PRIME SUBMODULES IN EXTENDED $B C K$-MODULE

R.A. Borzooei
Department of Mathematics
Shahid Beheshti University
Tehran
Iran
e-mail: borzooei@sbu.ac.ir
\section*{S. Saidi Goraghani}
Department of Mathematics Islamic Azad University of Central Tehran Branch Tehran
Iran
e-mail: SiminSaidi@yahoo.com

Abstract

In this paper, by considering the notion of $B C K$-module, we define the concept of extended $B C K$-module which is a generalization of $B C K$-module and we state and prove some related results. Specially, we define the notions of prime submodule and torsion free module and we investigate some important results. Finally, we define the concept of radical of any submodule in extended $B C K$-modules and we characterize the elements of it.

Keywords: $B C K$-algebra, $B C K$-module, extended $B C K$-module, prime submodule of $B C K$-module.
Mathematical Subject Classification (2010): 06F35, 06D99.

1. Introduction

The notion of $B C K$-algebra was formulated first in 1966 by Imai and Iseki. This notion is originated from two different ways. One of the motivations is based on set theory. Another motivation is from classical and non-classical propositional calculus. The notion of $B C K$-module was introduced in 1994 [2] as an action of a $B C K$-algebra over a commutative group by M. Aslam, A.B. Thaheem and H.A.S. Abujaabal. The idea was further explored in 1994 by F. Kôpka and F. Chovanec [8]. The concept of BCK-module was extended by R. A. Borzooei, J. Shohani and M. Jafari in 2011 [4]. Now, we introduce a different extended $B C K$-module that we can obtain some interesting results by it. Since the notion of primesubmodule is fundamental notion in modules theory, in this paper we introduce and investigate it on $B C K$-modules and we obtain some results as mentioned in the abstract.

2. Preliminaries

Definition 2.1. [9] A $B C K$-algebra is a structure $X=(X, *, 0)$ of type $(2,0)$ such that:
$(B C K 1) \quad((x * y) *(x * z)) *(z * y)=0$,
(BCK2) $\quad(x *(x * y)) * y=0$,
(BCK3) $\quad x * x=0$,
(BCK4) $\quad 0 * x=0$,
(BCK5) $\quad x * y=y * x=0$ implies that $x=y$,for all $x, y, z \in X$.
The relation $x \leq y$ which is defined by $x * y=0$ is a partial order with 0 as least element. In any $B C K$-algebra X, for all $x, y, z \in X$, we have
(BCK6) $\quad x * y \leq x,(x * y) * z=(x * z) * y$.
Definition 2.2. [9] Let $(X, *, 0)$ be a $B C K$-algebra. Then
(i) $\emptyset \neq X_{0} \subseteq X$ is called to be a subalgebra of X, if for any $x, y \in X_{0}, x * y \in X_{0}$,
(ii) $\emptyset \neq I \subseteq X$ is called an ideal of X, if $0 \in I$ and for any $x, y \in X, x * y \in I$ and $y \in I$, implies that $x \in I$. Specially, generated ideal by x is defined by $(x]=\{y \in X: y * x=0\}$, for any $x \in X$,
(iii) X is called bounded, if there exists $1 \in X$ such that $x \leq 1$, for any $x \in X$. In this case, we set $N x=1 * x$,
(iv) X is said to be commutative, if $y *(y * x)=x *(x * y)$, for all $x, y \in X$,
(v) proper ideal I of X, is called prime ideal if X is commutative and $a \wedge b \in I$ implies that $a \in I$ or $b \in I$, for any $a, b \in X$,
(iv) X is said to be implicative if $x *(y * x)=x$, for all $x, y \in X$.

Note. In a $B C K$-algebra X, we let $x \wedge y=y *(y * x)$ and in a bounded $B C K$ algebra X, we let $x \vee y=N(N x \wedge N y)$, for all $x, y \in X$. Moreover, in bounded commutative $B C K$-algebra, $x \wedge y$ is the least upper bound and $x \vee y$ is the grate lower bound of x, y, for any $x, y \in X$ and so (L, \vee, \wedge) is a bounded lattice.

Lemma 2.3. [9] Let X be a bounded implicative BCK-algebra. Then for all $x, y, z \in X$,
(i) $x \wedge y=x * N y$,
(ii) $x *(x \wedge y)=x * y$,
(iii) $x \wedge(y * z)=(x \wedge y) *(x \wedge z)$,
(iv) $(x * y)+(y * x)=x+y$, where $x+y=(x * y) \vee(y * x)$,
(v) $(x+y) \wedge z=(x \wedge z)+(y \wedge z)$,
(vi) $x+x=0$ and so $x=-x$,
(vii) $x+0=0+x=x$.

Let A be an ideal of $B C K$-algebra X. For any $x, y \in X$, we define $x \sim y$ if and only if $x * y \in A$ and $y * x \in A$. So \sim is an equivalence relation on X. Denote the equivalence class containing x by C_{x} and $\frac{X}{A}=\left\{C_{x}: x \in X\right\}$. Then $\left(\frac{X}{A}, *, C_{0}\right)$ is a $B C K$-algebra (quotient $B C K$-algebra), where $C_{x} \star C_{y}=C_{x * y}$, for all $x, y \in X$. Moreover, the relation " \leq "which is defined by, $C_{x} \leq C_{y}$ if and only if $x * y \in A$, is a partial order relation. If X is bounded and commutative, then $\frac{X}{A}$ is bounded and commutative, too. Let $(X, *, 0)$ and $\left(Y, *^{\prime}, 0\right)$ be two $B C K-$ algebras. A mapping $f: X \rightarrow Y$ is called a homomorphism if $f(0)=0$ and $f(x * y)=f(x) *^{\prime} f(y)$, for any $x, y \in X$ (see [9]).

Definition 2.4. [1] Let X be a $B C K$-algebra, M be an abelian group under " + " and $(x, m) \rightarrow x$. m be a mapping of $X \times M \longrightarrow M$ such that,
(XM1) $\quad(x \wedge y) \cdot m=x \cdot(y \cdot m)$,
$(X M 2) \quad x \cdot(m+n)=x . m+x . n$,
(XM3) $\quad 0 . m=0$, for all $x, y \in X$ and $m, n \in M$.
Then M is called a $B C K$-module or briefly X-module. If X is bounded and for any $m \in M, 1 . m=m$, then M is called a unitary X module.

Definition 2.5. [1] A map $f: M \rightarrow N$, where M and N are X-modules, is an X-homomorphism if the following hold:
(i) $\quad f(m+n)=f(m)+f(n)$, for all $m, n \in M$,
(ii) $\quad f(x . m)=x \cdot f(m)$, for all $m \in M$ and $x \in X$.

Proposition 2.6. [3] Let M and N be two $B C K$-modules over commutative $B C K$-algebra X and $\operatorname{Hom}(M, N)=\{f: f$ is a homomorphism from M into $N\}$. Then $(\operatorname{Hom}(M, N),+)$ forms an abelian group where $(f+g)(m)=f(m)+g(m)$, for any $f, g \in \operatorname{Hom}(M, N)$ and $m \in M$. Moreover by operation • : $X \times$ $\operatorname{Hom}(M, N) \longrightarrow \operatorname{Hom}(M, N), \operatorname{Hom}(M, N)$ is an X-module, where $x \bullet f(m)=$ $x . f(m)$.

Theorem 2.7. [4] Let X be a bounded implicative BCK-algebra. Then $(X,+)$, is an abelian group and X is an X-module, where $x+y=(x * y) \vee(y * x)$.

Note. From now on, in this paper X is a $B C K$-algebra and M is an abelian group.

3. Extended $B C K$-Modules

Definition 3.8. Let operation. $: X \times M \longrightarrow M$ satisfies the following axioms:
$(X M 1) \quad(x \wedge y) \cdot m=x .(y . m)$,
(XM2) $\quad x .(m+n)=x . m+x . n$,
(XM3) $\quad 0 . m=0$,
$(X M 4) \quad(x * y) \cdot m=x \cdot m-y \cdot m$, where $x * y \neq 0$, for $x \neq y$,
for all $x, y \in X$ and $m, n \in M$. Then M is called an extended BCK-module or briefly X^{E}-module. If X is bounded and $1 . m=m$, for any $m \in M$, then M is called a unitary X^{E}-module.

Example 3.9. Let X be a bounded implicative $B C K$-algebra such that " \leq is totally ordered and operations " $+, . ": X \times X \longrightarrow X$ are defined by, $x+y=$ $(x * y) \vee(y * x), x . y=x \wedge y$, for all $x, y \in X$. Then X is an X^{E}-module. By Theorem 2.7, it is enough to show that $(x * y) . z=x . z-y . z$, for any $x, y, z \in X$, where $x * y \neq 0$ for $x \neq y$. If $x=y$, then the proof is clear. Now, let $x * y \neq 0$, for $x \neq y$. Since $x * y \neq 0, x \nless y$ and so $y \leqslant x$ and this means that $y * x=0$. Therefore,

$$
\begin{aligned}
(x * y) . z & =(x * y) \wedge z \\
& =(x * y+0) \wedge z, \quad \text { by Lemma } 2.3(\mathrm{vii}) \\
& =(x * y+y * x) \wedge z, \quad \text { since } y * x=0 \\
& =(x+y) \wedge z, \quad \text { by Lemma } 2.3(\mathrm{iv}) \\
& =(x \wedge z)+(y \wedge z) \quad \text { by Lemma } 2.3(\mathrm{v}), \\
& =x . z+y . z, \\
& =x . z-y . z, \quad \text { by Lemma } 2.3(\mathrm{vi})
\end{aligned}
$$

Example 3.10. (i) Let X be a bounded commutative $B C K$-algebra such that $(X,$.$) be an X^{E}$-module and A be an ideal of X. Then $\left(\frac{X}{A},+^{\prime}\right)$ is an abelian group, where $C_{x}+{ }^{\prime} C_{y}=C_{x+y}$ and $x+y=x * y \vee y * x$, for any $x, y \in X$. Moreover, if operation $\bullet: X \times \frac{X}{A} \longrightarrow \frac{X}{A}$ is defined by $x \bullet C_{y}=C_{x . y}$, for any $x, y \in X$, then $\frac{X}{A}$ is an X^{E}-module.
(ii) Let $X=\{0, x\}$ and operation " $*$ " on X is defined by $0 * x=0 * 0=x * x=0$ and $x * 0=x$. Then $(X, *, 0)$ is a $B C K$-algebra. Now, let operation . : $X \times \mathbb{Z} \longrightarrow \mathbb{Z}$ is defined by $x . n=n$ and $0 . n=0$, for any $n \in \mathbb{Z}$. We claim that \mathbb{Z} is an X^{E}-module. It is clear that $(x \wedge 0) \cdot n=0 . n=0, x \cdot(0 . n)=x .0=0$ and so $(x \wedge 0) . n=x .(0 . n)$. Similarly $(x \wedge x) . n=x \cdot(x \cdot n)$ and $(0 \wedge x) \cdot n=0 .(x \cdot n)$. Then (XM1) holds. The proof of (XM2) and (XM3) is clear. Moreover, since $(x * 0) . n=n=x . n-0 . n$ and $(x * x) . n=0=x . n-x . n,(X M 4)$ holds.
(iii) It is easy to see that $B C K$-algebra $(X, *, 0)$ in (ii) is bounded with unit x. Moreover, $(X,+)$ is an abelian group, where $a+b=(a * b) \vee(b * a)$, for any $a, b \in X$. Now, let operation.$: X \times X \longrightarrow X$ is defined by $a . b=a \wedge b$, for any $a, b \in X$. Then $(X,+)$ is an X^{E}-module.
(iv) Let $X=\{0, a, b, 1\}$ and operation " $*$ " on X is defined by

$*$	0	a	b	1
0	0	0	0	0
a	a	0	0	0
b	b	b	0	0
1	1	b	a	0

Then $(X, *, 0)$ is a bounded $B C K$-algebra. Let $M=\{0, a\} \subseteq X$. Then $(M,+)$ is an abelian group, where $x+y=(x * y) \vee(y * x)$, for any $x, y \in M$. We define the operation . : $X \times M \rightarrow M$ by

$$
x . y= \begin{cases}a, & \text { if } x=b \text { or } 1 \text { and } y=a \\ 0, & \text { otherwise }\end{cases}
$$

Then M is an X^{E}-module.
(v) Let $(X, *, 0)$ be a bounded $B C K$-algebra with unit $1,1 \neq a \in X$ and $1 * a=1$ or a. Now, if $Y=\{0, a, 1\}$, then Y is a subalgebra of X and so it is a $B C K$-algebra. Moreover, let $M=\{0,1\} \subseteq X$. Then $(M,+)$ is an abelian group, where $x+y=(x * y) \vee(y * x)$, for any $x, y \in M$. Now, let the operation .$: Y \times M \rightarrow M$ is defined by $y . m=y \wedge m$ for any $y \in Y$ and $m \in M$. Then M is a Y^{E}-module.
(vi) Let $X=\{0,1,2,3,4\}$ and the operation "*" is defined by

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	2	0	2	0
3	3	3	3	0	0
4	4	4	3	2	0

Then $(X, *, 0)$ is a bounded $B C K$-algebra. Let $Y=\{0,1,4\}$ and $M=\{0,2,3,4\}$. It is clear that Y is a subalgebra of X and so is $B C K$-algebra. It is easy to show that $(M,+)$ is an abelian group, where $x+y=(x * y) \vee(y * x)$, for any $x, y \in M$. Now, we define the operation $:: Y \times M \rightarrow M$ by $y . m=y \wedge m$, for any $y \in Y$ and $m \in M$. Then M is a Y^{E}-module.
(vii) Let $X=\{P,\{2\},\{1,2\}\}$ be a subset of $B C K$-algebra [7, Example 2.8]. Then it is easy to see that (X, \odot, P) is a $B C K$-algebra. If operation . : $X \times \mathbb{Z} \longrightarrow \mathbb{Z}$ is defined by $\{2\} . n=n$ and $\{1,2\} . n=P . n=0$, for any $n \in \mathbb{Z}$, then \mathbb{Z} is an $X^{E_{-}}$ module.

Theorem 3.11. Every X^{E}-module is an X-module.
Proof. The proof is clear.
Example 3.12. Let X be a nonempty set. Then $(\mathcal{P}(X),-)$ is a bounded implicative $B C K$-algebra and \mathbb{Z} is a $\mathcal{P}(X)$-module with operation . : $\mathcal{P}(X) \times \mathbb{Z} \longrightarrow \mathbb{Z}$ such that $A . n=\mu(A) n$, for any $A \subseteq X$, where for $a \in X$,

$$
\mu(A)= \begin{cases}0, & \text { if } a \notin A \\ 1, & \text { if } a \in A\end{cases}
$$

But \mathbb{Z} is not a $\mathcal{P}(X)^{E}$-module. Since for $A, B \in \mathcal{P}(X)$ such that $a \notin A, a \in B$, we have

$$
(A-B) \cdot n=\mu(A-B) n=0 \neq-n=0-n=A . n-B . n
$$

and so ($X M 4$) is not true.
Definition 3.13. A map $f: M \rightarrow N$, where M and N are X^{E}-modules, is called an X^{E}-homomorphism, if the following hold:
(i) $f(m+n)=f(m)+f(n)$,
(ii) $f(x . m)=x \cdot f(m)$, for all $m, n \in M$ and $x \in X$.

Proposition 3.14. Let M, N be two X^{E}-modules and

$$
\operatorname{Hom}(M, N)=\left\{f: f: M \rightarrow N \text { is an } X^{E}-\text { homomorphism }\right\} .
$$

Then $\left(\operatorname{Hom}(M, N)\right.$ is an X^{E}-module by the operation which is defined in Proposition 2.6.

Proof. By Proposition 2.6, it is enough to show that $(x * y) \bullet f(m)=x \bullet f(m)-$ $y \bullet f(m)$, for any $x, y \in X$, where $x * y \neq 0$, and $x \neq y$. Now, since N is an X^{E}-module, we have

$$
(x * y) \bullet f(m)=(x * y) . f(m)=x . f(m)-y . f(m)=x \bullet f(m)-y \bullet f(m) .
$$

Theorem 3.15. Let X be a bounded implicative BCK-algebra. Then, by the assumption of Example 3.9, $\left(\sum_{i \in I} X,+^{\prime}\right)$ is an abelian group, where $\left\{x_{i}\right\}_{i \in I}+^{\prime}$ $\left\{y_{i}\right\}_{i \in I}=\left\{x_{i}+y_{i}\right\}_{i \in I}$, for any $\left\{x_{i}\right\}_{i \in I},\left\{y_{i}\right\}_{i \in I} \in \sum_{i \in I} X$. Moreover, if the operation $\therefore X \times \sum_{i \in I} X \longrightarrow \sum_{i \in I} X$ is defined by $x .\left\{x_{i}\right\}=\left\{x \wedge x_{i}\right\}$, for any $x, x_{i} \in X, i \in \mathbb{N}$, then $\sum_{i \in I} X$ is an X^{E}-module.

Proof. Since by Theorem $2.7,(X,+)$ is an abelian group, then it is clear that $\left(\sum_{i \in I} X,+^{\prime}\right)$ is an abelian group.

Now, for any $x, y, x_{i}, y_{i} \in X$ and $i \in \mathbb{N}$, we have:
$(X M 1):(x \wedge y) .\left\{x_{i}\right\}=\left\{(x \wedge y) \wedge x_{i}\right\}=\left\{x \wedge\left(y \wedge x_{i}\right)\right\}=x .\left\{y \wedge x_{i}\right\}=x .\left(y .\left\{x_{i}\right\}\right)$. (XM2): By Lemma 2.3(v),

$$
\begin{aligned}
x \cdot\left(\left\{x_{i}\right\}+^{\prime}\left\{y_{i}\right\}\right) & =x \cdot\left\{x_{i}+y_{i}\right\}=\left\{x \wedge\left(x_{i}+y_{i}\right)\right\}=\left\{x \wedge x_{i}+x \wedge y_{i}\right\} \\
& =\left\{x \wedge x_{i}\right\}+^{\prime}\left\{x \wedge y_{i}\right\}=x \cdot\left\{x_{i}\right\}+^{\prime} x \cdot\left\{y_{i}\right\} .
\end{aligned}
$$

(XM3): $0 .\left\{x_{i}\right\}=\left\{0 \wedge x_{i}\right\}=\{0\}$.
(XM4): Let $x * y \neq 0$ for $x \neq y$. Then by Lemma 2.3(v) and (vi),

$$
\begin{aligned}
x .\left\{x_{i}\right\}-^{\prime} y \cdot\left\{x_{i}\right\} & =\left\{x \wedge x_{i}\right\}-^{\prime}\left\{y \wedge x_{i}\right\} \\
& =\left\{x \wedge x_{i}\right\}+^{\prime}\left\{y \wedge x_{i}\right\} \\
& =\left\{x \wedge x_{i}+y \wedge x_{i}\right\} \\
& =\left\{(x+y) \wedge x_{i}\right\} \\
& =(x+y) \cdot\left\{x_{i}\right\} \\
& =(x * y+y * x) \cdot\left\{x_{i}\right\} \\
& =(x * y+0) \cdot\left\{x_{i}\right\}=(x * y) \cdot\left\{x_{i}\right\} .
\end{aligned}
$$

Theorem 3.16. Let X be BCK-algebra in Theorem 3.15, and A be an ideal in X. Then $\left(\sum_{i \in I} \frac{X}{A}, \bar{\mp}\right)$ is an abelian group, where $\left\{C_{x_{i}}\right\} \mp\left\{C_{y_{i}}\right\}=\left\{C_{x_{i}+y_{i}}\right\}$ and $x_{i}+y_{i}=x_{i} * y_{i} \vee y_{i} * x_{i}$, for any $x_{i}, y_{i} \in X$ and $i \in I$. Moreover, if we define $\bullet: X \times \sum_{i \in I} \frac{X}{A} \longrightarrow \sum_{i \in I} \frac{X}{A}$ by $x \bullet\left\{C_{x_{i}}\right\}=\left\{C_{x \wedge x_{i}}\right\}$, then $\left(\sum_{i \in I} \frac{X}{A}\right)$ is an X^{E}-module.
Proof. It is easy to show that $\left(\sum_{i \in I} \frac{X}{A}, \overline{+}\right)$ is an abelian group and $\sum_{i \in I} \frac{X}{A}$ is an X^{E}-module.

Theorem 3.17. Let $(X, *)$ and (Y, \star) be two $B C K$-algebras, M be a Y^{E}-module and $\Phi: X \longrightarrow Y$ be a BCK-homomorphism such that $x \neq 0$ implies that $\phi(x) \neq 0$, for any $x \in X$. If operation $\bullet: X \times M \longrightarrow M$ is defined by $x \bullet m=$ $\phi(x) . m$, for any $x \in X$ and $m \in M$, then M is an X^{E}-module.

Proof. Let M be a Y^{E}-module and $\Phi: X \longrightarrow Y$ be a $B C K$-homomorphism such that $x \neq 0$ implies that $\phi(x) \neq 0$, for any $x \in X$. Then for any $x, y \in X$ and $m, n \in M$, we have:
$(X M 1)_{X}:$ By $(X M 1)_{Y}$, we have

$$
\begin{aligned}
(x \wedge y) \bullet m & =\phi(x \wedge y) \cdot m=\phi(y *(y * x)) \cdot m=(\phi(y) \star(\phi(y) \star \phi(x))) \cdot m, \\
& =(\phi(x) \wedge \phi(y)) \cdot m=\phi(x) \cdot(\phi(y) \cdot m)=x \bullet(y \bullet m) .
\end{aligned}
$$

$(X M 2)_{X}:$ By $(X M 2)_{Y}$, we have

$$
x \bullet(m+n)=\phi(x) \cdot(m+n)=\phi(x) \cdot m+\phi(x) \cdot n=x \bullet m+x \bullet n
$$

$(X M 3)_{X}: 0 \bullet m=\phi(0) \cdot m=0 . m=0$
$(X M 4)_{X}$: By $(X M 4)_{Y}$, where $x * y \neq 0$, for $x \neq y$ we have

$$
(x * y) \bullet m=\phi(x * y) \cdot m=(\phi(x) \star \phi(y)) \cdot m=\phi(x) \cdot m-\phi(y) \cdot m=x \bullet m-y \bullet m .
$$

Theorem 3.18. Let X be a bounded commutative BCK-algebra, $(X,+)$ be an X^{E}-module and A be an ideal of X. Then $\frac{X}{A}$ is an X^{E}-module.

Proof. Let X be a bounded commutative $B C K$-algebra, $(X,+)$ be an $X^{E_{-}}$ module and A be an ideal of X. It is easy to show that $\left(\frac{X}{A},+^{\prime}\right)$ is an abelian group, where $C_{x}+^{\prime} C_{y}=C_{x+y}$ and $x+y=(x * y) \vee(y * x)$, for any $x, y \in X$. Let operation $\bullet: X \times \frac{X}{A} \longrightarrow \frac{X}{A}$ is defined by $x \bullet C_{y}=C_{x . y}$, for any $x, y \in X$. Then we show that $\frac{X}{A}$ is an X^{E}-module. For $x, x^{\prime}, y \in X$,
$(X M 1)_{\frac{X}{A}}: \operatorname{By}(X M 1),\left(x \wedge x^{\prime}\right) \bullet C_{y}=C_{\left(x \wedge x^{\prime}\right) \cdot y}=C_{x .\left(x^{\prime} . y\right)}=x \bullet\left(x^{\prime} \bullet C_{y}\right)$
(XM2) ${ }_{\frac{x}{A}}:$ By (XM2),

$$
x \bullet\left(C_{x}+^{\prime} C_{y}\right)=x \bullet C_{y+y^{\prime}}=C_{x .\left(y+y^{\prime}\right)}=C_{x . y+x . y^{\prime}}=C_{x . y}+^{\prime} C_{x . y^{\prime}}=x \bullet C_{y}+^{\prime} x \bullet C_{y^{\prime}}
$$

$(X M 3)_{\frac{X}{A}}:$ By $(X M 3), 0 \bullet C_{x}=C_{0}$
$(X M 4)_{\frac{X}{A}}$: Let $x * y \neq 0$, for $x \neq y$. By (XM4),

$$
(x * y) \bullet C_{y^{\prime}}=C_{(x * y) \cdot y^{\prime}}=C_{x \cdot y^{\prime}-y \cdot y^{\prime}}=C_{x \cdot y^{\prime}}-^{\prime} C_{y \cdot y^{\prime}}=x \bullet C_{y^{\prime}}-^{\prime} y \bullet C_{y^{\prime}} .
$$

3. Prime submodules in X^{E}-modules

Definition 3.1. A subgroup N of X^{E}-module M is a submodule of M if for any $x \in X$ and any $n \in N, x . n \in N$.

Example 3.2. (i) By considering the Example 3.10 (ii), $2 \mathbb{Z}$ is a submodule of \mathbb{Z}.
(ii) Let X be a bounded implicative $B C K$-algebra with the assumption of Example 3.9, and $M_{r}=\{x \in X: x \leq r\}$, where $r \in X$. Then M_{r} is a submodule of X. First we show that M is a subgroup of X. Let $m, n \in M_{r}$. By assumption, $m * n=0$ or $n * m=0$. W.L.G, $n * m=0$. Hence, by Lemma 2.3(vi), $m-n=$ $m+n=(m * n) \vee(n * m)=(m * n) \vee 0=m * n$. On the other hand by $(B C K 6)$, $m * n \leq m$ and $m \leq r$. Hence $m * n \leq r$ and so $m-n \in M_{r}$. It means that M_{r} is a subgroup of X. Now, we will show that $x . m \in M_{r}$, for any $x \in X$ and $m \in M_{r}$. By (BCK4) and (BCK6), we have

$$
(x . m) * r=(x \wedge m) * r=(m *(m * x)) * r=(m * r) *(m * x)=0 *(m * x)=0
$$

Hence, $x . m \leq r$ and so $x . m \in M_{r}$. Therefore, M_{r} is a submodule of X.
Lemma 3.3. Let M be an X^{E}-module and N be a submodule of M. Then $\frac{M}{N}$ is an X^{E}-module.

Proof. Let N be a submodule of M and operation $\bullet: X \times \frac{M}{N} \longrightarrow \frac{M}{N}$ is defined by $x \bullet(m+N)=x . m+N$, for any $x \in X$ and $m \in M$. Let $x=y$ and $m+N=m^{\prime}+N$. Then $m-m^{\prime} \in N$. Since N is a submodule of $M, x .\left(m-m^{\prime}\right)=x . m-x . m^{\prime} \in N$ and so $x \bullet m+N=x \bullet m^{\prime}+N$. It means that $" \bullet$ " is well defined. For any $x, y \in X$ and $m, m^{\prime} \in M$, $(X M 1)_{\frac{M}{N}}: B y(X M 1)$,
$(x \wedge y) \bullet(m+N)=(x \wedge y) . m+N=x .(y . m)+N=x \bullet(y . m+N)=x \bullet(y \bullet(m+N))$ $(X M 2)_{\frac{M}{N}}:$ By $(X M 2)$,

$$
\begin{aligned}
x \bullet\left(m+N+m^{\prime}+N\right) & =x \cdot\left(m+m^{\prime}\right)+N=x \cdot m+x \cdot m^{\prime}+N \\
& =x \cdot m+N+x \cdot m^{\prime}+N=x \bullet(m+N)+x \bullet\left(m^{\prime}+N\right)
\end{aligned}
$$

$(X M 3)_{\frac{M}{N}}: B y(X M 3), 0 \bullet(m+N)=0 . m+N=N$
$(X M 4)_{\frac{M}{N}}$: Let $x * y \neq 0$, for $x \neq y$. By ($X M 4$),

$$
\begin{aligned}
(x * y) \bullet(m+N) & =(x * y) \cdot m+N=(x . m-y \cdot m)+N=x \cdot m+N-y \cdot m+N \\
& =x \bullet(m+N)-y \bullet(m+N) .
\end{aligned}
$$

Theorem 3.4. Let M, M^{\prime} be X^{E}-modules, $\phi: M \longrightarrow M^{\prime}$ be an X^{E}-homomorphism and N be a submodule of M such that $\phi(N)=0$. Then there exists an X^{E} homomorphism from $\frac{M}{N}$ to M^{\prime}.

Proof. We define $\bar{\phi}: \frac{M}{N} \longrightarrow M^{\prime}$ by $\bar{\phi}(m+N)=\phi(m)$. It is easy to show that $\bar{\phi}$ is well defined and it is an X^{E}-homomorphism.

Theorem 3.5. Let M, M^{\prime} be X^{E}-modules and $\phi: M \longrightarrow M^{\prime}$ be an X^{E}-homomorphism. Then
(i) Kerd and Imgф are submodules of M and M^{\prime}, respectively,
(ii) $\frac{M}{\operatorname{Ker} \phi} \simeq \operatorname{Img} \phi$.

Proof. (i) The proof is clear.
(ii) We know that, $\phi: M \longrightarrow I m g \phi$ is an epimorphism. Now, in Theorem 3.4, it is enough to consider $N=\operatorname{Ker} \phi$.

Theorem 3.6. Let M be an X^{E}-module and N, K are submodules of M. Then
(i) $N+K=\{n+k: n \in N, k \in K\}$ and $N \cap K$ are X^{E}-modules,
(ii) $\frac{K}{N \cap K} \simeq \frac{N+K}{N}$,
(iii) $\frac{K}{N}$ is a submodule of $\frac{M}{N}$ and $\frac{\frac{M}{N}}{\frac{K}{N}} \simeq \frac{M}{K}$, where $N \subseteq K$.

Proof. (i) $N+K$ is an X-module (see[3]). Now, let $x * y \neq 0$, where $x \neq y$, for any $x, y \in X$ and $n+k \in N+K$. Then,

$$
(x * y) \cdot(n+k)=(x * y) \cdot n+(x * y) \cdot k=x \cdot n-y \cdot n+x \cdot k-y \cdot k=x \cdot(n+k)-y \cdot(n+k)
$$

and so we have $(X M 4)_{N+K}$. Therefore, $N+K$ is an X^{E}-module. Moreover, $N \cap K$ is an X-module (see [3]) and it is not difficult to verify the condition $(X M 4)_{N \cap K}$. Hence $N \cap K$ is an X^{E}-module, too.
(ii), (iii) The proofs are easy.

Theorem 3.7. Let X be a bounded commutative $B C K$-algebra such that $x * y \neq x$, where $x \neq y$ for $x, y \neq 0, M$ be an X^{E}-module and K be a proper submodule of M. Then $(K: M)=\{x \in X: x . M \subseteq K\}$ is a prime ideal of X.
Proof. First, we show that $(K: M)$ is an ideal of X. If $(K: M)=X$, then 1. $M \subseteq K$ and so $M \subseteq K$, which is a contradiction. Since K is a subgroup of M, $0 . m=0 \in K$, for any $m \in M$ and so $0 \in(K: M)$. Now, for any $x, y \in X$, let $x * y \in(K: M)=\{x \in X: x . M \subseteq K\}$ and $y \in(K: M)$. Then $(x * y) . m \in K$ and $y . m \in K$, for any $m \in M$. If $x=y$ or $x=0$, then it is clear that $x . m \in M$. So let $x \neq y$. If $x * y=0$, then $x *(x * y)=x$ and so $x \wedge y=x$. Since $y . m \in K, x .(y . m) \in K$, for any $m \in M$ and K is a submodule of M and so $x \cdot m=(x \wedge y) . m \in K$. If $x * y \neq 0$, then by $(X M 4), x \cdot m-y \cdot m=(x * y) m \in K$. Since $(K,+)$ is a subgroup of M and $y . m \in K$, we have $x . m \in K$. Therefore, ($K: M$) is an ideal of X.

Now, we prove that $(K: M)$ is prime. Let $x \wedge y \in(K: M)$, for $x, y \in X$. Then for any $m \in M,(x \wedge y) . m \in K$ and so $(y *(y * x)) \cdot m \in K$. Now if $x=y$, then $x \cdot m=(x * 0) \cdot m=(x *(x * x)) \cdot m=(x \wedge y) \cdot m \in K$. If $x=0$ or $y=0$, then it is clear that $x \in(K: M)$ or $y \in(K: M)$. If $x \neq y, x, y \neq 0$ and $x * y=0$, then $x \cdot m=(x * 0) \cdot m=(x *(x * y)) \cdot m=(y \wedge x) \cdot m=(x \wedge y) \cdot m \in K$, for any $m \in M$. If $x \neq y, x, y \neq 0, x * y \neq 0, x \neq x * y$ and $x *(x * y) \neq 0$. Then by $(X M 4), y \cdot m=x \cdot m-(x \cdot m-y \cdot m)=x \cdot m-(x * y) \cdot m=x *(x * y) \cdot m=(y \wedge x) \cdot m=$ $(x \wedge y) . m \in K$, for any $m \in M$. Finally, if $x \neq y, x, y \neq 0, x * y \neq 0, x \neq x * y$ and $x *(x * y)=0$, then by $(B C K 6)$, we have $(x * y) * x=0$ and so $x=x * y$, which is a contradiction. Therefore, $(K: M)$ is a prime ideal of X.
Proposition 3.8. Let M be an X^{E}-module. If for any $x, y \in X, x \neq y$ implies that $x * y \neq 0$, then $\operatorname{Ann}_{X}(M)=\{x \in X: x . m=0, \forall m \in M\}$ is an ideal of X.
Proof. It is clear that $0 \in A n n_{X}(M)$. Now, let $x * y, y \in A n n_{X}(M)$ and $x \neq y$, for any $x, y \in X$. If $x=0$, then it is clear that $x \in A n n_{X}(M)$. Now, let $x \neq 0$. Then by $(X M 4), x \cdot m=x \cdot m-0=x \cdot m-y \cdot m=(x * y) \cdot m=0$, for any $m \in M$, and so $x \in A n n_{X}(M)$. Therefore, $A n n_{X}(M)$ is an ideal of X.
Theorem 3.9. Let M be an X^{E}-module and I be an ideal of X such that $I \subseteq A n n_{X}(M)$. If the operation $\bullet: X / I \times M \longrightarrow M$ is defined by $c_{x} \bullet m=x . m$, for any $x, y \in X$ and $m \in M$, then M is an $(X / I)^{E}$-module.

Proof. Let • : $X / I \times M \longrightarrow M$ is defined by $c_{x} \bullet m=x$. m, for any $x \in X$ and $m \in M$. First we prove that \bullet is well defined. Let $c_{x}=c_{y}, m=n$ and $x \neq y$, for all $x, y \in X$ and $m, n \in M$. Then $x * y \in I$ and $y * x \in I$. If $x * y=y * x=0$, then by $(B C K 5), x=y$, which is a contradiction. If $x * y \neq 0$ or $y * x \neq 0$, since $I \subseteq A n n_{X}(M)$, by $(X M 4), 0=(x * y) \cdot m=x \cdot m-y . m$ or $0=(y * x) \cdot m=y . m-x . m$ and so $x \cdot m=y . m$. Now, since $m=n, x \cdot m=y . n$. Hence, \bullet is well defined. Now, we will show that M is an $(X / I)^{E}$-module.
$(X M 1)_{X / I}$: We have $c_{x} \wedge c_{y}=c_{y} \star\left(c_{y} \star c_{x}\right)=c_{y *(y * x)}$, then by $(X M 1)_{X}$,

$$
\left(c_{x} \wedge c_{y}\right) \bullet m=\left(y *(y * x) \cdot m=(x \wedge y) \cdot m=x \cdot(y \cdot m)=c_{x} \bullet\left(c_{y} \bullet m\right)\right.
$$

$(X M 2)_{X / I}: \operatorname{By}(X M 2)_{X}$,

$$
c_{x} \bullet(m+n)=x .(m+n)=x . m+x . n=c_{x} \bullet m+c_{x} \bullet n .
$$

$(X M 3)_{X / I}: c_{0} \bullet m=0 . m=0$.
$(X M 4)_{X / I}$: Let $c_{x} \star c_{y} \neq c_{0}$, for $c_{x} \neq c_{y}$. Hence $c_{x * y} \neq c_{0}$. Since $0 *(x * y)=0 \in I$, $(x * y) * 0=x * y \notin I$ and so $x * y \neq 0$. Therefore, by $(X M 4)_{X}$,

$$
\left(c_{x} \star c_{y}\right) \bullet m=c_{x * y} \bullet m=(x * y) . m=x . m-y . m=c_{x} \bullet m-c_{y} \bullet m .
$$

Notion. For X^{E}-module $M, Y \subseteq X$ and submodule N of M, we consider

$$
Y . M=Y M=\{x . m: x \in Y, m \in M\} .
$$

Lemma 3.10. Let X be a commutative $B C K$-algebra, M be an X^{E}-module, N be a submodule of M and I be an ideal of X. Then

$$
I \cdot M+N=\left\{\sum_{i=1}^{n} t_{i} \cdot m_{i}+n: t_{i} \in I, m_{i} \in M, n \in N\right\}
$$

is a submodule of M.
Proof. Let N be a submodule of M and I be an ideal of X. It is clear that "+" is an associative operation in $I . M+N$ and $0 \in I . M+N$. Moreover, by ($X M 4$),

$$
\sum_{i=1}^{n} t_{i} \cdot m_{i}+n-\left(\sum_{i=1}^{n} t_{i} \cdot m_{i}+n\right)=\sum_{i=1}^{n}\left(t_{i} * t_{i}\right) \cdot m_{i}=0
$$

for any $\sum_{i=1}^{n} t_{i} \cdot m_{i}+n \in I . M+N$. Hence, every element in $I . M+N$ has an inverse element and so $I . M+N$ is a subgroup of M. Now, by (XM1) and (XM2),

$$
\begin{aligned}
x \cdot\left(\sum_{i=1}^{n} t_{i} \cdot m_{i}+n\right) & =\sum_{i=1}^{n} x \cdot\left(t_{i} \cdot m_{i}\right)+x \cdot n=\sum_{i=1}^{n}\left(x \wedge t_{i}\right) \cdot m_{i}+x \cdot n \\
& =\sum_{i=1}^{n}\left(t_{i} \wedge x\right) \cdot m_{i}+x \cdot n=\sum_{i=1}^{n} t_{i} \cdot\left(x \cdot m_{i}\right)+x \cdot n \in I \cdot M+N,
\end{aligned}
$$

for any $\sum_{i=1}^{n} t_{i} \cdot m_{i}+n \in I . M+N$ and $x \in X$. Therefore, $I . M+N$ is a submodule of M.

Theorem 3.11. Let X be a bounded BCK-algebra, I be a proper ideal of X and M be an X^{E}-module. Then $M / I M$ is an $(X / I)^{E}$-module.

Proof. Let I be a proper ideal of X and M be an X^{E}-module. By Lemma 3.10, $I M$ is a submodule of M. Now, we define $\bullet: X / I \times M / I M \longrightarrow M / I M$ by $c_{x} \bullet m+I M=x . m+I M$, for any $x \in X$ and $m \in M$. Since $I \bullet(M / I M)=$ $\{x \bullet(m+I M): x \in I, m \in M\}=\{x . m+I M: x \in I, m \in M\}=I M$, then $I \subseteq a n n_{X}(M / I M)$. By Lemma 3.9, " \bullet is well defined. Now, we show that $M / I M$ is an $(X / I)^{E}$-module, for any $x, y \in X$ and $m, n \in M$.
$(X M 1)_{X / I}:$ Since $\left(c_{x} \wedge c_{y}\right)=c_{y} \star\left(c_{y} \star c_{x}\right)=c_{y *(y * x)}$, by $(X M 1)_{X}$,

$$
\begin{aligned}
\left(c_{x} \wedge c_{y}\right) \bullet(m+I M) & =c_{y *(y * x)} \bullet(m+I M)=(y *(y * x)) \cdot m+I M, \\
& =(x \wedge y) \cdot m+I M=x \cdot(y \cdot m)+I M, \\
& =c_{x} \bullet(y \cdot m+I M)=c_{x} \bullet\left(c_{y} \bullet(m+I M)\right)
\end{aligned}
$$

$(X M 2)_{X / I}: \operatorname{By}(X M 2)_{X}$,

$$
\begin{aligned}
c_{x} \bullet((m+I M)+(n+I M)) & =c_{x} \bullet(m+n+I M)=x .(m+n)+I M \\
& =(x \cdot m+x . n)+I M,=x \cdot m+I M+x . n+I M \\
& =c_{x} \bullet(m+I M)+c_{x} \bullet(n+I M)
\end{aligned}
$$

$(X M 3)_{X / I}: c_{0} \bullet(m+I M)=0 . m+I M=0+I M=I M=0_{M / I M}$
$(X M 4)_{X / I}$: If $c_{x}=c_{y}$, then by $(X M 4)_{X}$,

$$
\begin{aligned}
\left(c_{x} \star c_{y}\right) \bullet(m+I M) & =c_{x * x} \bullet(m+I M)=c_{0} \bullet(m+I M) \\
& =0 . m+I M=(x * x) . m+I M, \\
& =x \cdot m+I M-x \cdot m+I M, \\
& =c_{x} \bullet(m+I M)-c_{x} \bullet(m+I M)
\end{aligned}
$$

Now, let $c_{x} \star c_{y} \neq 0$ where $c_{x} \neq c_{y}$. Then $c_{x * y} \neq c_{0}$ i.e., $(x * y) * 0=x * y \notin I$ and so $x * y \neq 0$. Hence, by $(X M 4)_{X}$,

$$
\begin{aligned}
\left(c_{x} \star c_{y}\right) \bullet(m+I M) & =c_{x * y} \bullet(m+I M)=(x * y) \cdot m+I M=(x \cdot m-y \cdot m)+I M, \\
& =x \cdot m+I M-y \cdot m+I M=c_{x} \bullet(m+I M)-c_{y} \bullet(m+I M)
\end{aligned}
$$

Therefore, $M / I M$ is an $(X / I)^{E}$-module.
Definition 3.12. Let M be an X^{E}-module and N be a submodule of M. Then N is called a prime submodule of M, if $N \neq M$ and for any $x \in X, x . m \in N$ implies that $m \in N$ or $x \in(N: M)$.

Example 3.13. By considering the Example 3.10 (ii), $2 \mathbb{Z}$ is a prime submodule of \mathbb{Z}. It is clear that $2 \mathbb{Z}$ is a subgroup of \mathbb{Z}. Now, let $x . n \in 2 \mathbb{Z}$. If $x \neq 0, x . n=n$, then $n \in 2 \mathbb{Z}$. If $x=0$, then $x . n=0 . n=0$ and so $0 \in(2 \mathbb{Z}: \mathbb{Z})$. Hence, $2 \mathbb{Z}$ is a prime submodule of \mathbb{Z}.

Theorem 3.14. Let X be a commutative $B C K$-algebra, M be an X^{E}-module and $N \neq M$ be a submodule of M. Then N is a prime submodule of M if and only if for any ideal I in X and for any submodule D of $M, I D \subseteq N$ implies that $I \subseteq(N: M)$ or $D \subseteq N$.

Proof. (\Rightarrow) Let N be a prime submodule of M, I be an ideal in X and D be a submodule of M such that $I D \subseteq N$. We show that $I \subseteq(N: M)$ or $D \subseteq N$. Let $I \nsubseteq(N: M)$ and $D \nsubseteq N$. Then there exist $x \in X$ and $d \in D$ such that $x . M \nsubseteq N$ and $d \notin N$. On the other hand, $I D \subseteq N$ implies that $x . d \in N$. Since N is a prime submodule of $M, x . M \subseteq N$, which is a contradiction.
(\Leftarrow) Let $x \in X$ and $m \in M$ such that $x . m \in N$ and $m \notin N$. Let $I=(x]=$ $\{y \in X: y * x=0\}$ and $D=\prec m \succ=\left\{y^{\prime} . m: y^{\prime} \in X\right\}$. For any $y \in I$, we have

$$
y \cdot m=(y * 0) \cdot m=y *(y * x) \cdot m=(x \wedge y) \cdot m=(y \wedge x) \cdot m=y \cdot(x \cdot m) \in N
$$

So $I D=\left\{y .\left(y^{\prime} . m\right): y, y^{\prime} \in X\right\}=\left\{y^{\prime} .(y . m): y, y^{\prime} \in X\right\} \subseteq N$ and so $I \subseteq(N: M)$ or $D \subseteq N$. Since $m \notin N, I \subseteq(N: M)$ and this implies that $x . M \subseteq N$. Therefore, N is a prime submodule of M.

Proposition 3.15. Let M be an X^{E}-module and N be a submodule of M. Then P is a prime submodule of M if and only if $\frac{P}{N}$ is a prime submodule of $\frac{M}{N}$, where $N \subseteq P$.

Proof. By Lemma 3.3, the proof is easy.
Definition 3.16. Let M be an X^{E}-module. M is called torsion free if $x . m=0$ implies that $m=0$ or $x=0$, for any $x \in X$ and $m \in M$.

Example 3.17. (i) In Example 3.10(ii), \mathbb{Z} is a torsion free.
(ii) In Example 3.10(iv), M is not a torsion free. Because, $a . a=0$ but $a \neq 0$.

Theorem 3.18. Let X be bounded, M be a unitary X^{E}-module and K be a submodule of M. Then K is a prime submodule of M if and only if $P=(K: M)$ is a prime ideal of X and $\frac{M}{K}$ is a torsion free $\left(\frac{X}{P}\right)^{E}$-module, where $\left(\frac{X}{P}, \star, P\right)$ is a quotient BCK-algebra.

Proof. (\Rightarrow) Let K be a prime submodule of M. By Theorem 3.7, $P=(K: M)$ is an ideal of X. If $X=(K: M)$, then $1 \in P$ and so $M=K$, which is a contradiction. Now, let $x \wedge y \in P$, for any $x, y \in X$. Then for any $m \in M$, $(x \wedge y) . m \in K$ and so by $(X M 1), x .(y . m) \in K$. Since K is a prime submodule of M, we have $y . m \in K$ or $x \in(K: M)$. It means that $y \in(K: M)$ or
$x \in(K: M)$. Hence, $(K: M)$ is a prime ideal. Now, we show that $\frac{M}{K}$ is a torsion free $\left(\frac{X}{P}\right)^{E}$-module. Let the operation $\bullet: \frac{X}{P} \times \frac{M}{K} \longrightarrow \frac{M}{K}$ is defined by $c_{x} \bullet(m+K)=x . m+K$, for any $x \in X, m \in M$. Similar to the proof of Theorem $3.9, \bullet$ is well defined. Finally, for any $c_{x} \in \frac{X}{P}$ and $m+K \in \frac{M}{K}$, we will show that, $c_{x} \bullet(m+K)=K$ implies that $c_{x}=c_{0}$ or $m+K=K$. Let $c_{x} \bullet(m+K)=K$, for any $x \in X$ and $m \in M$. Then $x . m+K=K$ and so $x . m \in K$. Since K is a prime submodule of $M, m \in K$ or $x \in(K: M)$. If $m \in K$, then $m+K=K$. Now, if $x \in(K: M)=P$, then $c_{x}=c_{0}=P$ (because $x * 0=x \in P$ and $\left.0 * x=0 \in P\right)$. Therefore, $\frac{M}{K}$ is a torsion free.
(\Leftarrow) Let P be a prime ideal in X and $\frac{M}{K}$ is a torsion free $\left(\frac{X}{P}\right)^{E}$-module.
First we show that $K \varsubsetneqq M$. Since, if $K=M, P=(K: M)=(M: M)=X$, which is a contradiction. Now, let $x . m \in K$, for any $x \in X, m \in M$. Hence $x . m+K=K$ and so $c_{x} \bullet(m+K)=K$. Since $\frac{M}{K}$ is torsion free, $c_{x}=c_{0}=P$ or $m+K=K$. This means that $x \in P$ or $m \in K$. Therefore, K is a prime submodule of M.

Theorem 3.19. Let X be a bounded commutative BCK-algebra, M be a unitary X^{E}-module, N be a submodule of M and P be a prime ideal of X. Then $K(N, P)=\{m \in M: c . m \in P . M+N, \exists c \in X-P\}$ is a submodule of M and $P . M+N \subseteq K(N, P)$.

Proof. First, we show that $K(N, P)$ is a subgroup of M. Let $m, n \in K(N, P)$. Then there exists $c, c^{\prime} \in X-P$ such that $c . m, c^{\prime} . n \in P . M+N$. Let $t=c \wedge c^{\prime}$. Then

$$
\begin{aligned}
t .(m-n) & =\left(c \wedge c^{\prime}\right) \cdot(m-n), \\
& =c \cdot\left(c^{\prime} \cdot(m-n)\right) \quad \text { by } \quad(X M 1) \\
& =c \cdot\left(c^{\prime} \cdot m-c^{\prime} \cdot n\right), \quad \text { by } \quad(X M 2) \\
& =c \cdot\left(c^{\prime} \cdot m\right)-c \cdot\left(c^{\prime} \cdot n\right) \quad \text { by }(X M 2) \\
& =\left(c \wedge c^{\prime}\right) \cdot m-c \cdot\left(c^{\prime} \cdot n\right), \quad \text { by } \quad(X M 1) \\
& =\left(c^{\prime} \wedge c\right) \cdot m-c .\left(c^{\prime} \cdot n\right) \\
& =c^{\prime} \cdot(c \cdot m)-c .\left(c^{\prime} \cdot n\right) \in P \cdot M+N, \quad \text { by Lemma } 3.10 .
\end{aligned}
$$

and so $m-n \in K(N, P)$, which means that $K(N, P)$ is a subgroup. Now, let $x \in X$ and $m \in K(N, P)$. Since $m \in K(N, P)$, there exists $c \in X-P$ such that $c . m \in P . M+N$. Now, by Lemma 3.10,

$$
c .(x \cdot m)=(c \wedge x) \cdot m=(x \wedge c) \cdot m=x .(c . m) \in P \cdot M+N
$$

Hence, $x . m \in K(N, P)$ and so $K(N, P)$ is a submodule of M. Finally, for any $m \in P . M+N$, if we let $c=1$ then $c . m=1 . m=m \in P . M+N$, then $m \in K(N, P)$
(note that $1 \in X-P$, otherwise for any $x \in X, x * 1=0 \in P$ and $1 \in P$ results in $x \in P$ i.e., $X=P$, which is impossible). Therefore, $P . M+N \subseteq K(N, P)$.
Theorem 3.20. Let X be a bounded commutative BCK-algebra, M be a unitary X^{E}-module, N be a submodule of M and P be a prime ideal of X. Then $K(N, P)=M$ or $K(N, P)$ is a prime submodule of M such that

$$
P=(K(N, P): M)
$$

Proof. Let $K(N, P) \neq M$. We will show that $K(N, P)$ is a prime submodule of M and $P=(K(N, P): M)$. By Theorem 3.19, $K(N, P)$ is a submodule of M. Let $x . m \in K(N, P)$, for any $x \in X, m \in M$. Then there exists $c \in X-P$ such that $c .(x . m) \in P . M+N$. We will show that $m \in K(N, P)$ or $x \in(K(N, P): M)$. If $x \in P$, then $x . M \subseteq P . M+N \subseteq K(N, P)$ and so $x . M \subseteq K(N, P)$. Hence $x \in(K(N, P): M)$. If $x \notin P$, then $x \in X-P$. Since P is a prime ideal of X, $c \wedge x \in X-P$. because, if $c \wedge x \in P$, then $c \in P$ or $x \in P$, which is a contradiction. On the other hand, $c .(x . m) \in P . M+N$ and so $(c \wedge x) . m \in P . M+N$. Hence, $m \in K(N, P)$. Therefore, $K(N, P)$ is a prime submodule of M. Now, we will prove that $P=(K(N, P): M)$. Let $p \in P$. Then for any $m \in M, p . m \in P . M+N$. Let $c=1$. Then $c .(p . m) \in P . M+N$ and so $p . m \in K(N, P)$, which implies that $P . M \subseteq K(N, P)$. Hence, $P \subseteq(K(N, P): M)$. Now, let $q \in(K(N, P): M)$ such that $q \notin P$. Since $q \cdot M \subseteq K(N, P), q \cdot m \in K(N, P)$, for any $m \in M$. Hence there exists $c \in X-P$ such that $c .(q . t) \in P . M+N$ and so $(c \wedge q) . t \in P . M+N$. Now, since P is prime, $c \wedge q \notin P$ i.e., $c \wedge q \in X-P$ and so $t \in K(N, P)$. Hence, $M=K(N, P)$, which is a contradiction. Then $q \in P$ and so $(K(N, P): M) \subseteq P$. Therefore, $P=(K(N, P): M)$.
Definition 3.21. Let M be an X^{E}-module and N be a submodule of M. The intersection of all prime submodules of M, including N, is called radical of N and it is shown by $\operatorname{rad}_{M}(N)$. If there exists no prime submodule of M consisting of N , then we let $\operatorname{rad}_{M}(N)=M$.
Theorem 3.22. Let X be a bounded commutative BCK-algebra and M be an X^{E}-module. Then for any submodule N of M,

$$
\operatorname{rad}_{M}(N)=\bigcap\{K(N, P): P \text { is a prime ideal of } X\} .
$$

Proof. Let $T=\bigcap\{K(N, P): P$ is a prime ideal of $X\}$ and $m \in T$. Let L be a prime submodule of M including of N. Hence, by Theorem 3.7, $Q=(L: M)$ is a prime ideal of X. Since for any prime ideal P of $X, m \in K(N, P), m \in K(N, Q)$ and so there exists $c \in X-Q$ such that $c \cdot m \in Q \cdot M+N=(L: M) \cdot M+$ $N \subseteq L+L \subseteq L$. Since L is a prime submodule of M and $c \notin Q=(L: M)$, $m \in L$. Hence $T \subseteq \operatorname{rad}_{M}(N)$. Now, let $m \in \operatorname{rad}_{M}(N)$. Hence, $m \in L$, where L is any prime submodule of M consisting of N and P be a prime ideal of X . If $K(N, P)=M$, then the proof is complete. Let $K(N, P) \neq M$. By Theorem 3.20, $K(N, P)$ is a prime submodule of M and $P=(K(N, P): M)$. Now, we show that $N \subseteq K(N, P)$. By Theorem 3.19, we have $P . M+N \subseteq K(N, P)$ and so $N \subseteq K(N, P)$. Since $m \in \operatorname{rad}_{M}(N)$, then $m \in K(N, P)$. Hence $m \in T$ and so $\operatorname{rad}_{M}(N) \subseteq T$. Therefore, $\operatorname{rad}_{M}(N)=T$.

References

[1] Abujabal, H.A.S., Obaid, M.A., Aslam, M., Thaheem, A.B., On annihilators of BCK-algebras, Czechoslovak Mathematical Journal, 45 (4) (1995), 727-735.
[2] Abojabal, H.A.S., Aslam, M., Thaheem, A.B., On actions of BCKalgebras on groups, Panamarican Mathematical Journal, 4 (1994), 727-735.
[3] Baig, I., Aslam, M., On certain BCK-modules, Southcast Asian Bulletin Of Mathematics, 34 (2010), 1-10.
[4] Borzooei, R.A., Shohani, J., Jafari, M., Extended BCK-module, World Applied Sciences Journal, 14 (2011), 1843-1850.
[5] Hangerford, T.W., Algebra, Springer-Verlag, 1974.
[6] Heubo-Kwegna, O., Nganou, J.B., A Global Local Principle for BCKmodules, International Journal of Algebra, 5 (14) (2011), 691-702.
[7] Jun, Y.B., Leek.J., Park, C.H., A method to make BCK-algebras, Communications of the Korean Mathematical Socity, 22 (4) (2007), 503-508.
[8] Kôpka, F., Chovanec, F., D-Posets, Mathematica Slovaca, 44 (1994), 21-34.
[9] Meng, J., Jun, Y.B., BCK-algebras, Kyungmoon Sa Co, Korea, 1994.
[10] Sharp, R.Y., Steps in Commutative Algebra, London Mathematical Society student Texts 19, Cambridge University Press, 1990.
[11] Yilmoz, D.P., Smith, P.F., Radicals of submodules of free modules, Communication Algebra, 27 (5) (1991), 2253-2266.

Accepted: 09.09.2014

