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1. Introduction

Throughout the paper all ring will be associative. We shall denote by Z(R) the
centre of ring R and by C the extended centroid of R, which is the centre of the
two sided Martindale quotients ring Q (we refer the reader [3] for more details).
A ring R is said to be prime (resp. semiprime) if aRb = (0) implies that either
a = 0 or b = 0 ( resp. aRa = (0) implies that a = 0). We shall write for
any pair of elements x, y ∈ R the commutator xy − yx and x ◦ y stands for
the skew commutator xy + yx. We make extensive use of the basic commutator
identities (i) [x, yz] = [x, y]z + y[x, z] and (ii) [xy, z] = [x, z]y + x[y, z]. An
additive mapping d : R −→ R is called a derivation if d(xy) = d(x)y + xd(y),
for all x, y ∈ R. A derivation d is inner if there exists an element a ∈ R such
that d(x) = [a, x] for all x ∈ R. A mapping D : R × R −→ R is said to be
symmetric if D(x, y) = D(y, x), for all x, y ∈ R. A mapping f : R −→ R defined
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by f(x) = D(x, x), where D : R × R −→ R is a symmetric mapping, is called
the trace of D. It is obvious that in the case D : R × R −→ R is a symmetric
mapping which is also biadditive (i.e. additive in both arguments). The trace f
of D satisfies the relation f(x + y) = f(x) + f(y) + 2D(x, y), for all x, y ∈ R. A
biadditive symmetric mapping D : R×R −→ R is called a symmetric biderivation
if D(xy, z) = D(x, z)y + xD(y, z) for all x, y, z ∈ R. Obviously, in this case the
relation D(x, yz) = D(x, y)z + yD(x, z) is also satisfied for all x, y, z ∈ R.

Typical examples are mapping of the form (x, y) 7→ λ[x, y] where λ ∈ C. We
shall call such maps inner biderivations. In [6] it was shown that every biderivation
D of a noncommutative prime ring R is of the form D(x, y) = λ[x, y] for some
λ ∈ C. Further Bresar extended this result for semiprime rings. Some results on
biderivations can be found in[2], [6] and [8].

G. Maksa [8] introduced the concept of a symmetric biderivation (see also [9],
where an example can be found). It was shown in [8] that symmetric biderivations
are related to general solution of some functional equations. Some results on
symmetric biderivation in prime and semiprime rings can be found in [5], [11] and
[12]. The notion of additive commuting mappings is closely connected with the
notion of biderivations. Every commuting additive mapping f : R −→ R gives
rise to a biderivation on R. Namely linearizing [x, f(x)] = 0 for all x, y ∈ R
(x, y) 7→ [f(x), y] is a biderivation (moreover, all derivations appearing are inner).

The notion of generalized symmetric biderivations was introduced by Nurcan
[1]. More precisely, a generalized symmetric biderivation is defined as follows: Let
R be a ring and D : R × R −→ R be a biadditive map. A biadditive mapping
∆ : R × R −→ R is said to be generalized biderivation if for every x ∈ R,
the map y 7→ ∆(x, y) is a generalized derivation of R associated with function
y 7→ D(x, y) as well as if for every y ∈ R, the map x 7→ ∆(x, y) is a generalized
derivation of R associated with function x 7→ D(x, y) for all x, y ∈ R. It also
satisfies ∆(x, yz) = ∆(x, y)z+yD(x, z) and ∆(xy, z) = ∆(x, z)y+xD(y, z) for all
x, y, z ∈ R. For example consider a biderivation ∆ of R and biadditive a function
α : R × R −→ R such that α(x, yz) = α(x, y)z and α(xy, z) = α(x, z)y for all
x, y, z ∈ R. Then ∆ + α is a generalized ∆-biderivation of R.

An additive mapping h : R −→ R is called left (resp. right) multiplier
of R if h(xy) = h(x)y (resp. h(xy) = xh(y)) for all x, y ∈ R. A biadditive
mapping D : R × R −→ R is said to be a left (resp. right) bi-multiplier of R if
D(x, yz) = D(x, y)z (resp. D(xz, y) = xD(z, y)) for all x, y, z ∈ R.

In this paper, we prove some theorems on symmetric generalized biderivations
of a ring which extend a result of Vukman [9, Theorem 1] and a result of Bresar
[3, Theorem 4.1].

2. Generalized biderivations on prime rings

The result proved in this section generalizes Theorem 1 in [11]. More precisely, we
consider the case when the ring R is prime and replace symmetric biderivations
with symmetric generalized biderivations.
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In [11], Vukman proved the following result: Let R be a noncommutative
prime ring of characteristic different from two and D : R × R −→ R be a sym-
metric biderivation with trace f . If f is commuting on R, then d = 0. Vukman
[10, Theorem 2] further generalized the result by proving that let R be a non-
commutative prime ring of characteristic different from two. Suppose there exists
a symmetric biderivation D : R × R −→ R with trace f such that the mapping
x 7→ [f(x), x] is centralizing on R. In this case D = 0.

Theorem 2.1. Let R be a prime ring of characteristic different from two and
I be a nonzero left ideal of R. If ∆ is a symmetric generalized biderivation with
associated biderivation D such that [∆(x, x), x] = 0 for all x ∈ I, then either R is
commutative or ∆ acts as a left bimultiplier on I.

Proof. Suppose that

(2.1) [∆(x, x), x] = 0, for all x ∈ I.

Linearization of (2.1) yields that

(2.2)
[∆(x, x), x] + [∆(x, x), y] + [∆(x, y), x] + [∆(x, y), y] + [∆(y, x), x]

+[∆(y, x), y] + [∆(y, y), x] + [∆(y, y), y] = 0, for all x, y ∈ I.

Since ∆ is symmetric and using (2.1), we obtain

(2.3)
[∆(x, x), y] + 2[∆(x, y), x] + 2[∆(x, y), y] + [∆(y, y), x] = 0,

for all x, y ∈ I.

Substituting −y for y in (2.3), we have

(2.4)
−[∆(x, x), y]− 2[∆(x, y), x] + 2[∆(x, y), y] + [∆(y, y), x] = 0,

for all x, y ∈ I.

Adding (2.3) and (2.4) and using char R 6= 2, we find

(2.5) 2[∆(x, y), y] + [∆(y, y), x] = 0, for all x, y ∈ I.

Replace x by xz in (2.5) to get

(2.6)
2∆(x, y)[z, y] + 2[∆(x, y), y]z + 2x[D(z, y), y] + 2[x, y]D(z, y)

+[∆(y, y), x]z + x[∆(y, y), z] = 0, for all x, y, z ∈ I.

In view of (2.5), (2.6) gives that

(2.7)
∆(x, y)[z, y] + 2x[D(z, y), y] + 2[x, y]D(z, y) + x[∆(y, y), z] = 0,

for all x, y, z ∈ I.

Substitute y for z to obtain

(2.8) 2x[D(y, y), y] + 2[x, y]D(y, y) = 0, for all x, y ∈ I.
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Since char R not two, we have

(2.9) x[D(y, y), y] + [x, y]D(y, y) = 0, for all x, y ∈ I.

Substitute rx for x in (2.9) and using (2.9), we obtain

(2.10) [r, y]xD(y, y) = 0, for all x, y ∈ I, for all r ∈ R.

Replace r by rs in (2.10), we find

(2.11) [r, y]RxD(y, y) = 0, for all x, y ∈ I, for all r ∈ R.

Primeness of R yields that either [y, r] = 0 or xD(y, y) = 0 for all x, y ∈ I.
If [y, r] = 0 for all y ∈ I and r ∈ R, then I is contained in Z(R). Since I is a
central ideal of R, we have R is commutative by [10]. On the other hand, we have
xD(y, y) = 0 for all x, y ∈ I. Linearization in y yields that xD(y, z)+xD(z, y) = 0
for all x, y, z ∈ I. Since D is symmetric and using char R 6= 2, we get xD(y, z) = 0
for all x, y, z ∈ I, i.e. ∆ acts as a left bimultiplier on I.

Corollary 2.1. Let R be a prime ring of characteristic different from two and
I be a nonzero left ideal of R. If ∆ is a symmetric generalized biderivation with
associated biderivation D such that ∆(x, y) ∓ [x, y] ∈ Z(R) for all x, y ∈ I, then
either R is commutative or ∆ acts as a left bimultiplier on I.

Corollary 2.2. Let R be a prime ring of characteristic different from two and
I be a nonzero left ideal of R. If ∆ is a symmetric generalized biderivation with
associated biderivation D such that ∆(x, y) ∓ x ◦ y ∈ Z(R) for all x, y ∈ I, then
either R is commutative or ∆ acts as a left bimultiplier on I.

Theorem 2.2. Let R be a prime ring of characteristic different from two and
I be a nonzero left ideal of R. If ∆ is a symmetric generalized biderivation with
associated biderivation D such that ∆(x, x) ◦ x = 0 for all x ∈ I, then either R is
commutative or ∆ acts as a left bimultiplier on I.

Proof. By assumption, we have

(2.12) ∆(x, x) ◦ x = 0 for all x ∈ I.

Linearization of (2.12) yields that

(2.13)

∆(x, x)x + ∆(y, y)x + 2∆(x, y)x + ∆(x, x)y + ∆(y, y)y

+2∆(x, y)y + x∆(x, x) + x∆(y, y) + 2x∆(x, y) + y∆(x, x)

+y∆(y, y) + 2y∆(x, y) = 0 for all x, y ∈ I.

In view of (2.12), (2.13), gives that

(2.14)
∆(y, y)x + 2∆(x, y)x + ∆(x, x)y + 2∆(x, y)y + x∆(y, y)

+2x∆(x, y) + y∆(x, x) + 2y∆(x, y) = 0 for all x, y ∈ I.
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Substituting −y for y in (2.14), we have

(2.15)
∆(y, y)x− 2∆(x, y)x−∆(x, x)y + 2∆(x, y)y + x∆(y, y)

−2x∆(x, y)− y∆(x, x) + 2y∆(x, y) = 0 for all x, y ∈ I.

Adding (2.14) and (2.15) and using the fact that charR 6= 2, we get

(2.16) ∆(y, y)x + 2∆(x, y)y + x∆(y, y) + 2y∆(x, y) = 0, for all x, y ∈ I.

Replacing x by xu in (2.16), we have

(2.17)
∆(y, y)xu + 2∆(x, y)uy + 2xD(u, y)y + xu∆(y, y)

+2y∆(x, y)u + 2yxD(u, y) = 0 for all x, y ∈ I.

Right multiplying (2.16) by u and then subtracting from (2.17), we obtain

(2.18)
2∆(u, y)[u, y] + 2x∆(u, y)y + x[u, ∆(y, y)] + 2yxD(u, y) = 0,

for all x, y, u ∈ I.

Substituting u by y in (2.18), we get

(2.19) 2x∆(y, y)y + x[y, ∆(y, y)] + 2yxD(y, y) = 0 for all x, y ∈ I.

Replacing rx for x in (2.19) and using it, we obtain

(2.20)
2rx∆(y, y)y + rx[y, ∆(y, y)] + 2yrxD(y, y) = 0,

for all x, y ∈ I and for all r ∈ R.

Left multiplying (2.19) by r and then subtracting from (2.20), we get

(2.21) 2[y, r]xD(y, y) = 0, for all x, y ∈ I and for all r ∈ R.

This implies that 2[y, r]RxD(y, y) = 0 for all x, y ∈ I and for all r ∈ R. Since
charR 6= 2 we have [y, r]RxD(y, y) = 0 for all x, y ∈ I and for all r ∈ R.
Primeness of R yields that either [y, r] = 0 or xD(y, y) = 0 for all x, y ∈ I and for
all r ∈ R. Arguing in the similar manner as in the proof of Theorem 2.1, we get
the result.

Theorem 2.3. Let R be a 2, 3 and 5-torsion free semiprime ring, I an additive
subgroup of R such that x2 ∈ I for all x ∈ I and ∆ : R× R → R be a symmetric
generalized biderivation associated with biderivation D with the trace f of ∆. If
f is centralizing on I, then f is commuting on I.

Proof. Let x ∈ I and take t = [f(x), x], where f(x) = ∆(x, x). Then t ∈ Z(R).
By our hypothesis, we have

(2.22) [f(x), x] ∈ Z(R) for all x ∈ I.
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Replacing x by x + y in (2.22), we have

(2.23)
[f(x), x] + [f(x), y] + [f(y), x] + [f(y), y] + [∆(x, y), x] + [∆(y, x), x]

+[∆(y, x), y] + [∆(x, y), y] ∈ Z(R) for all x, y ∈ I.

Putting x = −x in (2.23) and using (2.22), we get

(2.24) [f(x), y] + 2[∆(x, y), x] ∈ Z(R) for all x, y ∈ I.

Substituting x2 for y in (2.24), we have

(2.25) [f(x), x2] + [∆(x, x)x + xD(x, x), x] ∈ Z(R) for all x ∈ I.

We have [f(x), x2] = [f(x), x]x + x[f(x), x] = 2tx.
Since [∆(x, x2), x] = 2tx + 2x[D(x, x), x], the last expression reduces to

(2.26) 2(x[D(x, x), x] + 2tx) ∈ Z(R) for all x ∈ I.

Since R is 2-torsion free, we get x[D(x, x), x] + 2tx ∈ Z(R.
Let z = x[D(x, x), x] + 2tx ∈ Z(R). This implies that

(z − 2tx) = x[D(x, x), x].

Replacing x by x2 in our hypothesis, we can write

[f(x2), x2] = [∆(x2, x2), x2] = [∆(x2, x)x + xD(x2, x), x2]

= [∆(x2, x), x2]x + x[D(x2, x), x2]x

= [∆(x, x)x + xD(x, x), x2]x + x[D(x, x)x + xD(x, x), x2]

= [∆(x, x), x2]x2 + x[D(x, x), x2]x + x[D(x, x), x2]x + x2[D(x, x), x2]

= [∆(x, x), x]x3 + x[∆(x, x), x]x2 + 2x2[D(x, x), x]x

+2x[D(x, x), x]x2 + x3[D(x, x), x] + x2[D(x, x), x]x

= 2tx3 + 2x(z − 2tx)x + 2(z − 2tx)x2 + x2(z − 2tx) + x(z − 2tx)x

= −10tx3 + 6zx2

This implies that −10tx3 + 6zx2 ∈ Z(R). Commuting both sides with f(x), we
get [f(x),−10tx3 + 6zx2] = 0, i.e.,

−10t[f(x), x3] + 6z[f(x), x2]

= −10t[f(x), x]x2 − 10tx[f(x), x2] + 6z[f(x), x]x + 6zx[f(x), x]

= −10t2x2 − 10tx[f(x), x]x− 10tx2[f(x), x] + 12ztx

= −30t2x2 + 12ztx = 0.

Again commuting with f(x), we have

−30t2[f(x), x2] + 12zt[f(x), x] = −30t2[f(x), x]x− 30t2x[f(x), x] + 12zt2

= −60t3x + 12zt2 = 0.
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Repeating the same argument, we finally arrive at −60t4 = 0. Since R is 2, 3 and
5 torsion free, we get t4 = 0. Since the center of a semiprime ring contains no
nonzero nilpotent elements, we conclude that t = 0. This completes the proof.

3. Cocommuting biderivations

In this section, we consider the case in which the mappings µ, φ : R −→ R satisfy
µ(x)x + xφ(x) = 0 for all x ∈ R. Bresar [3, Theorem 4.1] proved that if R is a
prime ring, I a nonzero left ideal of R and α and β are nozero derivations of R
satisying α(x)x − xβ(x) ∈ Z(R) for all x ∈ I, then R is commutative. Argac [1,
Theorem 3.5] proved a result for generalized derivation of R.

We extend the aforementioned results by proving the following theorem for a
biderivation of R.

Theorem 3.1. Let R be a prime ring of characteristic not two, I a nonzero
left ideal of R and D, G be symmetric biderivations of R with trace f and g
respectively. If D(x, x)x+xG(x, x) = 0 for all x ∈ I, then either R is commutative
or G acts as a left bimultiplier on I. Moreover, in the last case either D = 0 or
I[I, I] = 0.

Proof. By hypothesis, we have

(3.1) f(x)x + xg(x) = 0 for all x ∈ I,

where f(x) = D(x, x) and g(x) = G(x, x). Linearization of (3.1) yields that

(3.2)
f(y)x + f(x)y + 2D(x, y)x + 2D(x, y)y + xg(y) + yg(x)

+2xG(x, y) + 2yG(x, y) = 0, for all x, y ∈ I.

Substituting −y for y in (3.2), we get

(3.3)
f(y)x− f(x)y − 2D(x, y)x + 2D(x, y)y + xg(y)− yg(x)

−2xG(x, y) + 2yG(x, y) = 0, for all x, y ∈ I.

Adding (3.1) and (3.2), we obtain

(3.4) 2f(y)x + 4D(x, y)y + 2xg(y) + 4yG(x, y) = 0, for all x, y ∈ I.

Since char R is not two, we have

(3.5) f(y)x + 2D(x, y)y + xg(y) + 2yG(x, y) = 0, for all x, y ∈ I.

Replacing x by xz in (3.5), we obtain
(3.6)

f(y)xz + 2D(x, y)zy + 2xD(z, y)y + xzg(y) + 2yG(x, y)z + 2yxG(z, y) = 0,

for all x, y, z ∈ I.
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Comparing (3.5) and (3.6), we obtain

(3.7)
−2D(x, y)yz − xg(y)z + 2D(x, y)zy + 2xD(z, y)y + xzg(y)

+2yxG(z, y) = 0, for all x, y, z ∈ I.

This implies that

(3.8)
2D(x, y)[z, y] + x[z, g(y)] + 2xD(z, y)y + 2yxG(z, y) = 0,

for all x, y, z ∈ I.

Substituting rx for x in (3.8), we get

(3.9)

2rD(x, y)[z, y] + 2D(r, y)x[z, y] + rx[z, g(y)]

+2rxD(z, y)y + 2yrxG(z, y) = 0,

for all x, y, z ∈ I, for all r ∈ R.

Comparing (3.8) and (3.9), we get

(3.10)
2D(r, y)x[z, y] + 2yrxG(z, y)− 2ryxG(z, y) = 0,

for all x, y, z ∈ I, for all r ∈ R.

Since R is of characteristic not two, we obtain

(3.11) D(r, y)x[z, y] + [y, r]xG(z, y) = 0, for all x, y, z ∈ I, for all r ∈ R.

Replacing y by z in (3.12), we obtain

(3.12) [z, r]xg(z) = 0, for all x, z ∈ I, for all r ∈ R

Substituting rx for x in (3.12), we get

(3.13) [z, r]Rxg(z) = 0, for all x, z ∈ I, for all r ∈ R

Primeness of R yields that either [z, r] = 0 or xg(z) = 0. If [z, r] = 0 for all z ∈ I
and r ∈ R, then R is commutative by [10]. Suppose xg(z) = 0 for all x, z ∈ I.
Linearization in z yields that

0 = xG(z, y) + xG(y, z) = 2xG(y, z)

and using R is not of characteristic two, we get

xG(y, z) = 0 for all x, y, z ∈ I.

This implies that
G(x, yz) = G(x, y)z.

Hence G acts as left multiplier. Since xG(y, z) = 0 for all x, y, z ∈ I and using
(3.11), we arrive at

(3.14) D(r, y)x[z, y] = 0, for all x, y, z ∈ I, r ∈ R.
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Replace r by rs in (3.14) to get

(3.15) D(r, y)Rx[z, y] = 0, for all x, y, z ∈ I, r ∈ R.

Primeness of R implies that either D(r, y) = 0 or x[z, y] = 0 for all x, y, z ∈ I.
Later yields that I[I, I] = 0 as D 6= 0.

Proceeding on the same parallel lines, we can prove the following:

Theorem 3.2. Let R be a prime ring of characteristic not two, I a nonzero
right ideal of R and D, G are symmetric biderivations of R with trace f and
g respectively. If D(x, x)x + xG(x, x) = 0 for all x ∈ I, then then either R
is commutative or D acts as a left bimultiplier on I. Moreover in the last case
either G = 0 or I[I, I] = 0.
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