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Abstract. In this paper, we continue the study of the algebraic core spectrum and the
analytic core spectrum of an operator T on the complex Banach space X: σalc(T ) =
{λ ∈ C : C(λI − T ) = {0}} and σac(T ) = {λ ∈ C : K(λI − T ) = {0}} where C(T )
and K(T ) are respectively the algebraic core and the analytic core for T . We shall
be concerned with the relations between σac(·) (σalc(·)) and different classical parts
of spectrum: the point spectrum, the approximate point spectrum, the surjectivity
spectrum and the Kato spectrum. Moreover, some applications are given.
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1. Introduction

Throughout, X denotes a complex Banach space and B(X) denotes the Banach
algebra of all bounded linear operators on X, let I be the identity operator,

and for T ∈ B(X) we denote by T ∗, R(T ), R∞(T ) =
⋂
n≥0

R(T n), ρ(T ), σ(T ),
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σp(T ), σap(T ) and σsu(T ) respectively the adjoint, the range, the hyper-range, the
resolvent set, the spectrum, the point spectrum, the approximate point spectrum
and the surjectivity spectrum of T .

Recall that for T ∈ B(X) and x ∈ X the local resolvent of T at x defined
as the union of all open subset U of C for which there is an analytic function
f : U → X such that the equation (T − µI)f(µ) = x holds for all µ ∈ U .
The local spectrum σT (x) of T at x is defined as σT (x) = C \ ρT (x). Evidently
ρ(T ) ⊆ ρT (x), ρT (x) is open and σT (x) is closed.

Also, an important concept in local spectral theory is the local spectral sub-
space for an operator T ∈ B(X). For subset Ω of C the local spectral subspace
of T associated with Ω is the set XT (Ω) = {x ∈ X : σT (x) ⊆ Ω}, evidently
XT (Ω) is a hyperinvariant subspace of T not always closed, if Ω1 ⊆ Ω2 ⊆ C then
XT (Ω1) ⊆ XT (Ω2). We refer the reader to [1], [3], [4], [6] for the properties of the
local spectrum and local spectral subspaces .

Next, let T ∈ B(X), T is said to have the single valued extension property at
λ0 ∈ C (SVEP) if for every open neighbourhood U ⊆ C of λ0, the only analytic
function f : U −→ X which satisfies the equation (T − zI)f(z) = 0 for all z ∈ U
is the function f ≡ 0. T is said to have the SVEP if T has the SVEP for every
λ ∈ C. Denote by A(T ) = {λ ∈ C : T has the SVEP at λ}, by [3, Proposition
1.2.16] A(T ) = C if and only if XT (∅) = {0}, if and only if XT (∅) is closed.

Recall that T ∈ B(X) is said to be Kato operator or semi-regular [3], [7] if
R(T ) is closed and N(T −λ) ⊆ R∞(T −λ)}. Denote by ρK(T ): ρK(T ) = {λ ∈ C :
T −λI is Kato } the Kato resolvent and σK(T ) = C\ρK(T ) the Kato spectrum of
T . It is well known that ρK(T ) is on open subset of C and may be decomposed in
connected disjoint open nonempty components [1], σK(T ) play an important role
in local spectral theory; in particular, we have

∂σT (x) ⊆ σK(T ) ⊆ σsu(T ) ∩ σap(T ) ⊆ σ(T ) for all x ∈ X.

According to [1, Definition 1.40], we say that T ∈ B(X) admits a generalized
Kato decomposition, abbreviated GKD if there exists a pair of T -invariant closed
subspaces (M, N) such that X = M ⊕N , the restriction TpM is semi-regular, and
TpN is quasinilpotent. Obviously, every Kato operator admits a GKD because
in this case M = X and N = {0}, again the quasi-nilpotent operator admits a
GKD: Take M = {0} and N = X. If we suppose that TpN is nilpotent of order
d ∈ N, then T is said to be of Kato type of operator of order d. Finally, T is
said essentially semi-regular if it admits a GKD (M, N) such that N is finite-
dimensional. Evidently, every essentially semi-regular operator is of Kato type.
The Kato type spectrum of T is defined by

σKt(T ) = {λ ∈ C : T − λI is not of Kato type},
evidently σKt(T ) ⊆ σK(T ). We refer to [1] for more information about the Kato
type spectrum.

Let T ∈ B(X). The ascent of T is defined by

a(T ) = min{p : N(T p) = N(T p+1)}.
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If such p does not exist, we let a(T ) = ∞. Analogously, the descent of T is
d(T ) = min{q : R(T q) = R(T q+1)}; if such q does not exist, we let d(T ) = ∞ [4].
It is well known that, if both a(T ) and d(T ) are finite, then a(T ) = d(T ) and we
have the decomposition X = R(T p)⊕N(T p), where p = a(T ) = d(T ).

Recall that, for T ∈ B(X), the algebraic core C(T ) for T is the greatest
subspace M of X for which T (M) = M . Equivalently,

C(T ) = {x ∈ X : ∃(xn)n≥0 ⊂ X, such that x0 = x, Txn = xn−1 for all n ≥ 1}
Moreover, the analytical core for T is a linear subspace of X defined by:

K(T ) = {x ∈ X : ∃(xn)n≥0 ⊂ X and δ > 0 such that x0 = x, Txn = xn−1,

∀n ≥ 1 and ‖xn‖ ≤ δn‖x‖}
There are some relations between the algebraic core and the analytical core,

see [1], [3], [5], [9], [11]:

• T (K(T )) = K(T ), T (C(T )) = C(T ) and K(T ) ⊆ C(T ).

• If C(T ) is closed, then C(T ) = K(T ).

• K(T ) = XT (C\{0}) = {x ∈ X : 0 ∈ ρT (x)}.
• XT (∅) ⊂ K(T ) ⊆ C(T ) ⊂ R∞(T ) ⊂ R(T ).

• N(T − λI) ⊆ K(T − µI) for all λ 6= µ.

• The function : λ → K(T − λI) is constant on component of ρK(T ).

• If λ ∈ ρK(T ), then:

K(T − λI) = C(T − λI) = XT (C\{λ}) = R∞(T − λI).

Now, denote
Rac(X) = {T ∈ B(X) : K(T ) 6= {0}}
Ralc(X) = {T ∈ B(X) : C(T ) 6= {0}}

In [8], we have investigated the study of sets Rac(X) and Ralc(X), we have
showed that these parts of B(X) are regularities in Kordulla-Müller’s sense; con-
sequently

σalc(T ) = {λ ∈ C : λI − T 6∈ Ralc(X)} = {λ ∈ C : C(λI − T ) = {0}} and

σac(T ) = {λ ∈ C : λI − T 6∈ Rac(X)} = {λ ∈ C : K(λI − T ) = {0}}
respectively the algebraic core spectrum and the analytic core spectrum satisfie
the mapping spectral theorem. We refer the reader to [2], [6], [7] for properties of
the regularity theory.

Write ρalc(T ) = C\σalc(T ) and ρac(T ) = C\σac(T ) respectively the algebraic
core resolvent and the analytic core resolvent of T .
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In the following section we continue the study of relations between σalc(.),
σac(·) or ρalc(·), ρac(·) and the classical parts of spectrum: σp(·), σap(·), σsu(·),
σK(·) respectively the point spectrum, the approximate point spectrum, the sur-
jectivity spectrum and the Kato spectrum. On other hand some results and
applications are given.

2. Main results

We begin by the following proposition.

Proposition 2.1 Let T ∈ B(X). Then

σalc(T ) ⊆ σac(T ) ⊆ σsu(T ).

Proof. Let λ ∈ C \ σsu(T ), no loss of generality we can assume that λ = 0, we
have T (X) = X = K(T ); hence K(T ) 6= {0} and consequently 0 ∈ C \ σca(T ) .

Remarks.

1. We showed already in [11] that σalc(T ) ⊆ σac(T ) ⊆ σT (x) for all x ∈ X\{0};
on the other hand, we know that σsu(T ) =

⋃
x∈X

σT (x). Then, we obtain

Proposition 2.1.

2. If, for all λ ∈ ρK(T ), we have R∞(T − λI) 6= {0}, then

σalc(T ) ⊆ σac(T ) ⊆ σK(T ) ⊆ σsu(T )

Proposition 2.2 Let T ∈ B(X). Then σac(T ) ⊆ A(T ).

Proof. Let λ ∈ σac(T ) then K(T − λI) = {0}. Since XT−λI(∅) ⊆ K(T − λI),
then XT−λI(∅) = {0}; therefore, T satisfies the (SVEP) in λ.

Remarks.

1. If 0 ∈ σac(T ), then σp(T ) ⊆ {0}. Indeed, we have N(T−λI) ⊆ K(T ) = {0},
for all λ 6= 0, then σp(T ) ⊆ {0}.

2. Let T ∈ B(X), then σalc(T ) ⊆ σac(T ) ⊆ σ(T|F ), for all closed subspace
F 6= {0} of X. Indeed, let λ ∈ σca(T ), then K(T −λI) = {0}. If (T −λI)|F
is invertible, then (T − λI)(F ) = F , therefore F ⊆ K(T − λI) = {0},
contradiction.

3. Let T ∈ B(X), assume then T is of Kato type, then K(T ) = R∞(T ). If we
suppose that, for all λ ∈ ρKt(T ), we have R∞(T − λI) 6= {0}, then

σalc(T ) ⊆ σac(T ) ⊆ σKt(T )
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Example 1. Let T ∈ B(X) a quasi-nilpotent operator, then σ(T ) = {0}, by [1,
Corollary 2.28] we have K(T ) = {0}, therefore σac(T ) = σ(T ) = {0}.

Example 2. Let T ∈ B(X) an injective compact operator. It is well known that
σ(T ) contains at most countable set of point, and each nonzero point of σ(T ) is an
isolated eigenvalue, i.e., σ(T ) = {0}⋃

σp(T ). Moreover, for each λ ∈ σ(T )\{0},
we know that T − λI is Fredholm operator. By [1, Corollary 3.21], we have
K(T − λI) = R∞(T − λI) = (T − λI)p(X) where p = d(T − λI) = a(T − λI).
Then, we obtain σac(T ) ⊆ {0}, but if σac(T ) = {0} then, by the last remark (1),
it follows that σp(T ) ⊆ {0}, a contradiction. Consequently, σac(T ) = ∅.

Lemma 2.1 Let T ∈ B(X). Then

ρK(T ) ∩ σap(T ) ⊆ ρac(T ).

Proof. Let λ ∈ ρK(T ) ∩ σap(T ), then N(T − λI) 6= {0} and N(T − λI) ⊆
R∞(T − λI), hence there exists x ∈ N(T − λI) ⊆ R∞(T − λI) = K(T − λI), this
implies that K(T − λI) 6= {0} and consequently λ ∈ ρac(T ).

Lemma 2.2 Let T ∈ B(X). Then

ρK(T ) ∩ σsu(T ) ⊆ ρac(T
∗).

Proof. We know that σsu(T ) = σap(T
∗) and ρK(T ) = ρK(T ∗). Therefore,

ρK(T ) ∩ σsu(T ) = ρK(T ∗) ∩ σap(T
∗) ⊆ ρac(T

∗).

Proposition 2.3 Let T ∈ B(X). Then

ρK(T ) ∩ σ(T ) ⊆ ρca(T
∗) ∪ ρac(T ).

Proof. It is well known that σ(T ) = σap(T )∪σsu(T ) and σp(T ) ⊆ σap(T ). Apply
now Lemmas 2.1 and 2.2.

Proposition 2.4 Let T ∈ B(X). Then

[σap(T ) ∩ σsu(T )]\[ρca(T ) ∩ ρca(T
∗)] ⊆ σK(T ).

Proof. By Lemmas 2.1 and 2.2, we have

ρK(T ) ∩ σap(T ) ∩ σsu(T ) ⊆ ρac(T ) ∩ ρalc(T
∗).

Consequently, [σap(T ) ∩ σsu(T )]\[ρac(T ) ∩ ρac(T
∗)] ⊆ σK(T ).

Proposition 2.5 Let T ∈ B(X). Then

1. σ(T )\σap(T ) ⊆ ρK(T ) ∩ σsu(T ) ⊆ ρac(T
∗)

2. σ(T )\σsu(T ) ⊆ ρK(T ) ∩ σap(T ) ⊆ ρac(T )
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Proof. 1. Let λ ∈ σ(T )\σap(T ) then T − λI is not invertible, since N(T − λI) =
{0} and R(T − λI) is closed, then λ ∈ σsu(T ) and λ ∈ ρK(T ). It follows that
σ(T )\σap(T ) ⊆ ρK(T ) ∩ σsu(T ), by Lemma 2.2 we conclude 1.

2. is immediate by duality σsu(T ) = σap(T
∗) and σsu(T

∗) = σap(T ).

Proposition 2.6 Let T ∈ B(X). Then

1. σK(T ) ∪ ρca(T ) = σap(T ) ∪ ρac(T );

2. σK(T ) ∪ ρca(T
∗) = σsu(T ) ∪ ρac(T

∗).

Proof. 1. Since σK(T ) ⊆ σap(T ), then σK(T )∪ρac(T ) ⊆ σap(T )∪ρac(T ). Suppose
that λ /∈ σK(T )∪ρac(T ), then R(T−λI) is closed and N(T−λI) ⊆ R∞(T−λI) =
K(T − λI) = {0}, therefore λ /∈ σap(T ) and λ /∈ ρac(T ).

2. is clair by duality.

Theorem 2.1 Let T ∈ B(X). Then, for all subsets Ω ⊆ of C, we have

XT (Ω) 6= {0} ⇒ σac(T ) ⊆ Ω.

Proof. Let λ /∈ Ω then

{0} 6= XT (Ω) = XT (Ω\{λ}) ⊆ XT (C\{λ}) = K(T − λI).

Therefore, λ /∈ σac(T ).

Proposition 2.7 Let T ∈ B(X), then

λ ∈ σp(T ) =⇒ σac(T ) ⊆ {λ}.
Proof. Let λ ∈ σp(T ). This implies {0} 6= N(T − λI) ⊆ K(T − µ) for all λ 6= µ.
Consequently, K(T − µI) 6= {0} for all µ 6= λ, hence σac(T ) ⊆ {λ}.
Theorem 2.2 Let T ∈ B(X), if Ω is a connected component of ρK(T ) we have

Ω ⊆ ρac(T ) ⇐⇒
⋂

λ∈Ω

R∞(T − λI) 6= {0}.

Proof. Suppose that Ω ⊆ ρac(T ). Then we have K(T − λI) 6= {0} for all λ ∈ Ω.
Since Ω ⊆ ρac(T ), then the application λ → K(T − λI) is constant in Ω, and

{0} 6= K(T − λI) =
⋂

λ∈Ω

K(T − λI) =
⋂

λ∈Ω

R∞(T − λI).

So, it follows that ⋂

λ∈Ω

R∞(T − λI) 6= {0}.

Conversely, since {0} 6=
⋂

λ∈Ω

R∞(T−λI) = R∞(T−λI) = K(T−λI), therefore

K(T − λI) 6= {0} for all λ ∈ Ω.
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Corollary 2.1 Let T ∈ B(X), if Ω is a connected component of ρK(T ) we have

ρac(T ) ∩ Ω 6= ∅ =⇒ Ω ⊆ ρac(T )

Proof. Let λ0 ∈ Ω ∩ ρac(T ), then for all λ ∈ Ω we obtain

R∞(T − λI) = K(T − λI) = K(T − λ0I) 6= {0}

because λ → K(T − λI) is constant, hence K(T − λI) 6= {0} for all λ ∈ Ω and,
therefore, Ω ⊆ ρac(T ).

Remark. Know that σca(T ) is closed; then immediately, by Corollary 2.1,

σca(T ) ∩ Ω 6= ∅ =⇒ Ω ⊆ σca(T ).

Theorem 2.3 Let T ∈ B(X) and Ω be connected components of ρK(T ), such that
G ∩ σac(T ) 6= ∅. Then

1. σp(T ) is empty;

2. σ(T ) and σT (x) are connected ∀x ∈ X.

Proof.

1. Suppose that λ ∈ σp(T ), then σac(T ) ⊆ {λ}, this is a contradiction because
σac(T ) ∩ Ω 6= ∅ =⇒ Ω ⊆ σac(T ).

2. Suppose that there exists x0 ∈ X such that σT (x0) is non-connected. Then,
there is two non-empty closed subsets σ1 and σ2 of C such that σT (x0) =
σ1 ∪ σ2 and σ1

⋂
σ2 = ∅. By [1, Theorem 2.17] there exists x1, x2 ∈ X such

that σT (x1) ⊆ σ1 and σT (x2) ⊆ σ2. Therefore,

G ⊆ σac(T ) ⊆ σT (x1) ∩ σT (x2) ⊆ σ1 ∩ σ2 = ∅,

a contradiction. Now, since σp(T ) = ∅ by 1), then T has the SVEP, hence

σ(T ) = σsu(T ) =
⋃
x∈X

σT (x).

Consequently, σ(T ) is connected.

Example 3. Let H be a separable Hilbert space with an orthonormal basis
(en)n≥0, and let ω := (ωn)n≥0 be a bounded sequence of strictly positive real
numbers. Consider the unilateral weighted right shift operator defined by [3], [10]:

Sen = ωnen+1

• The spectrum of S is given by

σ(S) = {z ∈ C : |z| ≤ r(S)}



178 a. tajmouati, a. el bakkali, m. karmouni

• The approximate point spectrum of S is the annulus

σap(S) = {z ∈ C : r1(S) ≤ |z| ≤ r(S)}

Suppose that r1(S) > 0 and let Ω := {z ∈ C : |z| < r1(S)}, then

Ω ⊆ C\σap(S) ⊆ ρK(S)

and G is a connected component of ρK(T ). We have

⋂
n≥0

R(Sn) = {0},

hence K(T ) = {0} and 0 ∈ σac(S).

Therefore, σac(S) ∩ Ω 6= ∅. By Theorem 2.3, it follows that:

1. σp(S) is empty;

2. σS(x) is connected for all x ∈ H;

3. σ(S) is connected.

Let T, S ∈ B(X), T and S are said quasi-similarly if there is R, L ∈ B(X)
injective and has dense range such that RT = SR and TL = LS. We said that T
and S are similar if there exists R ∈ B(X) invertible such that TR = RS.

Recall that tow similar operators are some spectral properties (spectrum,
approximate point spectrum, essential spectrum...)

In the following result, we show that the algebraic core spectrum and analytic
core spectrum are invariant by similarity.

Theorem 2.4 Let T, S ∈ B(X) such that Let T and S are quasi-similar, then

σalc(T ) = σalc(S) and σac(T ) = σac(S).

Proof. Since T and S are quasi-similar, then there exists R, L ∈ B(X) such that
RT = SR and TL = LS. Therefore T − λI and S − λI are quasi-similar for all
λ ∈ C.

We show that R(K(T − λI)) ⊆ K(S − λI). Indeed, with no loss of the
generality we can suppose that λ = 0. Let y ∈ R(K(T )), then y = Rx such
that x ∈ K(T ) or equivalently there exists a sequence (xn)n≥0 ⊆ X and δ > 0
satisfying Txn = xn−1, x = x0 and ||xn|| < δn||x||.

Consider the sequence (yn)n≥0, where yn = Rxn, we have y0 = Rx, Syn =
SRxn = RTxn = Rxn−1 = yn−1 and ||yn|| < ||R||δn||x||, which implies that
R(K(T )) ⊆ K(S). And, by similarity, we prove that L(K(S−λI)) ⊆ K(T −λI).

Now, if K(S − λI) = {0} then by injectivity of R we have K(T − λI) = {0}.
Let λ ∈ σac(S), then K(S − λI) = {0} and it follows that K(T − λI) = {0} and
λ ∈ σac(T ), consequently σac(S) ⊆ σac(T ).

Similarly, we have σac(T ) ⊆ σac(S).
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Theorem 2.5 For two injective operators T, S ∈ B(X), the following statements
hold:

1. K(ST − λI) 6= {0} ⇔ K(TS − λI) 6= {0}, for all λ ∈ C;

2. C(ST − λI) 6= {0} ⇔ C(TS − λI) 6= {0} , for all λ ∈ C;

3. σalc(TS) = σalc(ST ) and σac(TS) = σac(ST ).

Proof. 1. We begin by the implication K(ST −λI) 6= {0} =⇒ K(TS−λI) 6= {0}
∀λ ∈ C. Of course, if K(ST−λI) 6= {0}, then there exists a sequence (xn)n≥0 ⊆ X
and δ > 0 such that x := x0 6= 0, (ST − λI)xn = xn−1 and ||xn|| < δn||x||.

Let zn := Txn. We have (TS − λI)zn = (TS − λI)Txn = T (ST − λ)xn =
Txn−1 = zn−1. Since T is injective, then z := z0 = Tx 6= 0. On the other hand,
||zn|| < δn||z||. Hence z ∈ K(TS − λI) and consequently K(TS − λI) 6= {0}.

Conversely, K(TS − λI) 6= {0} implies that there is (xn)n≥0 ⊆ X and δ > 0
which x := x0 6= 0, (TS − λI)xn = xn−1 and ||xn|| < δn||x||.

Let zn := Sxn, then (ST−λI)zn = (ST−λI)Sxn = S(TS−λI)xn = Sxn−1 =
zn−1. But S is injective then z := z0 = Sx 6= 0, and ||zn|| < δn||z||. Therefore,
z ∈ K(ST − λI) and K(ST − λI) 6= {0}.

2. Similar to 1.

3. Apply 1, 2 and the definition of σalc(TS) and σac(TS).

Theorem 2.6 Let T, S, R ∈ B(X) such that T is injective and TST = TRT . Let
λ ∈ C. Then

1. K(ST − λI) 6= {0} =⇒ K(TR− λI) 6= {0};
2. C(ST − λI) 6= {0} =⇒ C(TR− λI) 6= {0}.

Either, if ST 2 = T 2S, then

K(ST − λI) 6= {0} ⇐⇒ K(TR− λI) 6= {0};
C(ST − λI) 6= {0} ⇐⇒ C(TR− λI) 6= {0}.

Proof. 1. Suppose K(ST −λI) 6= {0}, then there is a sequence (xn)n≥0 ⊆ X and
δ > 0 such x := x0 6= 0, (ST − λI)xn = xn−1, ||xn|| < δn||x||.

Let zn := Txn, then (TR−λI)zn = (TR−λ)Txn = T (ST−λI)xn = Txn−1 =
zn−1. Since T is injective, we have z := z0 = Tx 6= 0 and ||zn|| < δn||z||. Hence
z ∈ K(TR− λI) and, therefore, K(TR− λI) 6= {0}.

If ST 2 = T 2R we shall prove the converse. Indeed, suppose that K(TR −
λI) 6= {0}, then there is (xn)n≥0 ⊆ X and δ > 0 which x := x0 6= 0, (TR−λI)xn =
xn−1 and ||xn|| < δn||x||.

Consider zn := Txn, then (ST − λI)zn = (ST − λI)Txn = T (TR − λI)xn =
Txn−1 = zn−1. But T is injective then z := z0 = Tx 6= 0, we have ||zn|| < δn||z||.
Consequently z ∈ K(ST − λI), this implies K(ST − λI) 6= {0}.

2. This is a consequence of 1.

Under the conditions of Theorem 2.6, we have the following results.
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Corollary 2.2 Let T, S, R ∈ B(X) such that T is injective and TST = TRT.
Then

σc(TR) ⊆ σc(ST ) and σca(TR) ⊆ σca(ST )

Either, if ST 2 = T 2R:

σalc(TR) = σalc(ST ) and σac(TR) = σca(ST ).
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