ON COMMUTING TRACES OF GENERALIZED BIDERIVATIONS
OF PRIME RINGS

Asma Ali
Department of Mathematics
Aligarh Muslim University
Aligarh
India
e-mail: asma.ali2@rediffmail.com

Faiza Shujat
Department of Applied Mathematics, Z.H.C.E.T.
Aligarh Muslim University
Aligarh
India
e-mail: faiza.shujat@gmail.com

Shahoor Khan
Department of Mathematics
Aligarh Muslim University
Aligarh
India
e-mail: shahoor.khan@rediffmail.com

Abstract. In this paper, we prove some theorems on symmetric generalized biderivations of a ring, which extend a result of Vukman [9, Theorem 1] and a result of Bresar [3, Theorem 4.1].

Keywords: prime rings, Symmetric generalized biderivations, cocommuting mappings.

2010 Mathematics Subject Classification: 16W25, 16R50, 16N60.

1. Introduction

Throughout the paper all ring will be associative. We shall denote by $Z(R)$ the centre of ring R and by C the extended centroid of R, which is the centre of the two sided Martindale quotients ring Q (we refer the reader [3] for more details). A ring R is said to be prime (resp. semiprime) if $aRb = (0)$ implies that either $a = 0$ or $b = 0$ (resp. $aRa = (0)$ implies that $a = 0$). We shall write for any pair of elements $x, y \in R$ the commutator $xy - yx$ and $x \circ y$ stands for the skew commutator $xy + yx$. We make extensive use of the basic commutator identities (i) $[x, yz] = [x, y]z + y[x, z]$ and (ii) $[xy, z] = [x, z]y + x[y, z]$. An additive mapping $d : R \to R$ is called a derivation if $d(xy) = d(x)y + xd(y)$, for all $x, y \in R$. A derivation d is inner if there exists an element $a \in R$ such that $d(x) = [a, x]$ for all $x \in R$. A mapping $D : R \times R \to R$ is said to be symmetric if $D(x, y) = D(y, x)$, for all $x, y \in R$. A mapping $f : R \to R$ defined
by \(f(x) = D(x, x) \), where \(D : R \times R \rightarrow R \) is a symmetric mapping, is called the trace of \(D \). It is obvious that in the case \(D : R \times R \rightarrow R \) is a symmetric mapping which is also biadditive (i.e. additive in both arguments). The trace \(f \) of \(D \) satisfies the relation \(f(x + y) = f(x) + f(y) + 2D(x, y) \), for all \(x, y \in R \). A biadditive symmetric mapping \(D : R \times R \rightarrow R \) is called a symmetric biderivation if \(D(xy, z) = D(x, z)y + xD(y, z) \) for all \(x, y, z \in R \). Obviously, in this case the relation \(D(x, yz) = D(x, y)z + yD(x, z) \) is also satisfied for all \(x, y, z \in R \).

Typical examples are mapping of the form \((x, y) \mapsto \lambda [x, y] \) where \(\lambda \in C \). We shall call such maps inner biderivations. In \([6]\) it was shown that every biderivation \(D \) of a noncommutative prime ring \(R \) is of the form \(D(x, y) = \lambda [x, y] \) for some \(\lambda \in C \). Further Bresar extended this result for semiprime rings. Some results on biderivations can be found in\([2]\), \([6]\) and \([8]\).

G. Maksa \([8]\) introduced the concept of a symmetric biderivation (see also \([9]\), where an example can be found). It was shown in \([8]\) that symmetric biderivations are related to general solution of some functional equations. Some results on symmetric biderivations in prime and semiprime rings can be found in \([5]\), \([11]\) and \([12]\). The notion of additive commuting mappings is closely connected with the notion of biderivations. Every commuting additive mapping \(f : R \rightarrow R \) gives rise to a biderivation on \(R \). Namely linearizing \([x, f(x)] = 0 \) for all \(x, y \in R \) \((x, y) \mapsto [f(x), y] \) is a biderivation (moreover, all derivations appearing are inner).

The notion of generalized symmetric biderivations was introduced by Nurcan \([1]\). More precisely, a generalized symmetric biderivation is defined as follows: Let \(R \) be a ring and \(D : R \times R \rightarrow R \) be a biadditive map. A biadditive mapping \(\Delta : R \times R \rightarrow R \) is said to be generalized biderivation if for every \(x \in R \), the map \(y \mapsto \Delta(x, y) \) is a generalized derivation of \(R \) associated with function \(y \mapsto D(x, y) \) as well as if for every \(y \in R \), the map \(x \mapsto \Delta(x, y) \) is a generalized derivation of \(R \) associated with function \(x \mapsto D(x, y) \) for all \(x, y \in R \). It also satisfies \(\Delta(x, yz) = \Delta(x, y)z + yD(x, z) \) and \(\Delta(xy, z) = \Delta(x, z)y + xD(y, z) \) for all \(x, y, z \in R \). For example consider a biderivation \(\Delta \) of \(R \) and biadditive a function \(\alpha : R \times R \rightarrow R \) such that \(\alpha(x, yz) = \alpha(x, y)z \) and \(\alpha(xy, z) = \alpha(x, y)z \) for all \(x, y, z \in R \). Then \(\Delta + \alpha \) is a generalized \(\Delta \)-biderivation of \(R \).

An additive mapping \(h : R \rightarrow R \) is called left (resp. right) multiplier of \(R \) if \(h(xy) = h(x)y \) (resp. \(h(xy) = xh(y) \)) for all \(x, y \in R \). A biadditive mapping \(D : R \times R \rightarrow R \) is said to be a left (resp. right) bi-multiplier of \(R \) if \(D(x, yz) = D(x, y)z \) (resp. \(D(xz, y) = xD(z, y) \)) for all \(x, y, z \in R \).

In this paper, we prove some theorems on symmetric generalized biderivations of a ring which extend a result of Vukman \([9, \text{Theorem 1}]\) and a result of Bresar \([3, \text{Theorem 4.1}]\).

2. Generalized biderivations on prime rings

The result proved in this section generalizes Theorem 1 in \([11]\). More precisely, we consider the case when the ring \(R \) is prime and replace symmetric biderivations with symmetric generalized biderivations.
In [11], Vukman proved the following result: Let R be a noncommutative prime ring of characteristic different from two and $D: R \times R \rightarrow R$ be a symmetric biderivation with trace f. If f is commuting on R, then $d = 0$. Vukman [10, Theorem 2] further generalized the result by proving that let R be a noncommutative prime ring of characteristic different from two. Suppose there exists a symmetric biderivation $D: R \times R \rightarrow R$ with trace f such that the mapping $x \mapsto [f(x), x]$ is centralizing on R. In this case $D = 0$.

Theorem 2.1. Let R be a prime ring of characteristic different from two and I be a nonzero left ideal of R. If Δ is a symmetric generalized biderivation with associated biderivation D such that $[\Delta(x, x), x] = 0$ for all $x \in I$, then either R is commutative or Δ acts as a left bimultiplier on I.

Proof. Suppose that

\[[\Delta(x, x), x] = 0, \quad \text{for all } x \in I. \]

Linearization of (2.1) yields that

\[[\Delta(x, x), x] + [\Delta(x, y), y] + [\Delta(x, y), x] + [\Delta(x, y), y] + [\Delta(y, x), x] + [\Delta(y, y), x] + [\Delta(y, y), y] = 0, \quad \text{for all } x, y \in I. \]

Since Δ is symmetric and using (2.1), we obtain

\[[\Delta(x, x), y] + 2[\Delta(x, y), x] + 2[\Delta(x, y), y] + [\Delta(y, y), x] = 0, \quad \text{for all } x, y \in I. \]

Substituting $-y$ for y in (2.3), we have

\[-[\Delta(x, x), y] - 2[\Delta(x, y), x] + 2[\Delta(x, y), y] + [\Delta(y, y), x] = 0, \quad \text{for all } x, y \in I. \]

Adding (2.3) and (2.4) and using char $R \neq 2$, we find

\[2[\Delta(x, y), y] + [\Delta(y, y), x] = 0, \quad \text{for all } x, y \in I. \]

Replace x by xz in (2.5) to get

\[2\Delta(x, y)[z, y] + 2[\Delta(x, y), y]z + 2x[D(z, y), y] + 2[x, y]D(z, y) \]

\[+ [\Delta(y, y), x]z + x[\Delta(y, y), z] = 0, \quad \text{for all } x, y, z \in I. \]

In view of (2.5), (2.6) gives that

\[\Delta(x, y)[z, y] + 2x[D(z, y), y] + 2[x, y]D(z, y) + x[\Delta(y, y), z] = 0, \quad \text{for all } x, y, z \in I. \]

Substitute y for z to obtain

\[2x[D(y, y), y] + 2[x, y]D(y, y) = 0, \quad \text{for all } x, y \in I. \]
Since char R not two, we have
\[(2.9)\quad x[D(y,y), y] + [x, y]D(y, y) = 0, \text{ for all } x, y \in I.
\]
Substitute rx for x in (2.9) and using (2.9), we obtain
\[(2.10)\quad [r, y]xD(y, y) = 0, \text{ for all } x, y \in I, \text{ for all } r \in R.
\]
Replace r by rs in (2.10), we find
\[(2.11)\quad [r, y]RxD(y, y) = 0, \text{ for all } x, y \in I, \text{ for all } r \in R.
\]
Primeness of R yields that either $[y, r] = 0$ or $xD(y, y) = 0$ for all $x, y \in I$. If $[y, r] = 0$ for all $y \in I$ and $r \in R$, then I is contained in $Z(R)$. Since I is a central ideal of R, we have R is commutative by [10]. On the other hand, we have $xD(y, y) = 0$ for all $x, y \in I$. Linearization in y yields that $xD(y, z) + xD(z, y) = 0$ for all $x, y, z \in I$. Since D is symmetric and using char $R \neq 2$, we get $xD(y, z) = 0$ for all $x, y, z \in I$, i.e. Δ acts as a left bimultiplier on I.

Corollary 2.1. Let R be a prime ring of characteristic different from two and I be a nonzero left ideal of R. If Δ is a symmetric generalized biderivation with associated biderivation D such that $\Delta(x, y) + [x, y] \in Z(R)$ for all $x, y \in I$, then either R is commutative or Δ acts as a left bimultiplier on I.

Corollary 2.2. Let R be a prime ring of characteristic different from two and I be a nonzero left ideal of R. If Δ is a symmetric generalized biderivation with associated biderivation D such that $\Delta(x, y) + x \circ y \in Z(R)$ for all $x, y \in I$, then either R is commutative or Δ acts as a left bimultiplier on I.

Theorem 2.2. Let R be a prime ring of characteristic different from two and I be a nonzero left ideal of R. If Δ is a symmetric generalized biderivation with associated biderivation D such that $\Delta(x, x) \circ x = 0$ for all $x \in I$, then either R is commutative or Δ acts as a left bimultiplier on I.

Proof. By assumption, we have
\[(2.12)\quad \Delta(x, x) \circ x = 0 \text{ for all } x \in I.
\]
Linearization of (2.12) yields that
\[(2.13)\quad \Delta(x, x)x + \Delta(y, y)x + 2\Delta(x, y)x + \Delta(x, x)y + \Delta(y, y)y
+ 2\Delta(x, y)y + x\Delta(y, y) + y\Delta(x, x) + 2y\Delta(x, y) = 0 \text{ for all } x, y \in I.
\]
In view of (2.12), (2.13), gives that
\[(2.14)\quad \Delta(y, y)x + 2\Delta(x, y)x + \Delta(x, x)y + 2\Delta(x, y)y + x\Delta(y, y)
+ 2x\Delta(x, y) + y\Delta(x, x) + 2y\Delta(x, y) = 0 \text{ for all } x, y \in I.
\]
Substituting \(-y\) for \(y\) in (2.14), we have
\[
\Delta(y, y)x - 2\Delta(x, y)x - \Delta(x, x)y + 2\Delta(x, y)y + x\Delta(y, y)
- 2x\Delta(x, y) - y\Delta(x, x) + 2y\Delta(x, y) = 0 \quad \text{for all } x, y \in I.
\]

Adding (2.14) and (2.15) and using the fact that \(\text{char} R \neq 2\), we get
\[
\Delta(y, y)x + 2\Delta(x, y)y + x\Delta(y, y) + 2y\Delta(x, y) = 0, \quad \text{for all } x, y \in I.
\]

Replacing \(x\) by \(xu\) in (2.16), we have
\[
\Delta(y, y)xu + 2\Delta(x, y)uy + xu\Delta(y, y) + 2yu\Delta(x, y) = 0, \quad \text{for all } x, y, u \in I.
\]

Right multiplying (2.16) by \(u\) and then subtracting from (2.17), we obtain
\[
2\Delta(u, y)[u, y] + 2x\Delta(u, y)y + xu\Delta(y, y) + 2yu\Delta(x, y) = 0, \quad \text{for all } x, y, u \in I.
\]

Substituting \(u\) by \(y\) in (2.18), we get
\[
2x\Delta(y, y)y + x[y, \Delta(y, y)] + 2yu\Delta(y, y) = 0, \quad \text{for all } x, y, u \in I.
\]

Replacing \(rx\) for \(x\) in (2.19) and using it, we obtain
\[
2rx\Delta(y, y)y + x[y, \Delta(y, y)] + 2yr\Delta(y, y) = 0, \quad \text{for all } x, y, r \in R.
\]

Left multiplying (2.19) by \(r\) and then subtracting from (2.20), we get
\[
2[y, r]\Delta(y, y) = 0, \quad \text{for all } x, y \in I \quad \text{and} \quad \text{for all } r \in R.
\]

This implies that \(2[y, r]\Delta(y, y) = 0\) for all \(x, y \in I\) and for all \(r \in R\). Since \(\text{char} R \neq 2\) we have \([y, r]\Delta(y, y) = 0\) for all \(x, y \in I\) and for all \(r \in R\). Primeness of \(R\) yields that either \([y, r] = 0\) or \(\Delta(y, y) = 0\) for all \(x, y \in I\) and for all \(r \in R\). Arguing in the similar manner as in the proof of Theorem 2.1, we get the result.

Theorem 2.3. Let \(R\) be a \(2, 3\) and \(5\)-torsion free semiprime ring, \(I\) an additive subgroup of \(R\) such that \(x^2 \in I\) for all \(x \in I\) and \(\Delta : R \times R \to R\) be a symmetric generalized biderivation associated with biderivation \(D\) with the trace \(f\) of \(\Delta\). If \(f\) is centralizing on \(I\), then \(f\) is commuting on \(I\).

Proof. Let \(x \in I\) and take \(t = [f(x), x]\), where \(f(x) = \Delta(x, x)\). Then \(t \in Z(R)\).

By our hypothesis, we have
\[
[f(x), x] \in Z(R) \quad \text{for all } x \in I.
\]
Replacing \(x \) by \(x + y \) in (2.22), we have

\[
(2.23) \quad [f(x), x] + [f(x), y] + [f(y), x] + [f(y), y] + [\Delta(x, y), x] + [\Delta(y, x), y] + [\Delta(y, x), y] \in Z(R) \quad \text{for all } x, y \in I.
\]

Putting \(x = -x \) in (2.23) and using (2.22), we get

\[
(2.24) \quad [f(x), y] + 2[\Delta(x, y), x] \in Z(R) \quad \text{for all } x, y \in I.
\]

Substituting \(x^2 \) for \(y \) in (2.24), we have

\[
(2.25) \quad [f(x), x^2] + [\Delta(x, x)x + D(x, x), x] \in Z(R) \quad \text{for all } x \in I.
\]

We have \([f(x), x^2] = [f(x), x]x + x[f(x), x] = 2tx\).

Since \([\Delta(x, x^2), x] = 2tx + 2x[D(x, x), x]\), the last expression reduces to

\[
(2.26) \quad 2x[D(x, x), x] + 2tx \in Z(R) \quad \text{for all } x \in I.
\]

Since \(R \) is 2-torsion free, we get \(x[D(x, x), x] + 2tx \in Z(R) \).

Let \(z = x[D(x, x), x] + 2tx \in Z(R) \). This implies that

\[
(z - 2tx) = x[D(x, x), x].
\]

Replacing \(x \) by \(x^2 \) in our hypothesis, we can write

\[
[f(x^2), x^2] = [\Delta(x^2, x^2), x^2] = [\Delta(x^2, x)x + xD(x^2, x), x^2]
\]

\[
= [\Delta(x^2, x), x^2]x + x[D(x^2, x), x^2]x
\]

\[
= [\Delta(x, x)x + xD(x, x), x^2]x + x[D(x, x)x + xD(x, x), x^2]
\]

\[
= [\Delta(x, x), x]x^3 + x[\Delta(x, x), x]x^2 + 2x^2[D(x, x), x]x
\]

\[
+ 2x[D(x, x), x]x^2 + x^3[D(x, x), x] + x^2[D(x, x), x]x
\]

\[
= 2tx^3 + 2x(z - 2tx)x + 2(z - 2tx)x^2 + x^2(z - 2tx) + x(z - 2tx)x
\]

\[
= -10tx^3 + 6zx^2
\]

This implies that \(-10tx^3 + 6zx^2 \in Z(R)\). Commuting both sides with \(f(x) \), we get \([f(x), -10tx^3 + 6zx^2] = 0\), i.e.,

\[
-10t[f(x), x^2] + 6z[f(x), x^2] = -10t[f(x), x]x^2 - 10tx[f(x), x^2] + 6z[f(x), x]x + 6zx[f(x), x]
\]

\[
= -10t^2x^2 - 10tx[f(x), x]x - 10tx^2[f(x), x] + 12ztx
\]

\[
= -30t^2x^2 + 12ztx = 0.
\]

Again commuting with \(f(x) \), we have

\[
-30t^2[f(x), x^2] + 12zt[f(x), x] = -30t^2[f(x), x]x - 30t^2x[f(x), x] + 12zt^2
\]

\[
= -60t^3x + 12zt^2 = 0.
\]
Repeating the same argument, we finally arrive at \(-60t^4 = 0\). Since \(R\) is 2, 3 and 5 torsion free, we get \(t^4 = 0\). Since the center of a semiprime ring contains no nonzero nilpotent elements, we conclude that \(t = 0\). This completes the proof.

3. Cocommuting biderivations

In this section, we consider the case in which the mappings \(\mu, \phi : R \rightarrow R\) satisfy \(\mu(x)x + x\phi(x) = 0\) for all \(x \in R\). Bresar [3, Theorem 4.1] proved that if \(R\) is a prime ring, \(I\) a nonzero left ideal of \(R\) and \(\alpha\) and \(\beta\) are nonzero derivations of \(R\) satisfying \(\alpha(x)x - x\beta(x) \in Z(R)\) for all \(x \in I\), then \(R\) is commutative. Argac [1, Theorem 3.5] proved a result for generalized derivation of \(R\).

We extend the aforementioned results by proving the following theorem for a biderivation of \(R\).

Theorem 3.1. Let \(R\) be a prime ring of characteristic not two, \(I\) a nonzero left ideal of \(R\) and \(D, G\) be symmetric biderivations of \(R\) with trace \(f\) and \(g\) respectively. If \(D(x, x)x + xG(x, x) = 0\) for all \(x \in I\), then either \(R\) is commutative or \(G\) acts as a left bimultiplier on \(I\). Moreover, in the last case either \(D = 0\) or \(I[I, I] = 0\).

Proof. By hypothesis, we have

\[(3.1) \quad f(x)x + xg(x) = 0 \text{ for all } x \in I,\]

where \(f(x) = D(x, x)\) and \(g(x) = G(x, x)\). Linearization of (3.1) yields that

\[(3.2) \quad f(y)x + f(x)y + 2D(x, y)x + 2D(x, y)y + xg(y) + yg(x) + 2xG(x, y) + 2yG(x, y) = 0, \text{ for all } x, y \in I.\]

Substituting \(-y\) for \(y\) in (3.2), we get

\[(3.3) \quad f(y)x - f(x)y - 2D(x, y)x + 2D(x, y)y + xg(y) - yg(x) - 2xG(x, y) + 2yG(x, y) = 0, \text{ for all } x, y \in I.\]

Adding (3.1) and (3.2), we obtain

\[(3.4) \quad 2f(y)x + 4D(x, y)y + 2xg(y) + 4yG(x, y) = 0, \text{ for all } x, y \in I.\]

Since \(\text{char } R\) is not two, we have

\[(3.5) \quad f(y)x + 2D(x, y)y + xg(y) + 2yG(x, y) = 0, \text{ for all } x, y \in I.\]

Replacing \(x\) by \(xz\) in (3.5), we obtain

\[(3.6) \quad f(y)xz + 2D(x, y)zy + 2xD(z, y)y + xzg(y) + 2yG(x, y)z + 2yG(z, y) = 0, \text{ for all } x, y, z \in I.\]
Comparing (3.5) and (3.6), we obtain
\begin{equation}
-2D(x, y)yz - xg(y)z + 2D(x, y)zy + 2xD(z, y)y + xzg(y) + 2yxG(z, y) = 0, \text{ for all } x, y, z \in I.
\end{equation}

This implies that
\begin{equation}
2D(x, y)[z, y] + x[z, g(y)] + 2xD(z, y)y + 2yxG(z, y) = 0, \quad \text{for all } x, y, z \in I.
\end{equation}

Substituting rx for x in (3.8), we get
\begin{equation}
2rD(x, y)[z, y] + 2D(r, y)x[z, y] + rx[z, g(y)] + 2rxyG(z, y) = 0, \quad \text{for all } x, y, z \in I, \text{ for all } r \in R.
\end{equation}

Comparing (3.8) and (3.9), we get
\begin{equation}
2D(r, y)x[z, y] + 2yrxG(z, y) - 2ryxG(z, y) = 0, \quad \text{for all } x, y, z \in I, \text{ for all } r \in R.
\end{equation}

Since R is of characteristic not two, we obtain
\begin{equation}
D(r, y)x[z, y] + [y, r]xG(z, y) = 0, \quad \text{for all } x, y, z \in I, \text{ for all } r \in R.
\end{equation}

Replacing y by z in (3.12), we obtain
\begin{equation}
[z, r]xg(z) = 0, \quad \text{for all } x, z \in I, \text{ for all } r \in R
\end{equation}

Substituting rx for x in (3.12), we get
\begin{equation}
[z, r]Rxg(z) = 0, \quad \text{for all } x, z \in I, \text{ for all } r \in R
\end{equation}

Primeness of R yields that either $[z, r] = 0$ or $xg(z) = 0$. If $[z, r] = 0$ for all $z \in I$ and $r \in R$, then R is commutative by [10]. Suppose $xg(z) = 0$ for all $x, z \in I$. Linearization in z yields that
\begin{equation}
0 = xG(z, y) + xG(y, z) = 2xG(y, z)
\end{equation}

and using R is not of characteristic two, we get
\begin{equation}
xG(y, z) = 0 \quad \text{for all } x, y, z \in I.
\end{equation}

This implies that
\begin{equation}
G(x, yz) = G(x, y)z.
\end{equation}

Hence G acts as left multiplier. Since $xG(y, z) = 0$ for all $x, y, z \in I$ and using (3.11), we arrive at
\begin{equation}
D(r, y)x[z, y] = 0, \quad \text{for all } x, y, z \in I, r \in R.
\end{equation}
Replace r by rs in (3.14) to get
\begin{equation}
D(r, y)Rx[y, z] = 0, \text{ for all } x, y, z \in I, r \in R.
\end{equation}

Primeness of R implies that either $D(r, y) = 0$ or $x[y, z] = 0$ for all $x, y, z \in I$. Later yields that $I[I, I] = 0$ as $D \neq 0$.

Proceeding on the same parallel lines, we can prove the following:

Theorem 3.2. Let R be a prime ring of characteristic not two, I a nonzero right ideal of R and D, G are symmetric biderivations of R with trace f and g respectively. If $D(x, x) + xG(x, x) = 0$ for all $x \in I$, then either R is commutative or D acts as a left bimultiplier on I. Moreover in the last case either $G = 0$ or $I[I, I] = 0$.

Acknowledgment. The authors would like to express their thanks to the referees for the careful reading of the paper and several helpful suggestions.

References

Accepted: 08.10.2014