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Abstract. In this paper, we construct a binary linear code connected with the Klooster-
man sum for GL(2, q). Here q is a power of two. Then we obtain a recursive formula
generating the power moments 2-dimensional Kloosterman sum, equivalently that ge-
nerating the even power moments of Kloosterman sum in terms of the frequencies of
weights in the code. This is done via Pless power moment identity and by utilizing the
explicit expression of the Kloosterman sum for GL(2, q).

Keywords: recursive formula, power moment, Kloosterman sum, 2-dimensional Kloos-
terman sum, general linear group, Pless power moment identity, weight distribution.

2010 Mathematics Subject Classification: 11T23, 20G40, 94B05.

1. Introduction

Let ψ be a nontrivial additive character of the finite field Fq with q = pr elements
(p a prime), and let m be a positive integer. Then the m-dimensional Kloosterman
sum Km(ψ; a)([10]) is defined by

Km(ψ; a) =
∑

α1,...,αm∈F∗q
ψ(α1 + · · ·+ αm + aα−1

1 · · ·α−1
m ) (a ∈ F∗q).

In particular, if m = 1, then K1(ψ; a) is simply denoted by K(ψ; a), and is called
the Kloosterman sum. For this, we have the Weil bound(cf. [10])

(1.1) |K(λ; a)| ≤ 2
√

q.

The Kloosterman sum was introduced in 1926([8]) to give an estimate for the
Fourier coefficients of modular forms.

1The work was supported by National Foundation of Korea Grant funded by the Korean
Government (2009-0072514).
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For each nonnegative integer h, we denote by MKm(ψ)h the h-th moment of
the m-dimensional Kloosterman sum Km(ψ; a), i.e.,

MKm(ψ)h =
∑

a∈F∗q
Km(ψ; a)h.

If ψ = λ is the canonical additive character of Fq, then MKm(λ)h will be simply
denoted by MKh

m. If further m = 1, for brevity, MKh
1 will be indicated by MKh.

Explicit computations on power moments of Kloosterman sums were initiated
in the paper [13] of Salié in 1931, where it is shown that for any odd prime q,

MKh = q2Mh−1 − (q − 1)h−1 + 2(−1)h−1 (h ≥ 1).

Here M0 = 0, and for h ∈ Z>0,

Mh =
∣∣∣
{

(α1, ..., αh) ∈ (F∗q)h|
h∑

j=1

αj = 1 =
h∑

j=1

α−1
j

}∣∣∣.

For q = p odd prime, Salié obtained MK1, MK2, MK3, MK4 in that same paper
by determining M1, M2, M3.

From now on, let us assume that q = 2r. Carlitz [1] evaluated MKh for h ≤ 4.
Moisio was able to find explicit expressions of MKh, for h ≤ 10 (cf. [12]). This was
done, via Pless power moment identity, by connecting moments of Kloosterman
sums and the frequencies of weights in the binary Zetterberg code of length q +1,
which were known by the work of Schoof and Vlugt in [14].

In [5], for both n, q powers of two, a binary linear code C(SL(n, q)) associated
with the finite special linear group SL(n, q) was constructed in order to produce a
recursive formula for the power moments of multi-dimensional Kloosterman sums
in terms of the frequencies of weights in that code. On the other hand, in [6], for q a
power of three, two infinite families of ternary linear codes associated with double
cosets in the symplectic group Sp(2n, q) were constructed in order to generate
infinite families of recursive formulas for the power moments of Kloosterman sums
with square arguments and for the even power moments of those in terms of the
frequencies of weights in those codes.

In this paper, we will utilize one simple identity connecting the Klooster-
man sum for GL(2, q) and the ordinary Kloosterman sum (cf. (2.3)). Then we
will be able to produce a recursive formula generating the power moments of
2-dimensional Kloosterman sums, equivalently that generating the even power
moments of Kloosterman sums. To do that, we construct a binary linear code
connected with the Kloosterman sum for GL(2, q).

Theorem 1.1 of the following (cf. (1.2)-(1.4)) is the main result of this paper.
Henceforth, we agree that the binomial coefficient

(
b
a

)
= 0, if a > b or a < 0.

Theorem 1.1 Let q = 2r. Then we have the following:
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(a) For r ≥ 2, and h = 1, 2, ...,

MKh
2 =

h−1∑

l=0

(−1)h+l+1

(
h

l

)
(q3 − 2q2 − q + 1)h−lMK l

2

+ q1−h

min{N,h}∑
j=0

(−1)h+jCj

h∑
t=j

t!S(h, t)2h−t

(
N − j

N − t

)
,

(1.2)

(b) For r ≥ 2, and h = 1, 2, ...,

MK2h =
h−1∑

l=0

(−1)h+l+1

(
h

l

)
(q3 − 2q2 + 1)h−lMK2l

+ q1−h

min{N,h}∑
j=0

(−1)h+jCj

h∑
t=j

t!S(h, t)2h−t

(
N − j

N − t

)
,

(1.3)

where N = |GL(2, q)| = q(q − 1)(q2 − 1), and {Cj}N
j=0 is the weight distribution

of C(GL(2, q)) given by

(1.4) Cj =
∑ (

m0

ν0

) ∏

|t|<2
√

q, t≡−1(4)

∏

K(λ;β−1)=t

(
mt

νβ

)
(j = 0, · · · , N),

with the sum running over all the sets of nonnegative integers {νβ}β∈Fq satisfying

∑

β∈Fq

νβ = j and
∑

β∈Fq

νββ = 0,

m0 = q(2q2 − 2q − 1) and mt = q(q2 − 2q − 1 + t),

for all integers t satisfying |t| < 2
√

q and t ≡ −1(mod 4).
In addition, S(h, t) is the Stirling number of the second kind given by

(1.5) S(h, t) =
1

t!

t∑
j=0

(−1)t−j

(
t

j

)
jh.

2. Preliminaries

Throughout this paper, the following notations will be used:

q = 2r (r ∈ Z>0),

Fq = the finite field with q elements,

tr(x) = x + x2 + · · ·+ x2r−1

the trace function Fq → F2,

λ(x) = (−1)tr(x) the canonical additive character of Fq.

Then any nontrivial additive character ψ of Fq is given by ψ(x) = λ(ax), for a
unique a ∈ F∗q.
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For any nontrivial additive character ψ of Fq and a ∈ F∗q, the Kloosterman
sum KGL(t,q)(ψ; a) for GL(t, q) is defined as

KGL(t,q)(ψ; a) =
∑

g∈GL(t,q)

ψ(Trg + aTrg−1).

Observe that, for t = 1,KGL(1,q)(ψ; a) denotes the Kloosterman sum K(ψ; a).
In [4], it is shown that KGL(t,q)(ψ; a) satisfies the following recursive relation:

for integers t ≥ 2, a ∈ F∗q,

(2.1) KGL(t,q)(ψ; a)=qt−1KGL(t−1,q)(ψ; a)K(ψ; a)+q2t−2(qt−1−1)KGL(t−2,q)(ψ; a),

where we understand that KGL(0,q)(ψ; a) = 1.

Theorem 2.1 ([2]) For the canonical additive character λ of Fq, and a ∈ F∗q,

(2.2) K2(λ; a) = K(λ; a)2 − q.

Our paper will be based on the t = 2 case of the identity in (2.1).

Proposition 2.2 For the canonical additive character λ of Fq, we have:

(2.3) KGL(2,q)(λ; a) = qK(λ; a)2 + q2(q − 1) = qK2(λ; a) + q3.

Proposition 2.3 ([7]) For n = 2s (s ∈ Z≥0), λ the canonical additive character
of Fq, and a ∈ F∗q,
(2.4) K(λ; an) = K(λ; a).

Remark 2.4 In fact, (2.4) holds more generally for multi-dimensional Klooster-
man sums. For n = 2s (s ∈ Z≥0), λ the canonical additive character of Fq, a ∈ F∗q,
and any positive integer m,

(2.5) Km(λ; an) = Km(λ; a).

The order of the general linear group GL(n, q) is given by

(2.6) gn =
n−1∏
j=0

(qn − qj) = q(
n
2)

n∏
j=1

(qj − 1).

3. Construction of codes

Let

(3.1) N = |GL(2, q)| = q(q − 1)(q2 − 1).

Here we will construct a binary linear code C of length N connected with the
Kloosterman sum for GL(2, q).
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Let g1, ..., gN be a fixed ordering of the elements in GL(2, q), and let v =
(Trg1+Trg1

−1, ..., T rgN +TrgN
−1) ∈ FN

q . The binary linear code C = C(GL(2, q))
is defined as

(3.2) C = {u ∈ FN
2 | u · v = 0}.

The following Delsarte’s theorem is well-known.

Theorem 3.1 ([11]) Let B be a linear code over Fq. Then (B|F2)
⊥ = tr(B⊥).

In view of this theorem, the dual C⊥ of C is given by

(3.3) C⊥ = {c(a) = (tr(a(Trg1 + Trg1
−1)), ..., tr(a(TrgN + TrgN

−1))) | a ∈ Fq}.
The following estimate is very coarse but will serve for our purpose.

Lemma 3.2 For any a ∈ F∗q, and ψ any nontrivial additive character of Fq,

(3.4)
|KGL(n,q)(ψ; a)| < |GL(n, q)|, for n ≥ 2 and q ≥ 4, and

|KGL(1,q)(ψ; a)| < |GL(1, q)|, for q ≥ 8.

Proof. For n=1, this is trivial, since 2
√

q < q−1, for q ≥ 8. For n=2, from (2.1)

(3.5) KGL(2,q)(ψ; a) = qK(ψ; a)2 + q2(q − 1),

and hence from (1.1) and (3.5), for q ≥ 4,

(3.6) |KGL(2,q)(ψ; a)| ≤ q3 + 3q2 < q(q − 1)(q2 − 1) = |GL(2, q)|.
For n = 3, from (2.1),

(3.7) KGL(3,q)(ψ; a) = q2KGL(2,q)(ψ; a)K(ψ; a) + q4(q2 − 1)K(ψ; a),

and hence from (1.1), (3.6), and (4.6), for q ≥ 4,

|KGL(3,q)(ψ; a)| < 2q
7
2 (q2 − 1)(2q − 1) < q3(q − 1)(q2 − 1)(q3 − 1) = |GL(3, q)|.

Assume now that n ≥ 4 and that (3.4) holds for all integers less than n and greater
than and equal to 2, for q ≥ 4. Then, from (1.1), (2.1), and (2.6), and for q ≥ 4,

|KGL(n,q)(ψ; a)| < q(
n
2)(q + 2

√
q)

n−1∏
j=1

(qj − 1) < q(
n
2)

n∏
j=1

(qj − 1) < |GL(n, q)|.

Remark 3.3 It was shown in [3, Theorem 2] that, for any nontrivial additive
character ψ of Fq and a ∈ F∗q,

KGL(n,q)(ψ; a2) =
∑

g∈GL(n,q)

ψ(a(Trg + Trg−1)) = (−1)nq(
n
2)

n∑
j=0

[
n
j

]

q

ωjω̄n−j,

where ω, ω̄ are complex numbers, depending on ψ and a, with |ω|=|ω̄|=√q. Thus
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|KGL(n,q)(ψ; a2)| ≤ q
1
2
n2

n∑
j=0

[
n
j

]

q

,

and, in particular, we get
|KGL(2,q)(ψ; a2)| ≤ q2

2∑
j=0

[
2
j

]

q

= q2(q + 3).

Proposition 3.4 The map Fq → C⊥ (a 7→ c(a)) is an F2-linear isomorphism for
q ≥ 4.

Proof. The map is clearly F2-linear and surjective. Let a be in the kernel of the
map. Then tr(a(Trg + Trg−1)) = 0, for all g ∈ GL(2, q). Suppose that a 6= 0.
Then, on the one hand,

(3.8)

|GL(2, q)| =
∑

g∈GL(2,q)

(−1)tr(a(Trg+Trg−1)) =
∑

g∈GL(2,q)

λ(a(Trg + Trg−1))

=
∑

g∈GL(2,q)

λ(Trg + a2Trg−1) (g → a−1g) = KGL(2,q)(λ; a2).

As q ≥ 4, (3.8) is on the other hand strictly less than |GL(2, q)| by Lemma 3.2.
This is a contradiction. So we must have a = 0.

Remark 3.5 (a) If q = 2, one checks easily that the kernel of the map F2 → C⊥

is F2.
(b) The fact that the map in Proposition 3.4 is injective follows also from

(1.1) and (3.11), since they imply that n(β) > 0, for all β, provided that q ≥ 4.

Proposition 3.6 ([7]) Let λ be the canonical additive character of Fq, m ∈ Z>0,
β ∈ Fq. Then

(3.9)
∑

a∈F∗q
λ(−aβ)Km(λ; a) =

{
qKm−1(λ; β−1) + (−1)m+1, if β 6= 0,

(−1)m+1, if β = 0.

with the convention K0(λ; β−1) = λ(β−1).

Let

(3.10) n(β) = |{g ∈ GL(2, q)|Trg + Trg−1 = β}|.
Then, with N as in (3.1),

qn(β) = N +
∑

α∈F∗q
λ(−αβ)

∑
g∈GL(2,q) λ(α(Trg + Trg−1))

= N +
∑

α∈F∗q
λ(−αβ)KGL(2,q)(λ; α2)

= N +
∑

α∈F∗q
λ(−αβ)(qK2(λ; α2) + q3)(cf.(2.3))

= N + q
∑

α∈F∗q
λ(−αβ)K2(λ; α2) + q3

∑
α∈F∗q

λ(−αβ)

= N + q
∑

α∈F∗q
λ(−αβ)K2(λ; α) + q3

∑
α∈F∗q

λ(−αβ) (cf. (2.5)).

Now, from Proposition 3.6, we obtain the following.



a recursive formula for power moments of 2-dimensional ... 13

Proposition 3.7 Let n(β) be as in (3.10). Then we have

(3.11) n(β) =

{
q(q2 − 2q − 1 + K(λ; β−1)), if β 6= 0,

q(2q2 − 2q − 1), if β = 0.

4. Power moments of 2-dimensional Kloosterman sums

In this section, we will be able to find, via Pless power moment identity, a recursive
formula for the power moments of 2-dimensional Kloosterman sums or equivalently
for the even power moments of Kloosterman sums in terms of the frequencies of
weights in C = C(GL(2, q)).

Theorem 4.1 (Pless power moment identity): Let B be a q-ary [n, k] code, and
let Bi (resp. B⊥

i ) denote the number of codewords of weight i in B (resp. in B⊥).
Then, for h = 0, 1, 2, ...,

(4.1)
n∑

j=0

jhBj =

min{n,h}∑
j=0

(−1)jB⊥
j

h∑
t=j

t!S(h, t)qk−t(q − 1)t−j

(
n− j

n− t

)
,

where S(h, t) is the Stirling number of the second kind defined in (1.5).

From now on, we will assume that q ≥ 4 (i.e., r ≥ 2), so that every codeword
in C(GL(2, q))⊥ can be written as c(a), for a unique a ∈ Fq (cf. Proposition 3.4).
This also allows one to use Theorem 4.5.

Lemma 4.2 Let c(a)=(tr(a(Trg1+Trg1
−1)), ..., tr(a(TrgN+TrgN

−1)))∈C(GL(2, q))⊥,
for a ∈ F∗q. Then the Hamming weight w(c(a)) can be expressed as follows:

w(c(a)) =
1

2
q(q3 − 2q2 + 1−K(λ; a)2)(4.2)

=
1

2
q(q3 − 2q2 − q + 1−K2(λ; a)).(4.3)

Proof.

w(c(a)) =
1

2

N∑
i=1

(1− (−1)tr(a(Trgi+Trg−1
i )))

=
1

2
(N −

∑

g∈GL(2,q)

λ(a(Trg + Trg−1)))

=
1

2
(N −

∑

g∈GL(2,q)

λ(Trg + a2Trg−1))

=
1

2
(N −KGL(2,q)(λ; a2))

=
1

2
(N − qK(λ; a)2 − q2(q − 1)) (cf.(2.3), (2.4))

=
1

2
q(q3 − 2q2 + 1−K(λ; a)2) (cf.(3.1))

=
1

2
q(q3 − 2q2 − q + 1−K2(λ; a)) (cf.(2.2)).
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Let u = (u1, ..., uN) ∈ FN
2 , with νβ 1’s in the coordinate places where Trgj +

Trgj
−1 = β, for each β ∈ Fq. Then we see from the definition of the code

C(GL(2, q)) (cf. (3.2)) that u is a codeword with weight j if and only if
∑

β∈Fq

νβ = j

and
∑

β∈Fq

νββ = 0 (an identity in Fq). As there are
∏

β∈Fq

(
n(β)
νβ

)
many such codewords

with weight j, we obtain the following result.

Proposition 4.3 Let {Cj}N
j=0 be the weight distribution of C(GL(2, q)), where

Cj denotes the frequency of the codewords with weight j in C. Then

(4.4) Cj =
∑ ∏

β∈Fq

(
n(β)

νβ

)
,

where the sum runs over all the sets of nonnegative integers {νβ}β∈Fq (0 ≤ νβ ≤
n(β)), satisfying

(4.5)
∑

β∈Fq

νβ = j and
∑

β∈Fq

νββ = 0.

Corollary 4.4 Let {Cj}N
j=0 be the weight distribution of C(GL(2, q)). Then we

have:
Cj = CN−j,

for all j, with 0 ≤ j ≤ N .

Proof. Under the replacements νβ → n(β)−νβ, for each β ∈ Fq, the first equation
in (4.5) is changed to N − j, while the second one in (4.5) and the summands in
(4.4) are left unchanged. Here the second sum in (4.5) is left unchanged, since∑
β∈Fq

n(β)β = 0, as one can see by using the explicit expression of n(β) in (3.11).

Theorem 4.5 ([9]) Let q = 2r, with r ≥ 2. Then the range R of K(λ; a), as a
varies over F∗q, is given by

R = {t ∈ Z | |t| < 2
√

q, t ≡ −1(mod 4)}.
In addition, each value t ∈ R is attained exactly H(t2− q) times, where H(d)

is the Kronecker class number of d.

Now, we get the following formula in (4.6), by applying the formula in (4.4)
to C(GL(2, q)), using the explicit values of n(β) in (3.11) and taking Theorem 4.5
into consideration.

Theorem 4.6 Let {Cj}N
j=0 be the weight distribution of C(GL(2, q)). Then

(4.6) Cj =
∑(

m0

ν0

) ∏

|t|<2
√

q, t≡−1(4)

∏

K(λ;β−1)=t

(
mt

νβ

)
(j = 0, ..., N),
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where the sum is over all the sets of nonnegative integers {νβ}β∈Fq satisfying

∑
β∈Fq

νβ = j and
∑

β∈Fq

νββ = 0,

m0 = q(2q2 − 2q − 1), and mt = q(q2 − 2q − 1 + t),

for all integers t satisfying |t| < 2
√

q and t ≡ −1(mod 4).

We now apply the Pless power moment identity in (4.1) to C(GL(2, q))⊥,
in order to obtain the results in Theorem 1.1 (cf. (1.2)-(1.4)) about recursive
formulas.

Then the left hand side of that identity in (4.1) is equal to

(4.7)
∑

a∈F∗q
w(c(a))h,

with the w(c(a)) given either by (4.2) or by (4.3).

Using the expression of w(c(a)) in (4.3), (4.7) is

(4.8)

(q

2

)h ∑

a∈F∗q
(q3 − 2q2 − q + 1−K2(λ; a))h

=
(q

2

)h ∑

a∈F∗q

h∑

l=0

(−1)l

(
h

l

)
(q3 − 2q2 − q + 1)h−lK2(λ; a)l

=
(q

2

)h
h∑

l=0

(−1)l

(
h

l

)
(q3 − 2q2 − q + 1)h−lMK l

2.

Equivalently, using the expression of w(c(a)) in (4.2), (4.7) is

(4.9)
(q

2

)h
h∑

l=0

(−1)l

(
h

l

)
(q3 − 2q2 + 1)h−lMK2l.

On the other hand, the right hand side of the identity in (4.1) is

(4.10) q

min{N,h}∑
j=0

(−1)jCj

h∑
t=j

t!S(h, t)2−t

(
N − j

N − t

)
.

Our main results in Theorem 1.1 (cf. (1.2)-(1.4)) now follow by equating (4.8)
and (4.10), and (4.9) and (4.10). Also, one has to separate the term corresponding
to l = h in (4.8) and (4.9), and note dimF2C(GL(2, q)) = r.

Note here that, in view of (2.2), obtaining power moments of 2-dimensional
Kloosterman sums is equivalent to getting even power moments of Kloosterman
sums.
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