ON COMMUTING TRACES OF GENERALIZED BIDERIVATIONS OF PRIME RINGS

Asma Ali
Department of Mathematics
Aligarh Muslim University
Aligarh
India
e-mail: asma_ali2@rediffmail.com
\section*{Faiza Shujat}
Department of Applied Mathematics, Z.H.C.E.T.
Aligarh Muslim University
Aligarh
India
e-mail: faiza.shujat@gmail.com
\section*{Shahoor Khan}
Department of Mathematics
Aligarh Muslim University
Aligarh
India
e-mail: shahoor.khan@rediffmail.com

Abstract

In this paper, we prove some theorems on symmetric generalized biderivations of a ring, which extend a result of Vukman [9, Theorem 1] and a result of Bresar [3, Theorem 4.1].

Keywords: prime rings, Symmetric generalized biderivations, cocommuting mappings.
2010 Mathematics Subject Classification: 16W25, 16R50, 16N60.

1. Introduction

Throughout the paper all ring will be associative. We shall denote by $Z(R)$ the centre of ring R and by C the extended centroid of R, which is the centre of the two sided Martindale quotients ring Q (we refer the reader [3] for more details). A ring R is said to be prime (resp. semiprime) if $a R b=(0)$ implies that either $a=0$ or $b=0$ (resp. $a R a=(0)$ implies that $a=0$). We shall write for any pair of elements $x, y \in R$ the commutator $x y-y x$ and $x \circ y$ stands for the skew commutator $x y+y x$. We make extensive use of the basic commutator identities (i) $[x, y z]=[x, y] z+y[x, z]$ and (ii) $[x y, z]=[x, z] y+x[y, z]$. An additive mapping $d: R \longrightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$, for all $x, y \in R$. A derivation d is inner if there exists an element $a \in R$ such that $d(x)=[a, x]$ for all $x \in R$. A mapping $D: R \times R \longrightarrow R$ is said to be symmetric if $D(x, y)=D(y, x)$, for all $x, y \in R$. A mapping $f: R \longrightarrow R$ defined
by $f(x)=D(x, x)$, where $D: R \times R \longrightarrow R$ is a symmetric mapping, is called the trace of D. It is obvious that in the case $D: R \times R \longrightarrow R$ is a symmetric mapping which is also biadditive (i.e. additive in both arguments). The trace f of D satisfies the relation $f(x+y)=f(x)+f(y)+2 D(x, y)$, for all $x, y \in R$. A biadditive symmetric mapping $D: R \times R \longrightarrow R$ is called a symmetric biderivation if $D(x y, z)=D(x, z) y+x D(y, z)$ for all $x, y, z \in R$. Obviously, in this case the relation $D(x, y z)=D(x, y) z+y D(x, z)$ is also satisfied for all $x, y, z \in R$.

Typical examples are mapping of the form $(x, y) \mapsto \lambda[x, y]$ where $\lambda \in C$. We shall call such maps inner biderivations. In [6] it was shown that every biderivation D of a noncommutative prime ring R is of the form $D(x, y)=\lambda[x, y]$ for some $\lambda \in C$. Further Bresar extended this result for semiprime rings. Some results on biderivations can be found in[2], [6] and [8].
G. Maksa [8] introduced the concept of a symmetric biderivation (see also [9], where an example can be found). It was shown in [8] that symmetric biderivations are related to general solution of some functional equations. Some results on symmetric biderivation in prime and semiprime rings can be found in [5], [11] and [12]. The notion of additive commuting mappings is closely connected with the notion of biderivations. Every commuting additive mapping $f: R \longrightarrow R$ gives rise to a biderivation on R. Namely linearizing $[x, f(x)]=0$ for all $x, y \in R$ $(x, y) \mapsto[f(x), y]$ is a biderivation (moreover, all derivations appearing are inner).

The notion of generalized symmetric biderivations was introduced by Nurcan [1]. More precisely, a generalized symmetric biderivation is defined as follows: Let R be a ring and $D: R \times R \longrightarrow R$ be a biadditive map. A biadditive mapping $\Delta: R \times R \longrightarrow R$ is said to be generalized biderivation if for every $x \in R$, the map $y \mapsto \Delta(x, y)$ is a generalized derivation of R associated with function $y \mapsto D(x, y)$ as well as if for every $y \in R$, the map $x \mapsto \Delta(x, y)$ is a generalized derivation of R associated with function $x \mapsto D(x, y)$ for all $x, y \in R$. It also satisfies $\Delta(x, y z)=\Delta(x, y) z+y D(x, z)$ and $\Delta(x y, z)=\Delta(x, z) y+x D(y, z)$ for all $x, y, z \in R$. For example consider a biderivation Δ of R and biadditive a function $\alpha: R \times R \longrightarrow R$ such that $\alpha(x, y z)=\alpha(x, y) z$ and $\alpha(x y, z)=\alpha(x, z) y$ for all $x, y, z \in R$. Then $\Delta+\alpha$ is a generalized Δ-biderivation of R.

An additive mapping $h: R \longrightarrow R$ is called left (resp. right) multiplier of R if $h(x y)=h(x) y$ (resp. $h(x y)=x h(y))$ for all $x, y \in R$. A biadditive mapping $D: R \times R \longrightarrow R$ is said to be a left (resp. right) bi-multiplier of R if $D(x, y z)=D(x, y) z($ resp. $D(x z, y)=x D(z, y))$ for all $x, y, z \in R$.

In this paper, we prove some theorems on symmetric generalized biderivations of a ring which extend a result of Vukman [9, Theorem 1] and a result of Bresar [3, Theorem 4.1].

2. Generalized biderivations on prime rings

The result proved in this section generalizes Theorem 1 in [11]. More precisely, we consider the case when the ring R is prime and replace symmetric biderivations with symmetric generalized biderivations.

In [11], Vukman proved the following result: Let R be a noncommutative prime ring of characteristic different from two and $D: R \times R \longrightarrow R$ be a symmetric biderivation with trace f. If f is commuting on R, then $d=0$. Vukman [10, Theorem 2] further generalized the result by proving that let R be a noncommutative prime ring of characteristic different from two. Suppose there exists a symmetric biderivation $D: R \times R \longrightarrow R$ with trace f such that the mapping $x \mapsto[f(x), x]$ is centralizing on R. In this case $D=0$.

Theorem 2.1. Let R be a prime ring of characteristic different from two and I be a nonzero left ideal of R. If Δ is a symmetric generalized biderivation with associated biderivation D such that $[\Delta(x, x), x]=0$ for all $x \in I$, then either R is commutative or Δ acts as a left bimultiplier on I.

Proof. Suppose that

$$
\begin{equation*}
[\Delta(x, x), x]=0, \quad \text { for all } x \in I . \tag{2.1}
\end{equation*}
$$

Linearization of (2.1) yields that

$$
\begin{align*}
& {[\Delta(x, x), x]+[\Delta(x, x), y]+[\Delta(x, y), x]+[\Delta(x, y), y]+[\Delta(y, x), x]} \tag{2.2}\\
& \quad+[\Delta(y, x), y]+[\Delta(y, y), x]+[\Delta(y, y), y]=0, \text { for all } x, y \in I .
\end{align*}
$$

Since Δ is symmetric and using (2.1), we obtain

$$
\begin{array}{r}
{[\Delta(x, x), y]+2[\Delta(x, y), x]+2[\Delta(x, y), y]+[\Delta(y, y), x]=0} \tag{2.3}\\
\text { for all } x, y \in I .
\end{array}
$$

Substituting $-y$ for y in (2.3), we have

$$
\begin{array}{r}
-[\Delta(x, x), y]-2[\Delta(x, y), x]+2[\Delta(x, y), y]+[\Delta(y, y), x]=0 \tag{2.4}\\
\text { for all } x, y \in I .
\end{array}
$$

Adding (2.3) and (2.4) and using char $R \neq 2$, we find

$$
\begin{equation*}
2[\Delta(x, y), y]+[\Delta(y, y), x]=0, \quad \text { for all } x, y \in I \tag{2.5}
\end{equation*}
$$

Replace x by $x z$ in (2.5) to get

$$
\begin{array}{r}
2 \Delta(x, y)[z, y]+2[\Delta(x, y), y] z+2 x[D(z, y), y]+2[x, y] D(z, y) \tag{2.6}\\
+[\Delta(y, y), x] z+x[\Delta(y, y), z]=0, \text { for all } x, y, z \in I .
\end{array}
$$

In view of (2.5), (2.6) gives that

$$
\begin{array}{r}
\Delta(x, y)[z, y]+2 x[D(z, y), y]+2[x, y] D(z, y)+x[\Delta(y, y), z]=0, \tag{2.7}\\
\text { for all } x, y, z \in I .
\end{array}
$$

Substitute y for z to obtain

$$
\begin{equation*}
2 x[D(y, y), y]+2[x, y] D(y, y)=0, \quad \text { for all } x, y \in I \tag{2.8}
\end{equation*}
$$

Since char R not two, we have

$$
\begin{equation*}
x[D(y, y), y]+[x, y] D(y, y)=0, \text { for all } x, y \in I \tag{2.9}
\end{equation*}
$$

Substitute $r x$ for x in (2.9) and using (2.9), we obtain

$$
\begin{equation*}
[r, y] x D(y, y)=0, \quad \text { for all } x, y \in I, \quad \text { for all } r \in R \tag{2.10}
\end{equation*}
$$

Replace r by $r s$ in (2.10), we find

$$
\begin{equation*}
[r, y] R x D(y, y)=0, \text { for all } x, y \in I, \text { for all } r \in R \tag{2.11}
\end{equation*}
$$

Primeness of R yields that either $[y, r]=0$ or $x D(y, y)=0$ for all $x, y \in I$. If $[y, r]=0$ for all $y \in I$ and $r \in R$, then I is contained in $Z(R)$. Since I is a central ideal of R, we have R is commutative by [10]. On the other hand, we have $x D(y, y)=0$ for all $x, y \in I$. Linearization in y yields that $x D(y, z)+x D(z, y)=0$ for all $x, y, z \in I$. Since D is symmetric and using char $R \neq 2$, we get $x D(y, z)=0$ for all $x, y, z \in I$, i.e. Δ acts as a left bimultiplier on I.

Corollary 2.1. Let R be a prime ring of characteristic different from two and I be a nonzero left ideal of R. If Δ is a symmetric generalized biderivation with associated biderivation D such that $\Delta(x, y) \mp[x, y] \in Z(R)$ for all $x, y \in I$, then either R is commutative or Δ acts as a left bimultiplier on I.

Corollary 2.2. Let R be a prime ring of characteristic different from two and I be a nonzero left ideal of R. If Δ is a symmetric generalized biderivation with associated biderivation D such that $\Delta(x, y) \mp x \circ y \in Z(R)$ for all $x, y \in I$, then either R is commutative or Δ acts as a left bimultiplier on I.

Theorem 2.2. Let R be a prime ring of characteristic different from two and I be a nonzero left ideal of R. If Δ is a symmetric generalized biderivation with associated biderivation D such that $\Delta(x, x) \circ x=0$ for all $x \in I$, then either R is commutative or Δ acts as a left bimultiplier on I.

Proof. By assumption, we have

$$
\begin{equation*}
\Delta(x, x) \circ x=0 \quad \text { for all } x \in I \tag{2.12}
\end{equation*}
$$

Linearization of (2.12) yields that

$$
\begin{align*}
& \Delta(x, x) x+\Delta(y, y) x+2 \Delta(x, y) x+\Delta(x, x) y+\Delta(y, y) y \\
& \quad+2 \Delta(x, y) y+x \Delta(x, x)+x \Delta(y, y)+2 x \Delta(x, y)+y \Delta(x, x) \tag{2.13}\\
& \quad+y \Delta(y, y)+2 y \Delta(x, y)=0 \quad \text { for all } x, y \in I
\end{align*}
$$

In view of (2.12), (2.13), gives that

$$
\begin{align*}
& \Delta(y, y) x+2 \Delta(x, y) x+\Delta(x, x) y+2 \Delta(x, y) y+x \Delta(y, y) \tag{2.14}\\
& \quad+2 x \Delta(x, y)+y \Delta(x, x)+2 y \Delta(x, y)=0 \quad \text { for all } x, y \in I
\end{align*}
$$

Substituting $-y$ for y in (2.14), we have

$$
\begin{align*}
& \Delta(y, y) x-2 \Delta(x, y) x-\Delta(x, x) y+2 \Delta(x, y) y+x \Delta(y, y) \\
& \quad-2 x \Delta(x, y)-y \Delta(x, x)+2 y \Delta(x, y)=0 \quad \text { for all } x, y \in I . \tag{2.15}
\end{align*}
$$

Adding (2.14) and (2.15) and using the fact that char $R \neq 2$, we get

$$
\begin{equation*}
\Delta(y, y) x+2 \Delta(x, y) y+x \Delta(y, y)+2 y \Delta(x, y)=0, \quad \text { for all } x, y \in I \tag{2.16}
\end{equation*}
$$

Replacing x by $x u$ in (2.16), we have

$$
\begin{align*}
& \Delta(y, y) x u+2 \Delta(x, y) u y+2 x D(u, y) y+x u \Delta(y, y) \tag{2.17}\\
& \quad+2 y \Delta(x, y) u+2 y x D(u, y)=0 \text { for all } x, y \in I
\end{align*}
$$

Right multiplying (2.16) by u and then subtracting from (2.17), we obtain

$$
\begin{align*}
2 \Delta(u, y)[u, y]+2 x \Delta(u, y) y+x[u, \Delta(y, y)]+2 y x D(u, y) & =0, \tag{2.18}\\
\text { for all } x, y, u & \in I .
\end{align*}
$$

Substituting u by y in (2.18), we get

$$
\begin{equation*}
2 x \Delta(y, y) y+x[y, \Delta(y, y)]+2 y x D(y, y)=0 \quad \text { for } \quad \text { all } x, y \in I . \tag{2.19}
\end{equation*}
$$

Replacing $r x$ for x in (2.19) and using it, we obtain

$$
\begin{array}{r}
2 r x \Delta(y, y) y+r x[y, \Delta(y, y)]+2 y r x D(y, y)=0, \tag{2.20}\\
\text { for all } x, y \in I \quad \text { and } \quad \text { for all } r \in R .
\end{array}
$$

Left multiplying (2.19) by r and then subtracting from (2.20), we get

$$
\begin{equation*}
2[y, r] x D(y, y)=0, \quad \text { for } \text { all } x, y \in I \quad \text { and } \quad \text { for } \text { all } r \in R . \tag{2.21}
\end{equation*}
$$

This implies that $2[y, r] R x D(y, y)=0$ for all $x, y \in I$ and for all $r \in R$. Since $\operatorname{char} R \neq 2$ we have $[y, r] R x D(y, y)=0$ for all $x, y \in I$ and for all $r \in R$. Primeness of R yields that either $[y, r]=0$ or $x D(y, y)=0$ for all $x, y \in I$ and for all $r \in R$. Arguing in the similar manner as in the proof of Theorem 2.1, we get the result.

Theorem 2.3. Let R be a 2,3 and 5 -torsion free semiprime ring, I an additive subgroup of R such that $x^{2} \in I$ for all $x \in I$ and $\Delta: R \times R \rightarrow R$ be a symmetric generalized biderivation associated with biderivation D with the trace f of Δ. If f is centralizing on I, then f is commuting on I.

Proof. Let $x \in I$ and take $t=[f(x), x]$, where $f(x)=\Delta(x, x)$. Then $t \in Z(R)$. By our hypothesis, we have

$$
\begin{equation*}
[f(x), x] \in Z(R) \text { for all } x \in I . \tag{2.22}
\end{equation*}
$$

Replacing x by $x+y$ in (2.22), we have

$$
\begin{array}{r}
{[f(x), x]+[f(x), y]+[f(y), x]+[f(y), y]+[\Delta(x, y), x]+[\Delta(y, x), x]} \tag{2.23}\\
+[\Delta(y, x), y]+[\Delta(x, y), y] \in Z(R) \quad \text { for all } x, y \in I .
\end{array}
$$

Putting $x=-x$ in (2.23) and using (2.22), we get

$$
\begin{equation*}
[f(x), y]+2[\Delta(x, y), x] \in Z(R) \quad \text { for all } x, y \in I \tag{2.24}
\end{equation*}
$$

Substituting x^{2} for y in (2.24), we have

$$
\begin{equation*}
\left[f(x), x^{2}\right]+[\Delta(x, x) x+x D(x, x), x] \in Z(R) \quad \text { for all } x \in I \tag{2.25}
\end{equation*}
$$

We have $\left[f(x), x^{2}\right]=[f(x), x] x+x[f(x), x]=2 t x$.
Since $\left[\Delta\left(x, x^{2}\right), x\right]=2 t x+2 x[D(x, x), x]$, the last expression reduces to

$$
\begin{equation*}
2(x[D(x, x), x]+2 t x) \in Z(R) \text { for all } x \in I \tag{2.26}
\end{equation*}
$$

Since R is 2-torsion free, we get $x[D(x, x), x]+2 t x \in Z(R$.
Let $z=x[D(x, x), x]+2 t x \in Z(R)$. This implies that

$$
(z-2 t x)=x[D(x, x), x] .
$$

Replacing x by x^{2} in our hypothesis, we can write

$$
\begin{aligned}
{\left[f\left(x^{2}\right), x^{2}\right] } & =\left[\Delta\left(x^{2}, x^{2}\right), x^{2}\right]=\left[\Delta\left(x^{2}, x\right) x+x D\left(x^{2}, x\right), x^{2}\right] \\
& =\left[\Delta\left(x^{2}, x\right), x^{2}\right] x+x\left[D\left(x^{2}, x\right), x^{2}\right] x \\
& =\left[\Delta(x, x) x+x D(x, x), x^{2}\right] x+x\left[D(x, x) x+x D(x, x), x^{2}\right] \\
& =\left[\Delta(x, x), x^{2}\right] x^{2}+x\left[D(x, x), x^{2}\right] x+x\left[D(x, x), x^{2}\right] x+x^{2}\left[D(x, x), x^{2}\right] \\
& =[\Delta(x, x), x] x^{3}+x[\Delta(x, x), x] x^{2}+2 x^{2}[D(x, x), x] x \\
& +2 x[D(x, x), x] x^{2}+x^{3}[D(x, x), x]+x^{2}[D(x, x), x] x \\
& =2 t x^{3}+2 x(z-2 t x) x+2(z-2 t x) x^{2}+x^{2}(z-2 t x)+x(z-2 t x) x \\
& =-10 t x^{3}+6 z x^{2}
\end{aligned}
$$

This implies that $-10 t x^{3}+6 z x^{2} \in Z(R)$. Commuting both sides with $f(x)$, we get $\left[f(x),-10 t x^{3}+6 z x^{2}\right]=0$, i.e.,

$$
\begin{aligned}
&-10 {\left[f(x), x^{3}\right]+6 z\left[f(x), x^{2}\right] } \\
& \quad=-10 t[f(x), x] x^{2}-10 t x\left[f(x), x^{2}\right]+6 z[f(x), x] x+6 z x[f(x), x] \\
& \quad=-10 t^{2} x^{2}-10 t x[f(x), x] x-10 t x^{2}[f(x), x]+12 z t x \\
& \quad=-30 t^{2} x^{2}+12 z t x=0 .
\end{aligned}
$$

Again commuting with $f(x)$, we have

$$
\begin{aligned}
-30 t^{2}\left[f(x), x^{2}\right]+12 z t[f(x), x] & =-30 t^{2}[f(x), x] x-30 t^{2} x[f(x), x]+12 z t^{2} \\
& =-60 t^{3} x+12 z t^{2}=0 .
\end{aligned}
$$

Repeating the same argument, we finally arrive at $-60 t^{4}=0$. Since R is 2,3 and 5 torsion free, we get $t^{4}=0$. Since the center of a semiprime ring contains no nonzero nilpotent elements, we conclude that $t=0$. This completes the proof.

3. Cocommuting biderivations

In this section, we consider the case in which the mappings $\mu, \phi: R \longrightarrow R$ satisfy $\mu(x) x+x \phi(x)=0$ for all $x \in R$. Bresar [3, Theorem 4.1] proved that if R is a prime ring, I a nonzero left ideal of R and α and β are nozero derivations of R satisying $\alpha(x) x-x \beta(x) \in Z(R)$ for all $x \in I$, then R is commutative. Argac [1, Theorem 3.5] proved a result for generalized derivation of R.

We extend the aforementioned results by proving the following theorem for a biderivation of R.

Theorem 3.1. Let R be a prime ring of characteristic not two, I a nonzero left ideal of R and D, G be symmetric biderivations of R with trace f and g respectively. If $D(x, x) x+x G(x, x)=0$ for all $x \in I$, then either R is commutative or G acts as a left bimultiplier on I. Moreover, in the last case either $D=0$ or $I[I, I]=0$.

Proof. By hypothesis, we have

$$
\begin{equation*}
f(x) x+x g(x)=0 \text { for all } x \in I, \tag{3.1}
\end{equation*}
$$

where $f(x)=D(x, x)$ and $g(x)=G(x, x)$. Linearization of (3.1) yields that

$$
\begin{array}{r}
f(y) x+f(x) y+2 D(x, y) x+2 D(x, y) y+x g(y)+y g(x) \tag{3.2}\\
+2 x G(x, y)+2 y G(x, y)=0, \text { for all } x, y \in I .
\end{array}
$$

Substituting $-y$ for y in (3.2), we get

$$
\begin{array}{r}
f(y) x-f(x) y-2 D(x, y) x+2 D(x, y) y+x g(y)-y g(x) \\
-2 x G(x, y)+2 y G(x, y)=0, \text { for all } x, y \in I . \tag{3.3}
\end{array}
$$

Adding (3.1) and (3.2), we obtain

$$
\begin{equation*}
2 f(y) x+4 D(x, y) y+2 x g(y)+4 y G(x, y)=0, \text { for all } x, y \in I \tag{3.4}
\end{equation*}
$$

Since char R is not two, we have

$$
\begin{equation*}
f(y) x+2 D(x, y) y+x g(y)+2 y G(x, y)=0, \text { for all } x, y \in I . \tag{3.5}
\end{equation*}
$$

Replacing x by $x z$ in (3.5), we obtain

$$
\begin{array}{r}
f(y) x z+2 D(x, y) z y+2 x D(z, y) y+x z g(y)+2 y G(x, y) z+2 y x G(z, y)=0, \tag{3.6}\\
\text { for all } x, y, z \in I .
\end{array}
$$

Comparing (3.5) and (3.6), we obtain

$$
\begin{align*}
-2 D(x, y) y z-x g(y) z & +2 D(x, y) z y+2 x D(z, y) y+x z g(y) \tag{3.7}\\
& +2 y x G(z, y)=0, \text { for all } x, y, z \in I .
\end{align*}
$$

This implies that

$$
\begin{array}{r}
2 D(x, y)[z, y]+x[z, g(y)]+2 x D(z, y) y+2 y x G(z, y)=0 \tag{3.8}\\
\text { for all } x, y, z \in I
\end{array}
$$

Substituting $r x$ for x in (3.8), we get

$$
\begin{array}{r}
2 r D(x, y)[z, y]+2 D(r, y) x[z, y]+r x[z, g(y)] \\
+2 r x D(z, y) y+2 y r x G(z, y)=0 \tag{3.9}\\
\text { for all } x, y, z \in I, \text { for all } r \in R .
\end{array}
$$

Comparing (3.8) and (3.9), we get

$$
\begin{array}{r}
2 D(r, y) x[z, y]+2 y r x G(z, y)-2 r y x G(z, y)=0 \\
\text { for all } x, y, z \in I, \text { for all } r \in R . \tag{3.10}
\end{array}
$$

Since R is of characteristic not two, we obtain

$$
\begin{equation*}
D(r, y) x[z, y]+[y, r] x G(z, y)=0, \text { for all } x, y, z \in I, \text { for all } r \in R \tag{3.11}
\end{equation*}
$$

Replacing y by z in (3.12), we obtain

$$
\begin{equation*}
[z, r] x g(z)=0, \text { for all } x, z \in I \text {, for all } r \in R \tag{3.12}
\end{equation*}
$$

Substituting $r x$ for x in (3.12), we get

$$
\begin{equation*}
[z, r] R x g(z)=0, \text { for all } x, z \in I, \text { for all } r \in R \tag{3.13}
\end{equation*}
$$

Primeness of R yields that either $[z, r]=0$ or $x g(z)=0$. If $[z, r]=0$ for all $z \in I$ and $r \in R$, then R is commutative by [10]. Suppose $x g(z)=0$ for all $x, z \in I$. Linearization in z yields that

$$
0=x G(z, y)+x G(y, z)=2 x G(y, z)
$$

and using R is not of characteristic two, we get

$$
x G(y, z)=0 \text { for all } x, y, z \in I
$$

This implies that

$$
G(x, y z)=G(x, y) z
$$

Hence G acts as left multiplier. Since $x G(y, z)=0$ for all $x, y, z \in I$ and using (3.11), we arrive at

$$
\begin{equation*}
D(r, y) x[z, y]=0, \text { for all } x, y, z \in I, r \in R . \tag{3.14}
\end{equation*}
$$

Replace r by $r s$ in (3.14) to get

$$
\begin{equation*}
D(r, y) R x[z, y]=0, \text { for all } x, y, z \in I, r \in R \tag{3.15}
\end{equation*}
$$

Primeness of R implies that either $D(r, y)=0$ or $x[z, y]=0$ for all $x, y, z \in I$. Later yields that $I[I, I]=0$ as $D \neq 0$.

Proceeding on the same parallel lines, we can prove the following:
Theorem 3.2. Let R be a prime ring of characteristic not two, I a nonzero right ideal of R and D, G are symmetric biderivations of R with trace f and g respectively. If $D(x, x) x+x G(x, x)=0$ for all $x \in I$, then then either R is commutative or D acts as a left bimultiplier on I. Moreover in the last case either $G=0$ or $I[I, I]=0$.

Acknowledgment. The authors would like to express their thanks to the referees for the careful reading of the paper and several helpful suggestions.

References

[1] Argac, N., On prime and semiprime rings with derivations, Algebra Colloq., 13 (3) (2006), 371-380.
[2] Ali, A., Filippis, V.D., Shujat, F., Results concerning symmetric generalized biderivations of prime and semiprime rings, Matematiqki Vesnik, 66 (4) (2014), 410417.
[3] Beidar K.I., Martindale, W.S., Mikhalev, A.V., Rings with generalized identities, Pure and Appl. Math. Dekker, New York (1996).
[4] Bresar, M., Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
[5] Bresar, M., On gneralized biderivations and related maps, J. Algebra, 172 (1995), 764-686.
[6] Bresar, M., Martindale, W.S., Miers, C.R., Centralizing maps in prime rings with involution, J. Alg., 161 (2) (1993), 342-257.
[7] Herstein, I.N., Rings with involution, Chicago Lectures in Mathematics, University of Chicago Press, Chicago III USA (1976).
[8] Maksa, Gy., A remark on symmetric biadditive functions having nonnegative diagonalization, Glasnik. Mat., 15 (35) (1980), 279-282.
[9] Maksa, Gy., On the trace of symmetric biderivations, C.R. Math. Rep. Acad. Sci. Canada, 9 (1987), 303-307.
[10] Mayne, J.H., Ideals and centralizing mappings in prime rings, Proc. Amer. Math. Soc., 86 (2) (1982), 211-212.
[11] Vukman, J., Symmetric biderivations on prime and semiprime rings, Aequationes Math., 38 (1989), 245-254.
[12] Vukman, J., Two results concerning symmetric biderivations on prime rings, Aequationes Math., 40 (1990), 181-189.

Accepted:08.10.2014

