(ac \leq \sqrt{q} \).

(2) A proper element \(q \) of \(L \) is called a weakly 2-absorbing primary element of \(L \) if whenever \(a, b, c \in L \) and \(0 \neq abc \leq q \), then \(ab \leq q \) or \(ac \leq \sqrt{q} \) or \(bc \leq \sqrt{q} \).

The following theorem is obvious from the definitions, so the proof is omitted.

Theorem 2.2 Let \(q \) be a proper element of \(L \). Then

(1) If \(q \) is a (weakly) prime element, then \(q \) is a (weakly) 2-absorbing primary element.

(2) If \(q \) is a (weakly) primary element, then \(q \) is a (weakly) 2-absorbing primary element.

(3) If \(q \) is a (weakly) 2-absorbing element, then \(q \) is a (weakly) 2-absorbing primary element.

(4) If \(q \) is a 2-absorbing primary element, then \(q \) is a weakly 2-absorbing primary element.

It is known from [Theorem 1, [15]] that if \(L \) is a Prüfer lattice and \(p \) is a prime element of \(L \), then \(p^n \) is \(p \)-primary element. Thus \(p^n \) is a 2-absorbing primary element of \(L \) for all \(n > 0 \).
Theorem 2.3

(1) An element \(q \in L \) is a 2-absorbing primary element if and only if for any \(a, b, c \in L^* \), \(abc \leq q \) implies either \(ab \leq q \) or \(bc \leq \sqrt{q} \) or \(ac \leq \sqrt{q} \).

(2) An element \(q \in L \) is a weakly 2-absorbing primary element if and only if for any \(a, b, c \in L^* \), \(0 \neq abc \leq q \) implies either \(ab \leq q \) or \(bc \leq \sqrt{q} \) or \(ac \leq \sqrt{q} \).

Proof. (1) Assume that for any \(a, b, c \in L^* \), \(abc \leq q \) implies either \(ab \leq q \) or \(bc \leq \sqrt{q} \) or \(ac \leq \sqrt{q} \). Let \(a, b, c \in L \), \(abc \leq q \), \(bc \not\leq \sqrt{q} \) and \(ac \not\leq \sqrt{q} \). Then there exist compact elements \(a' \leq a \), \(b' \leq b \) and \(c' \leq c \) such that \(a'b'c' \leq q \). Since \(ac \not\leq \sqrt{q} \) and \(bc \not\leq \sqrt{q} \), there exist compact elements \(a_1 \leq a \), \(c_1 \leq c \), \(c_2 \leq c \) and \(b_1 \leq b \) such that \(a_1c_1 \not\leq \sqrt{q} \) and \(b_1c_2 \not\leq \sqrt{q} \). Put \(c_3 = c_1 \lor c_2 \lor c' \), \(a_2 = a_1 \lor a' \), \(b_2 = b_1 \lor b' \). We show that \(ab \leq q \). Choose compact elements \(a_\alpha \leq a \) and \(b_\alpha \leq b \). Then \((a_2 \lor a_\alpha)c_3(b_2 \lor b_\alpha) \leq q \), \((a_2 \lor a_\alpha)c_3 \not\leq \sqrt{q} \), \((b_2 \lor b_\alpha) \not\leq \sqrt{q} \) and hence by the hypothesis, \((a_2 \lor a_\alpha)(b_2 \lor b_\alpha) \leq q \). So \(a_\alpha b_\alpha \leq q \). Consequently, \(ab \leq q \). Therefore \(q \) is a 2-absorbing element of \(L \). The converse part is obvious.

(2) It can be easily shown similar to (1). □

Theorem 2.4 If \(q \) is a 2-absorbing primary element of \(L \), then \(\sqrt{q} \) is a 2-absorbing element of \(L \).

Proof. Let \(a, b, c \in L \) such that \(abc \leq \sqrt{q} \), \(ac \not\leq \sqrt{q} \) and \(bc \not\leq \sqrt{q} \). Since \(abc \leq \sqrt{q} \), there exists a positive integer \(n \) such that \((abc)^n = a^n b^n c^n \leq q \). We obtain \(a^n c^n \not\leq \sqrt{q} \) and \(b^n c^n \not\leq \sqrt{q} \). Since \(q \) is 2-absorbing primary, we conclude that \(a^n b^n = (ab)^n \leq q \), and hence \(ab \leq \sqrt{q} \). Thus \(\sqrt{q} \) is a 2-absorbing element of \(L \). □

Theorem 2.5 Let \(q \) be a proper element of \(L \). Then \(\sqrt{q} \) is a (weakly) 2-absorbing element of \(L \) if and only if \(\sqrt{q} \) is a (weakly) 2-absorbing primary element of \(L \).

Proof. Since \(\sqrt{q} = \sqrt{q} \), the proof is clear. □

Theorem 2.6 If \(q \) is a 2-absorbing primary element of \(L \), then one of the following statements must hold.

(1) \(\sqrt{q} = p \) is a prime element,

(2) \(\sqrt{q} = p_1 \land p_2 \), where \(p_1 \) and \(p_2 \) are the only distinct prime elements of \(L \) that are minimal over \(q \).

Proof. Suppose that \(q \) is a 2-absorbing primary element of \(L \). Then \(\sqrt{q} \) is a 2-absorbing element by Theorem 2.4. Since \(\sqrt{\sqrt{q}} = \sqrt{q} \), the claim follows from Theorem 3 in [18]. □

Let \(q \) be a proper element of \(L \). It is known that if \(\sqrt{q} \) is a maximal element of \(L \), then \(q \) is a primary element of \(L \). The following theorem states that it is sufficient that if \(\sqrt{q} \) is a primary element of \(L \), then \(q \) is a 2-absorbing primary element of \(L \). Note that \(\sqrt{q} \) is a (weakly) prime element of \(L \) if and only if \(\sqrt{q} \) is a (weakly) primary element of \(L \) as \(\sqrt{q} = \sqrt{\sqrt{q}} \).
Theorem 2.7 Let \(q \) be a proper element of \(L \).

1. If \(\sqrt{q} \) is a primary element of \(L \), then \(q \) is a 2-absorbing primary element of \(L \).

2. If \(\sqrt{q} \) is a weakly primary element of \(L \), then \(q \) is a weakly 2-absorbing primary element of \(L \).

Proof. (1) Suppose that \(abc \leq q \) for some \(a, b, c \in L \) and \(ab \not\leq q \). Since \((ac)(bc) = abc^2 \leq q \leq \sqrt{q} \) and \(\sqrt{q} \) is a primary element of \(L \), we have \(bc \leq \sqrt{q} \) or \(ac \leq \sqrt{q} \). Hence \(q \) is a 2-absorbing primary element of \(L \).

(2) Suppose that \(0 \neq abc \leq q \) for some \(a, b, c \in L \) and \(ab \not\leq q \). Suppose that \(ab \not\leq \sqrt{q} \). Since \(\sqrt{q} \) is a weakly primary element of \(L \), we have \(c \leq \sqrt{q} \), and thus \(ac \leq \sqrt{q} \). Suppose that \(ab \leq \sqrt{q} \). Since \(0 \neq abc \leq q \) and \(ab \leq \sqrt{q} \), we have \(0 \neq ab \in \sqrt{q} \). Since \(\sqrt{q} \) is a weakly primary element of \(L \) and \(0 \neq ab \leq \sqrt{q} \), we have \(a \leq \sqrt{q} \) or \(b \leq \sqrt{q} \). Thus \(ac \leq \sqrt{q} \) or \(bc \leq \sqrt{q} \). Thus \(q \) is a weakly 2-absorbing primary element of \(L \).

Definition 2.8 Let \(q \) be a 2-absorbing primary element of \(L \). Then \(p = \sqrt{q} \) is a 2-absorbing element by Theorem 2.2. We say that \(q \) is a \(p \)-2-absorbing primary element of \(L \).

Theorem 2.9 Let \(q_1 \) is a \(p_1 \)-primary element of \(L \) and \(q_2 \) is a \(p_2 \)-primary element of \(L \) for some prime elements \(p_1 \) and \(p_2 \) of \(L \). Then the following statements hold.

1. \(q_1 q_2 \) is a 2-absorbing primary element of \(L \).

2. \(q_1 \land q_2 \) is a 2-absorbing primary element of \(L \).

Proof. (1) Suppose that \(abc \leq q_1 q_2 \) for some \(a, b, c \in L \), \(ac \not\leq \sqrt{q_1 q_2} \), and \(bc \not\leq \sqrt{q_1 q_2} \). Then \(a, b, c \not\leq \sqrt{q_1 q_2} \). As \(\sqrt{q_1 q_2} = p_1 \land p_2 \), \(\sqrt{q_1 q_2} \) is a 2-absorbing element of \(L \) by [18]. Since \(ac, bc \not\leq \sqrt{q_1 q_2} \), we have \(ab \leq \sqrt{q_1 q_2} \). We show that \(ab \leq q_1 q_2 \). Since \(ab \leq \sqrt{q_1 q_2} \leq p_1 \), we may assume that \(a \leq p_1 \). Since \(a \not\leq \sqrt{q_1 q_2} = p_1 \land p_2 \) and \(ab \leq \sqrt{q_1 q_2} \leq p_2 \), we conclude that \(a \not\leq p_2 \) and \(b \leq p_2 \). Since \(b \leq p_2 \) and \(b \not\leq \sqrt{q_1 q_2} \), we have \(b \not\leq p_1 \). If \(a \leq q_1 \) and \(b \leq q_2 \), then \(ab \leq q_1 q_2 \), so we are done. Thus assume that \(a \not\leq q_1 \). Since \(q_1 \) is a \(p_1 \)-primary element of \(L \) and \(a \not\leq q_1 \), we have \(bc \leq p_1 \). Since \(b \leq p_2 \) and \(bc \leq p_1 \), we have \(bc \leq \sqrt{q_1 q_2} \), which is a contradiction. Thus \(a \leq q_1 \). Similarly, if \(b \not\leq q_2 \), we conclude \(ac \leq \sqrt{q_1 q_2} \), which is again a contradiction. So \(a \leq q_1 \) and \(b \leq q_2 \) and thus \(ab \leq q_1 q_2 \).

(2) Let \(q = q_1 \land q_2 \). Then \(\sqrt{q} = p_1 \land p_2 \) is a 2-absorbing element of \(L \). Suppose that \(abc \leq q \) for some \(a, b, c \in L \), \(ac \not\leq \sqrt{q} \), and \(bc \not\leq \sqrt{q} \). Then \(a, b, c \not\leq \sqrt{q} = p_1 \land p_2 \) and \(ab \leq \sqrt{q} \leq p_1 \). We show that \(ab \leq q \). Since \(ab \leq \sqrt{q} \leq p_1 \), we may assume that \(a \leq p_1 \). Since \(a \not\leq \sqrt{q} \) and \(ab \leq \sqrt{q} \leq p_2 \), we conclude that \(a \not\leq p_2 \) and \(b \leq p_2 \). Since \(b \leq p_2 \) and \(b \not\leq \sqrt{q} \), we get \(b \not\leq p_1 \). If \(a \leq q_1 \) and \(b \leq q_2 \), then \(ab \leq q \) and we are done. So suppose that \(a \not\leq q_1 \). Since \(q_1 \) is a \(p_1 \)-primary element of \(L \) and \(a \not\leq q_1 \), we have \(bc \leq p_1 \). Since \(b \leq p_2 \) and \(bc \leq p_1 \), we have \(bc \leq \sqrt{q} \),
a contradiction. Hence we have \(a \leq q_1 \). By the similar argument, we conclude \(a \leq q_1 \) and \(b \leq q_2 \). Thus \(ab \leq q \).

As a consequence of Theorem 2.9, we have the following corollary.

Corollary 2.10 Let \(p_1, p_2 \) be prime elements of \(L \). If \(p_1^n \) is a \(p_1 \)-primary element of \(L \) and \(p_2^m \) is a \(p_2 \)-primary element of \(L \) for some positive integers \(n, m \), then \(p_1^n p_2^m \) and \(p_1^n \wedge p_2^m \) are \(2 \)-absorbing primary elements of \(L \).

Theorem 2.11 Let \(q_1, q_2, \ldots, q_n \) be \(p \)-\(2 \)-absorbing primary elements of \(L \) for some \(2 \)-absorbing element \(p \) of \(L \). Then \(q = \bigcap_{i=1}^{n} q_i \) is a \(p \)-\(2 \)-absorbing primary element of \(L \).

Proof. Let \(a, b, c \in L \) with \(abc \leq q \). Suppose that \(ab \not\leq q \). Then \(ab \not\leq q_i \) for some \(i \in \{1, 2, \ldots, n\} \). It implies either \(bc \leq \sqrt{q_i} = p \) or \(ac \leq \sqrt{q_i} = p \). Since \(\sqrt{q} = \bigcap_{i=1}^{n} \sqrt{q_i} = p \), we are done.

Definition 2.12 Let \(q \) be a weakly \(2 \)-absorbing primary element of \(L \). We say \((a, b, c) \) is a triple-zero of \(q \) if \(abc = 0 \), \(ab \not\leq q \), \(bc \not\leq \sqrt{q} \), and \(ac \not\leq \sqrt{q} \).

Note that if \(q \) is a weakly \(2 \)-absorbing primary element of \(L \) that is not \(2 \)-absorbing primary, then there exists a triple-zero \((a, b, c) \) of \(q \) for some \(a, b, c \in L \).

Theorem 2.13 Let \(q \) be a weakly \(2 \)-absorbing primary element of \(L \) and suppose that \((a, b, c) \) is a triple-zero of \(q \) for some \(a, b, c \in L \). Then

1. \(abq = bcq = acq = 0 \),
2. \(aq^2 = bq^2 = cq^2 = 0 \).

Proof. (1) Suppose that \(abq \neq 0 \). Then there exists a compact element \(x \leq q \) such that \(abx \neq 0 \). Hence \(0 \neq ab(c \lor x) \leq q \). Since \(ab \not\leq q \) and \(q \) is weakly \(2 \)-absorbing primary, we have \(a(c \lor x) \leq \sqrt{q} \) or \(b(c \lor x) \leq \sqrt{q} \). So \(ac \leq \sqrt{q} \) or \(bc \leq \sqrt{q} \), a contradiction. Thus \(abx = 0 \), and so \(abq = 0 \). Similarly, it can be easily verified that \(bcq = acq = 0 \).

(2) Suppose that \(aq_1 q_2 \neq 0 \) for some compact elements \(q_1, q_2 \leq q \). Hence from (1) we have \(0 \neq a(b \lor q_1)(c \lor q_2) = aq_1 q_2 \leq q \). It implies either \(a(b \lor q_1) \leq q \) or \(a(c \lor q_2) \leq \sqrt{q} \) or \((b \lor q_1)(c \lor q_2) \leq \sqrt{q} \). Thus \(ab \leq q \) or \(ac \leq \sqrt{q} \) or \(bc \leq \sqrt{q} \), a contradiction. Therefore \(aq^2 = 0 \). Similarly, one can easily show that \(bq^2 = cq^2 = 0 \).

Theorem 2.14 If \(q \) is a weakly \(2 \)-absorbing primary element of \(L \) that is not \(2 \)-absorbing primary, then \(q^3 = 0 \).
Proof. Suppose that q is a weakly 2-absorbing primary element that is not a 2-absorbing primary element of L. Then there exists (a, b, c) a triple-zero of q for some $a, b, c \in L$. Assume that $q^3 \neq 0$. Hence $q_1q_2q_3 \neq 0$, for some compact elements $q_1, q_2, q_3 \leq q$. By Theorem 2.13, we obtain $(a \lor q_1)(b \lor q_2)(c \lor q_3) = q_1q_2q_3 \neq 0$. This implies that $(a \lor q_1)(b \lor q_2) \leq q$ or $(a \lor q_1)(c \lor q_3) \leq \sqrt{q}$ or $(b \lor q_2)(c \lor q_3) \leq \sqrt{q}$. Thus we have $ab \leq q$ or $ac \leq \sqrt{q}$ or $bc \leq \sqrt{q}$, a contradiction. Thus $q^3 = 0$.

Corollary 2.15 If q is a weakly 2-absorbing primary element of L that is not 2-absorbing primary, then $\sqrt{q} = \sqrt{0}$.

Theorem 2.16 Let q_1, q_2, \ldots, q_n be weakly 2-absorbing primary elements of L that are not 2-absorbing primary. Then $q = \bigwedge_{i=1}^n q_i$ is a weakly 2-absorbing primary element of L.

Proof. Since q_i’s are weakly 2-absorbing primary that are not 2-absorbing primary, we get $\sqrt{q_i} = \sqrt{0}$ for each $1 \leq i \leq n$ by Corollary 2.15. So the result is obtained easily similar to the argument in the proof of Theorem 2.11.

Theorem 2.17 Suppose that 0 has a triple-zero (a, b, c) for some $a, b, c \in L$ such that $ab \not\leq \sqrt{0}$. Let q be a weakly 2-absorbing primary element of L. Then q is not a 2-absorbing primary element of L if and only if $q \leq \sqrt{0}$.

Proof. Suppose that q is not a 2-absorbing primary element of L. Then $q \leq \sqrt{0}$ by Corollary 2.15. Conversely, suppose that $q \leq \sqrt{0}$. By hypothesis, we conclude that $ab \not\leq q$, $ac \not\leq \sqrt{0}$, and $bc \not\leq \sqrt{0}$. Thus (a, b, c) is a triple-zero of q. Hence q is not a 2-absorbing primary element of L.

Recall that L is said to be reduced if $\sqrt{0} = 0$.

Corollary 2.18 Let L be a reduced lattice and $q \neq 0$ be a proper element of L. Then q is a weakly 2-absorbing primary element if and only if q is a 2-absorbing primary element of L.

Theorem 2.19 Let m be a maximal element of L and q be a proper element of L. If q is a 2-absorbing primary element of L, then q_m is a 2-absorbing primary element of L_m.

Proof. Let $a, b, c \in L$ such that $a_n b_m c_m \leq q_m$. Then $abc \leq q_m$, so $uabc \leq q$ for some $u \not\leq m$. Hence we get either $uabc \leq q$ or $bc \leq \sqrt{q}$ or $uac \leq \sqrt{q}$. Since $(\sqrt{q})_m = \sqrt[q_m]{}$ by [15], and $u_m = 1_m$, it follows either $a_n b_m \leq q_m$ or $b_m c_m \leq \sqrt[q_m]{q_m}$ or $a_n c_m \leq \sqrt[q_m]{q_m}$.

Recall that for any $a \in L$, $L/a = \{b \in L : a \leq b\}$ is a multiplicative lattice with multiplication $c \circ d = cd \lor a$. For more details, the reader is referred to [2].
Lemma 1 Let a and q be proper elements of L with $a \leq q$. If q is a 2-absorbing primary element of L, then \overline{q} is a weakly 2-absorbing primary element of L/a.

Proof. The proof is clear. \hfill \blacksquare

Theorem 2.20 Let $L = L_1 \times L_2$, where L_1 and L_2 are C-lattices. Then a proper element q is a 2-absorbing primary element of L if and only if it has one of the following three forms.

1. $q = (q_1, 1_{L_2})$ for some 2-absorbing primary element q_1 of L_1,
2. $q = (1_{L_1}, q_2)$ for some 2-absorbing primary element q_2 of L_2,
3. $q = (q_1, q_2)$ for some primary element q_1 of L_1 and some primary element q_2 of L_2.

Proof. If $q = (q_1, 1_{L_2})$ for some 2-absorbing primary element q_1 of L_1 or $q = (1_{L_1}, q_2)$ for some 2-absorbing primary element q_2 of L_2, then it is clear that q is a 2-absorbing primary element of L. Hence assume that $q = (q_1, q_2)$ for some primary element q_1 of L_1 and some primary element q_2 of L_2. Then $q_1' = (q_1, 1_{L_2})$ and $q_2' = (1_{L_1}, q_2)$ are primary elements of L. Hence $q_1' \land q_2' = (q_1, q_2) = q$ is a 2-absorbing primary element of L by Theorem 2.9.

Conversely, suppose that q is a 2-absorbing primary element of L. Then $q = (q_1, q_2)$ for some element q_1 of L_1 and some element q_2 of L_2. Suppose that $q_2 = 1_{L_2}$. Since q is a proper element of L, $q_1 \neq 1_{L_1}$. Let $L' = L/\{0\} \times L_2$. Then $\overline{q} = (q_1, 1_{L_2})$ is a 2-absorbing primary element of L' by Lemma 1. Now, we show that q_1 is a 2-absorbing primary element of L_1. Let $abc \leq q_1$ for some $a, b, c \in L_1$. Hence $(a, 1_{L_2})(b, 1_{L_2})(c, 1_{L_2}) = (abc, 1_{L_2}) \leq \overline{q}$, which implies that $(a, 1_{L_2})(b, 1_{L_2}) \leq \overline{q}$ or $(b, 1_{L_2})(c, 1_{L_2}) \leq \sqrt{q}$ or $(a, 1_{L_2})(c, 1_{L_2}) \leq \sqrt{q}$. It means that either $ab \leq q_1$ or $bc \leq \sqrt{q_1}$ or $ac \leq \sqrt{q_1}$. Thus q_1 is a 2-absorbing primary element of L_1.

If $q_1 = 1_{L_1}$, then q_2 can be obtained as a 2-absorbing primary element of L_2 by the similar way. Hence assume that $q_1 \neq 1_{L_1}$ and $q_2 \neq 1_{L_2}$. Then $\sqrt{q} = (\sqrt{q_1}, \sqrt{q_2})$. On the contrary, suppose that q_1 is not a primary element of L_1. Then there are $a, b \in L_1$ such that $ab \leq q_1$ but neither $a \leq q_1$ nor $b \leq q_1$. Let $x = (a, 1), y = (1, 0),$ and $z = (b, 1)$. Then $xyz = (ab, 0) \leq q$ implies that either $xy = (a, 0) \leq q$ and $xz = (ab, 1) \leq \sqrt{q}$ and $yz = (b, 0) \leq \sqrt{q}$, a contradiction. Therefore q_1 is a primary element of L_1. Similarly it can be easily seen that q_2 is a primary element of L_2, as needed. \hfill \blacksquare

Theorem 2.21 Let L_1 and L_2 be C-lattices, q be a proper element of L_1, and $L = L_1 \times L_2$. Then the following statements are equivalent.

1. $(q, 1_{L_2})$ is a weakly 2-absorbing primary element of L.
2. $(q, 1_{L_2})$ is a 2-absorbing primary element of L.
3. q is a 2-absorbing primary element of L_1.

270 F. ÇALLIALP, E. YETKIN, U. TEKIR
Let $q \neq 0$, that q is a 2-absorbing primary element of L. Thus a, b, c exist such that $a, b, c, 1L = (1L)$. Hence we have \((a, 1L)(b, 1L) = (ab, 1L) \) or \((a, 1L)(c, 1L) = (ac, 1L) \). It follows that $ab \leq q$ or $bc \leq \sqrt{q}$, a contradiction. Thus q is a 2-absorbing primary element of L.

(3)⇒(1) Let q be a 2-absorbing primary element of L. Then it can be easily shown that $(q, 1L)$ is a 2-absorbing primary element of L, therefore (1) holds.

Theorem 2.22 Let L_1 and L_2 be C-lattices, q_1, q_2 be nonzero elements of L_1 and L_2, respectively, and let $L = L_1 \times L_2$. If (q_1, q_2) is a proper element of L, then the following statements are equivalent.

1. (q_1, q_2) is a weakly 2-absorbing primary element of L.
2. $q_1 = 1L_1$ and q_2 is a 2-absorbing primary element of L_1 or $q_2 = 1L_2$ and q_1 is a 2-absorbing primary element of L_1 or q_1, q_2 are primary elements of L_1 and L_2, respectively.
3. (q_1, q_2) is a 2-absorbing primary element of L.

Proof. (1)⇒(2) Assume that (q_1, q_2) is a weakly 2-absorbing primary element of L. If $q_1 = 1L_1$ $(q_2 = 1L_2)$, then q_2 is a 2-absorbing primary element of L_2 $(q_1$ is a 2-absorbing primary element of $L_1)$ by Theorem 2.21. So we may assume that $q_1 \neq 1L_1$ and $q_2 \neq 1L_2$. Let $a, b \in L_2$ such that $ab \leq q_2$ and let $x \in L_2$ with $0 \neq x \leq q_1$. Then $0 \neq (x, 1)(1, a)(1, b) = (x, ab) \leq (q_1, q_2)$. Since q_1 is proper, $(1, a)(1, b) = (1, ab) \leq \sqrt{(q_1, q_2)}$. Hence we have $(x, 1)(1, a) = (x, a) \leq (q_1, q_2)$. Thus q_2 is a primary element of L_2. Similarly, it can be easily shown that q_1 is a primary element of L_1.

(2)⇒(3) The proof is by Theorem 2.20.

(3)⇒(1) It is clear.
Proof. Suppose that q is a nonzero weakly 2-absorbing primary element of L that is not 2-absorbing primary element. Then $q = (q_1, q_2)$ for some elements q_1, q_2 of L_1 and L_2 respectively. Assume that $q_1 \neq 0$ and $q_2 \neq 0$. Then q is a 2-absorbing primary element of L by Theorem 2.22, a contradiction. Therefore $q_1 = 0$ or $q_2 = 0$. Without loss of generality we may assume that $q_2 = 0$. We show that $q_2 = 0$ is a primary element of L. Let $a, b \in L$ such that $ab \leq q_2$, and let $x \in L$ such that $0 \neq x \leq q_1$. Since $0 \neq (x, 1)(1, a)(b, 1) = (x, ab) \leq q$ and $(1, a)(1, b) = (1, ab) \notin \sqrt{q}$, we obtain $(x, a) = (x, 1)(1, a) \leq q$ or $(x, b) = (x, 1)(1, b) \leq \sqrt{q}$, and so $a \leq q_2$ or $b \leq \sqrt{q_2}$. Thus $q_2 = 0$ is a primary element of L. Next, we show that q_1 is a weakly primary element of L. Let $0 \neq ab \leq q_1$, for some $a, b \in L_1$. Since $0 \neq (a, 1)(b, 1)(1, 0) \leq (q_1, 0)$ and $(ab, 1) \notin (q_1, 0)$, we conclude $(a, 0) = (a, 1)(1, 0) \leq \sqrt{(q_1, 0)} = \sqrt{q}$ or $(b, 0) = (b, 1)(1, 0) \leq \sqrt{(q_1, 0)} = \sqrt{q}$. Thus $a \leq q_1$ or $b \leq \sqrt{q_1}$, and therefore q_1 is a weakly primary element of L.

Now, we show that q_1 is not primary. Suppose that q_1 is a primary element of L. Since $q_2 = 0$ is a primary element of L_2, we conclude that $q = (q_1, q_2)$ is a 2-absorbing primary element of L by Theorem 2.20, a contradiction. Thus q_1 is a weakly primary element of L_1 that is not primary.

Conversely, suppose that (1) holds. Assume that $(0, 0) \neq (a, a')(b, b')(c, c') \leq q = (q_1, 0)$. Since $a'b'c' = 0$ and $(0, 0) \neq (a, a')(b, b')(c, c') \leq (q_1, 0)$, we conclude that $abc \neq 0$. Assume $(a, a')(b, b') \notin q$. We consider three cases.

Case one: Suppose that $ab \notin q_1$, but $a'b' = 0$. Since q_1 is a weakly primary element of L_1, we have $c \leq \sqrt{q_1}$. Since $q_2 = 0$ is a primary element of L_2, we have $a' = 0$ or $b' \leq \sqrt{q_2}$. Thus $(a, a')(c, c') \leq \sqrt{q}$ or $(b, b')(c, c') \leq \sqrt{q}$.

Case two: Suppose that $ab \notin q_1$ and $a'b' \neq 0$. Then $(c, c') \leq (\sqrt{q_1}, \sqrt{0}) = \sqrt{q}$. Thus $(a, a')(c, c') \leq \sqrt{q}$ or $(b, b')(c, c') \leq \sqrt{q}$.

Case three: Suppose that $ab \leq q_1$, but $a'b' \neq 0$. Since $0 \neq ab \leq q_1$ and q_1 is a weakly primary element of L_1, we have $a \leq q_1$ or $b \leq \sqrt{q_1}$. Since $a'b' \neq 0$ and $q_2 = 0$ is a primary element of L_2, we have $c' \leq \sqrt{q_2}$. Thus $(a, a')(c, c') \leq \sqrt{q}$ or $(b, b')(c, c') \leq \sqrt{q}$. Hence q is a weakly 2-absorbing primary element of L. Since q_1 is not a primary element of L_1, q is not a 2-absorbing primary element of L by Theorem 2.22.

Theorem 2.24 Let $L = L_1 \times L_2 \times \ldots \times L_n$, where $2 < n < \infty$, and L_1, L_2, \ldots, L_n are C-lattices and let q be a nonzero proper element of L. Then the following statements are equivalent.

(1) q is a weakly 2-absorbing primary element of L.

(2) q is a 2-absorbing primary element of L.

(3) Either $q = (q_t)_{t=1}^n$ such that for some $k \in \{1, 2, \ldots, n\}$, q_k is a 2-absorbing primary element of L_k, and $q_t = 1_{L_t}$ for every $t \in \{1, 2, \ldots, n\} \setminus \{k\}$ or $q = (q_t)_{t=1}^n$ such that for some $k, m \in \{1, 2, \ldots, n\}$, q_k is a primary element of L_k, q_m is a primary element of L_m, and $q_t = 1_{L_t}$ for every $t \in \{1, 2, \ldots, n\} \setminus \{k, m\}$.
Proof. (1) \Leftrightarrow (2) Since q is a proper element of L, we have $q = (q_1, \ldots, q_n)$, where every q_i's are element of L_i, and $q_j \neq 1_{L_j}$ for some $j \in \{1, \ldots, n\}$. Suppose that $q = (q_1, q_2, \ldots, q_n) \neq 0$ is a weakly 2-absorbing primary element of L. Then there is a compact element $0 \neq (a_1, a_2, \ldots, a_n) \leq q$. Hence $0 \neq (a_1, a_2, \ldots, a_n) = (a_11, 1, 1, \ldots, 1)(a_2, 1, 1, \ldots, 1) \cdots (1, 1, \ldots, a_n) \leq q$ implies there is a $j \in \{1, \ldots, n\}$ such that $b_j = 1_{L_j}$ and $(b_1, \ldots, b_n) \leq \sqrt{q} = (\sqrt{q_1}, \ldots, \sqrt{q_n})$, where $b_1, \ldots, b_n \in \{a_1, \ldots, a_n\}$. Hence $\sqrt{b_j} = 1_{L_j}$, and so $q_j = 1_{L_j}$. Thus $\sqrt{q} \neq 0$, and hence by Corollary 2.15, q is a 2-absorbing primary element. The converse is obvious.

(2) \Leftrightarrow (3) We use induction on n. If $n = 2$, then we are done by Theorem 2.22. Hence let $3 \leq n < \infty$ and assume that the result is satisfied when $S = L_1 \times \cdots \times L_{n-1}$. Thus $L = S \times L_n$. Theorem 2.22 implies that q is a 2-absorbing primary element of L if and only if either $q = (s, 1_{L_n})$ for some 2-absorbing primary element s of S or $q = (1_s, t)$ for some 2-absorbing primary element t of L_n or $q = (s, t)$ for some primary element s of S and some primary element t of L_n. Since a proper element s of S is a primary element of S if and only if $s = (q_k)^{i-1}$ such that for some $k \in \{1, 2, \ldots, n - 1\}$, we conclude that q_k is a primary element of L_k, and $q_t = 1_{L_t}$ for every $t \in \{1, 2, \ldots, n - 1\} \setminus \{k\}$. So this completes the proof of the theorem.

\section{2-absorbing primary elements in some special lattices}

\textbf{Theorem 3.25} Suppose that $\sqrt{0}$ is a prime (primary) element of L. Let q be a proper element of L. Then q is a weakly 2-absorbing primary element of L if and only if q is a 2-absorbing primary element of L.

\textbf{Proof.} Suppose that q is a weakly 2-absorbing primary element of L. Assume that $abc \leq q$ for some $a, b, c \in L$. If $0 \neq abc \leq q$, then $ab \leq q$ or $ac \leq \sqrt{q}$ or $bc \leq \sqrt{q}$. Hence assume that $abc = 0$ and $ab \notin q$. Since $abc = 0 \leq \sqrt{0}$ and $\sqrt{0}$ is a prime element of L, we conclude that $a \leq \sqrt{0}$ or $b \leq \sqrt{0}$ or $c \leq \sqrt{0}$. Since $\sqrt{0} \leq \sqrt{q}$, we conclude that $ac \leq \sqrt{0} \leq \sqrt{q}$ or $bc \in \sqrt{0} \leq \sqrt{q}$. Thus q is a 2-absorbing primary element of L. The converse is clear.

Recall that L is called \textit{quasilocal} if it has exactly one maximal element.

\textbf{Theorem 3.26} Let L be a quasilocal lattice with maximal element $\sqrt{0}$. The following statements hold.

\begin{enumerate}
\item Every element of L is a weakly 2-absorbing primary element of L.
\item A proper element q of L is a weakly 2-absorbing primary element if and only if q is a 2-absorbing primary element.
\end{enumerate}

\textbf{Proof.} It is obvious by Theorem 3.25.

\textbf{Theorem 3.27} Let L_1, L_2 and L_3 be C-lattices and let $L = L_1 \times L_2 \times L_3$. Then every proper element of L is a weakly 2-absorbing primary element of L if and only if L_1, L_2 and L_3 are fields.
Proof. Suppose that every proper element of L is a weakly 2-absorbing primary element of L. Without loss of generality, we may assume that L_1 is not a field. Then there exists a nonzero proper element q of L_1. Thus $a = (q, 0, 0)$ is a weakly 2-absorbing primary element of L, which contradicts with Theorem 2.24.

Conversely, suppose that L_1, L_2, L_3 are fields. Then every nonzero proper element of L is a 2-absorbing element by Theorem 2.24. Since 0 is always weakly 2-absorbing primary, the proof is completed.

Theorem 3.28 Suppose that every proper element of L is a weakly 2-absorbing primary element. Then L has at most three incomparable prime elements.

Proof. Assume that there are p_1, p_2, p_3 and p_4 incomparable prime elements of L. Let $q = p_1 \land p_2 \land p_3$. Hence $\sqrt{q} = \sqrt{p_1} \land \sqrt{p_2} \land \sqrt{p_3}$. Thus \sqrt{q} is not a 2-absorbing element of L by Theorem 2.6. So q is not a 2-absorbing primary element of L by Theorem 2.2. Hence $q^3 = 0$ by Theorem 2.14. Thus $q^3 = p_1^3p_2^3p_3^3 = 0 < p_4$ implies that $p_1 < p_4$ or $p_2 < p_4$ or $p_3 < p_4$, a contradiction. Thus L has at most three incomparable prime elements.

In view of Theorem 3.28, we have the following result.

Corollary 3.29 Suppose that every proper element of L is a weakly 2-absorbing primary element. Then L has at most three maximal elements.

Theorem 3.30 Let L be a principally generated domain that is not a field. Then the following statements are equivalent.

(1) L is a principal element domain.

(2) Every maximal element is strong compact and a nonzero proper element q of L is a 2-absorbing primary element of L if and only if either $q = m^n$ for some maximal element m of L and some positive integer n or $q = m_1^n m_2^n$ for some maximal elements m_1, m_2 of L and some positive integers n, k.

(3) Every maximal element is strong compact and a nonzero proper element q of L is a 2-absorbing primary element of L if and only if either $q = p^n$ for some prime element p of L and some positive integer n or $q = p_1^n p_2^n$ for some prime elements p_1, p_2 of L and some positive integers n, k.

Proof. (1) \Rightarrow (2). Let L be a principal element domain. Then every maximal element is strong compact by [16, Theorem 2]. Suppose q is a nonzero 2-absorbing primary element of L that is not maximal. Then $q = m_1^{n_1} m_2^{n_2} \cdots m_k^{n_k}$ for some distinct maximal elements $m_1, ..., m_k$ of L and some integers $n_1, ..., n_k \geq 1$. Since every nonzero prime element of L is maximal and \sqrt{q} is either a maximal element of L or $q_1 \land q_2$ for some maximal elements q_1, q_2 of L by Theorem 2.6, we conclude that either $q = m^n$ for some maximal element m of L and some $n \geq 1$ or $q = m_1^n m_2^n$ for some maximal elements m_1, m_2 of L and some $n, m \geq 1$. Conversely, suppose that $q = m^n$ for some maximal element m of L and some positive integer $n \geq 1$.

\begin{align*}
\sqrt{q} &= \sqrt{m^n} \\
&= \sqrt{m} \land \sqrt{m} \cdots \sqrt{m} \\
&= m_1^n m_2^n \\
&= q
\end{align*}
or \(q = m_1^n m_2^k \) for some maximal elements \(m_1, m_2 \) of \(L \) and some integers \(n, k \geq 1 \). Then \(q \) is a 2-absorbing primary element of \(L \) by Theorem 2.9 and Corollary 2.10. (2)\(\Rightarrow \) (3) It is clear.

(3)\(\Rightarrow \) (1) Suppose that \(m \) is a maximal element of \(L \) and \(q \in L \) with \(m^2 \leq q \leq m \). Then \(q \) is an \(m \)-primary element. Hence \(q \) is a 2-absorbing primary element. From the hypothesis (3), either \(q = m \) or \(q = m^2 \), so there is no element \(a \in L \) such that \(m^2 < a < m \) which shows that \(m \) is simple. Therefore, by [16, Theorem 2], \(L \) is a principal element domain.

Suppose that \(L \) is principally generated. Then \(L \) is a Dedekind domain if and only if \(L \) is a principal element lattice by Theorem 2.7 in \([3]\). So we have the following result as a consequence of Theorem 3.30.

Corollary 3.31 Let \(L \) be a principally generated domain. If \(L \) is a Dedekind domain, then \(1_L \neq q \in L \) is 2-absorbing primary if and only if \(q = p^n \) for some prime element \(p \) of \(L \), a positive integer \(n \) or \(q = p_1^n p_2^m \) for some prime elements \(p_1, p_2 \) of \(L \), some positive integers \(n, m \).

Acknowledgements. This work is supported by the Scientific Research Project Program of Marmara (BAPKO).

References

Accepted: 06.12.2014