
italian journal of pure and applied mathematics – n. 33−2014 (433−448) 433

PRIME SUBMODULES IN EXTENDED BCK-MODULE

R.A. Borzooei

Department of Mathematics
Shahid Beheshti University
Tehran
Iran
e-mail: borzooei@sbu.ac.ir

S. Saidi Goraghani

Department of Mathematics
Islamic Azad University of Central Tehran Branch
Tehran
Iran
e-mail: SiminSaidi@yahoo.com

Abstract. In this paper, by considering the notion of BCK-module, we define the
concept of extended BCK-module which is a generalization of BCK-module and we
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1. Introduction

The notion of BCK-algebra was formulated first in 1966 by Imai and Iseki. This
notion is originated from two different ways. One of the motivations is based on
set theory. Another motivation is from classical and non-classical propositional
calculus. The notion of BCK-module was introduced in 1994 [2] as an action of a
BCK-algebra over a commutative group by M. Aslam, A.B. Thaheem and H.A.S.
Abujaabal. The idea was further explored in 1994 by F. Kôpka and F. Chovanec
[8]. The concept of BCK-module was extended by R. A. Borzooei, J. Shohani
and M. Jafari in 2011 [4]. Now, we introduce a different extended BCK-module
that we can obtain some interesting results by it. Since the notion of prime-
submodule is fundamental notion in modules theory, in this paper we introduce
and investigate it on BCK-modules and we obtain some results as mentioned in
the abstract.
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2. Preliminaries

Definition 2.1. [9] A BCK-algebra is a structure X = (X, ∗, 0) of type (2, 0)
such that:
(BCK1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(BCK2) (x ∗ (x ∗ y)) ∗ y = 0,

(BCK3) x ∗ x = 0,

(BCK4) 0 ∗ x = 0,

(BCK5) x ∗ y = y ∗ x = 0 implies that x = y,for all x, y, z ∈ X.

The relation x ≤ y which is defined by x ∗ y = 0 is a partial order with 0 as least
element. In any BCK-algebra X, for all x, y, z ∈ X, we have

(BCK6) x ∗ y ≤ x, (x ∗ y) ∗ z = (x ∗ z) ∗ y.

Definition 2.2. [9] Let (X, ∗, 0) be a BCK-algebra. Then

(i) ∅ 6= X0 ⊆ X is called to be a subalgebra of X, if for any x, y ∈ X0, x∗y ∈ X0,

(ii) ∅ 6= I ⊆ X is called an ideal of X, if 0 ∈ I and for any x, y ∈ X, x ∗ y ∈ I
and y ∈ I, implies that x ∈ I. Specially, generated ideal by x is defined by
(x] = {y ∈ X : y ∗ x = 0}, for any x ∈ X,

(iii) X is called bounded, if there exists 1 ∈ X such that x ≤ 1, for any x ∈ X.
In this case, we set Nx = 1 ∗ x,

(iv) X is said to be commutative, if y ∗ (y ∗ x) = x ∗ (x ∗ y), for all x, y ∈ X,

(v) proper ideal I of X, is called prime ideal if X is commutative and a∧ b ∈ I
implies that a ∈ I or b ∈ I, for any a, b ∈ X,

(iv) X is said to be implicative if x ∗ (y ∗ x) = x, for all x, y ∈ X.

Note. In a BCK-algebra X, we let x ∧ y = y ∗ (y ∗ x) and in a bounded BCK-
algebra X, we let x ∨ y = N(Nx ∧ Ny), for all x, y ∈ X. Moreover, in bounded
commutative BCK-algebra, x∧ y is the least upper bound and x∨ y is the grate
lower bound of x, y, for any x, y ∈ X and so (L,∨,∧) is a bounded lattice.

Lemma 2.3. [9] Let X be a bounded implicative BCK-algebra. Then for all
x, y, z ∈ X,

(i) x ∧ y = x ∗Ny,

(ii) x ∗ (x ∧ y) = x ∗ y,

(iii) x ∧ (y ∗ z) = (x ∧ y) ∗ (x ∧ z),

(iv) (x ∗ y) + (y ∗ x) = x + y, where x + y = (x ∗ y) ∨ (y ∗ x),

(v) (x + y) ∧ z = (x ∧ z) + (y ∧ z),

(vi) x + x = 0 and so x = −x,

(vii) x + 0 = 0 + x = x.
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Let A be an ideal of BCK-algebra X. For any x, y ∈ X, we define x ∼ y
if and only if x ∗ y ∈ A and y ∗ x ∈ A. So ∼ is an equivalence relation on X.
Denote the equivalence class containing x by Cx and X

A
= {Cx : x ∈ X}. Then(

X
A

, ∗, C0

)
is a BCK-algebra (quotient BCK-algebra), where Cx ? Cy = Cx∗y, for

all x, y ∈ X. Moreover, the relation ” ≤ ” which is defined by, Cx ≤ Cy if and only
if x ∗ y ∈ A, is a partial order relation. If X is bounded and commutative, then
X
A

is bounded and commutative, too. Let (X, ∗, 0) and (Y, ∗′, 0) be two BCK-
algebras. A mapping f : X → Y is called a homomorphism if f(0) = 0 and
f(x ∗ y) = f(x) ∗′ f(y), for any x, y ∈ X (see [9]).

Definition 2.4. [1] Let X be a BCK-algebra, M be an abelian group under ”+”
and (x,m) → x.m be a mapping of X ×M −→ M such that,

(XM1) (x ∧ y).m = x.(y.m),

(XM2) x.(m + n) = x.m + x.n,

(XM3) 0.m = 0, for all x, y ∈ X and m,n ∈ M .

Then M is called a BCK-module or briefly X-module. If X is bounded and for
any m ∈ M , 1.m = m, then M is called a unitary X module.

Definition 2.5. [1] A map f : M → N , where M and N are X-modules, is an
X-homomorphism if the following hold:
(i) f(m + n) = f(m) + f(n), for all m,n ∈ M ,

(ii) f(x.m) = x.f(m), for all m ∈ M and x ∈ X.

Proposition 2.6. [3] Let M and N be two BCK-modules over commutative
BCK-algebra X and Hom(M,N) = {f : f is a homomorphism from M into N}.
Then (Hom(M, N), +) forms an abelian group where (f + g)(m) = f(m) + g(m),
for any f, g ∈ Hom(M, N) and m ∈ M . Moreover by operation • : X ×
Hom(M, N) −→ Hom(M,N), Hom(M,N) is an X-module, where x • f(m) =
x.f(m).

Theorem 2.7. [4] Let X be a bounded implicative BCK-algebra. Then (X, +),
is an abelian group and X is an X-module, where x + y = (x ∗ y) ∨ (y ∗ x).

Note. From now on, in this paper X is a BCK-algebra and M is an abelian
group.

3. Extended BCK-Modules

Definition 3.8. Let operation . : X ×M −→ M satisfies the following axioms:

(XM1) (x ∧ y).m = x.(y.m),

(XM2) x.(m + n) = x.m + x.n,

(XM3) 0.m = 0,

(XM4) (x ∗ y).m = x.m− y.m, where x ∗ y 6= 0, for x 6= y,
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for all x, y ∈ X and m,n ∈ M . Then M is called an extended BCK-module or
briefly XE-module. If X is bounded and 1.m = m, for any m ∈ M , then M is
called a unitary XE-module.

Example 3.9. Let X be a bounded implicative BCK-algebra such that ”≤”
is totally ordered and operations ”+,.”:X × X −→ X are defined by, x + y =
(x ∗ y) ∨ (y ∗ x), x.y = x ∧ y, for all x, y ∈ X. Then X is an XE-module. By
Theorem 2.7, it is enough to show that (x ∗ y).z = x.z − y.z, for any x, y, z ∈ X,
where x ∗ y 6= 0 for x 6= y. If x = y, then the proof is clear. Now, let x ∗ y 6= 0,
for x 6= y. Since x ∗ y 6= 0, x 
 y and so y 6 x and this means that y ∗ x = 0.
Therefore,

(x ∗ y).z = (x ∗ y) ∧ z,

= (x ∗ y + 0) ∧ z, by Lemma 2.3(vii) ,

= (x ∗ y + y ∗ x) ∧ z, since y ∗ x = 0,

= (x + y) ∧ z, by Lemma 2.3(iv),

= (x ∧ z) + (y ∧ z), by Lemma 2.3(v),

= x.z + y.z,

= x.z − y.z, by Lemma 2.3(vi).

Example 3.10. (i) Let X be a bounded commutative BCK-algebra such that

(X, .) be an XE-module and A be an ideal of X. Then

(
X

A
, +′

)
is an abelian

group, where Cx+′Cy = Cx+y and x+y = x∗y∨y∗x, for any x, y ∈ X. Moreover,

if operation • : X × X

A
−→ X

A
is defined by x •Cy = Cx.y, for any x, y ∈ X, then

X

A
is an XE-module.

(ii) Let X = {0, x} and operation ”∗” on X is defined by 0∗x = 0∗0 = x∗x = 0
and x∗0 = x. Then (X, ∗, 0) is a BCK-algebra. Now, let operation . : X×Z −→ Z
is defined by x.n = n and 0.n = 0, for any n ∈ Z. We claim that Z is an
XE-module. It is clear that (x ∧ 0).n = 0.n = 0, x.(0.n) = x.0 = 0 and so
(x ∧ 0).n = x.(0.n). Similarly (x ∧ x).n = x.(x.n) and (0 ∧ x).n = 0.(x.n).
Then (XM1) holds. The proof of (XM2) and (XM3) is clear. Moreover, since
(x ∗ 0).n = n = x.n− 0.n and (x ∗ x).n = 0 = x.n− x.n, (XM4) holds.

(iii) It is easy to see that BCK-algebra (X, ∗, 0) in (ii) is bounded with unit
x. Moreover, (X, +) is an abelian group, where a + b = (a ∗ b) ∨ (b ∗ a), for any
a, b ∈ X. Now, let operation . : X ×X −→ X is defined by a.b = a ∧ b, for any
a, b ∈ X. Then (X, +) is an XE-module.

(iv) Let X = {0, a, b, 1} and operation ” ∗ ” on X is defined by
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∗ 0 a b 1
0 0 0 0 0
a a 0 0 0
b b b 0 0
1 1 b a 0

Then (X, ∗, 0) is a bounded BCK-algebra. Let M = {0, a} ⊆ X. Then (M, +) is
an abelian group, where x + y = (x ∗ y)∨ (y ∗ x), for any x, y ∈ M . We define the
operation . : X ×M → M by

x.y =

{
a, if x = b or 1 and y = a
0, otherwise

Then M is an XE-module.

(v) Let (X, ∗, 0) be a bounded BCK-algebra with unit 1, 1 6= a ∈ X and
1 ∗ a = 1 or a. Now, if Y = {0, a, 1}, then Y is a subalgebra of X and so it
is a BCK-algebra. Moreover, let M = {0, 1} ⊆ X. Then (M, +) is an abelian
group, where x + y = (x ∗ y) ∨ (y ∗ x), for any x, y ∈ M . Now, let the operation
. : Y ×M → M is defined by y.m = y ∧m for any y ∈ Y and m ∈ M . Then M
is a Y E-module.

(vi) Let X = {0, 1, 2, 3, 4} and the operation ” ∗ ” is defined by

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 3 2 0

Then (X, ∗, 0) is a bounded BCK-algebra. Let Y = {0, 1, 4} and M = {0, 2, 3, 4}.
It is clear that Y is a subalgebra of X and so is BCK-algebra. It is easy to show
that (M, +) is an abelian group, where x + y = (x ∗ y)∨ (y ∗ x), for any x, y ∈ M .
Now, we define the operation . : Y ×M → M by y.m = y ∧m, for any y ∈ Y and
m ∈ M . Then M is a Y E-module.

(vii) Let X = {P, {2}, {1, 2}} be a subset of BCK-algebra [7, Example 2.8].
Then it is easy to see that (X,¯, P ) is a BCK-algebra. If operation . : X×Z −→ Z
is defined by {2}.n = n and {1, 2}.n = P.n = 0, for any n ∈ Z, then Z is an XE-
module.

Theorem 3.11. Every XE-module is an X-module.

Proof. The proof is clear.

Example 3.12. Let X be a nonempty set. Then (P(X),−) is a bounded implica-
tive BCK-algebra and Z is a P(X)-module with operation . : P(X) × Z −→ Z
such that A.n = µ(A)n, for any A ⊆ X, where for a ∈ X,

µ(A) =

{
0, if a /∈ A
1, if a ∈ A
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But Z is not a P(X)E-module. Since for A,B ∈ P(X) such that a /∈ A, a ∈ B,
we have

(A−B).n = µ(A−B)n = 0 6= −n = 0− n = A.n−B.n

and so (XM4) is not true.

Definition 3.13. A map f : M → N , where M and N are XE-modules, is called
an XE-homomorphism, if the following hold:

(i) f(m + n) = f(m) + f(n),

(ii) f(x.m) = x.f(m), for all m,n ∈ M and x ∈ X.

Proposition 3.14. Let M, N be two XE-modules and

Hom(M, N) = {f : f : M → N is an XE − homomorphism}.

Then (Hom(M, N) is an XE-module by the operation which is defined in Propo-
sition 2.6.

Proof. By Proposition 2.6, it is enough to show that (x ∗ y) • f(m) = x • f(m)−
y • f(m), for any x, y ∈ X, where x ∗ y 6= 0, and x 6= y. Now, since N is an
XE-module, we have

(x ∗ y) • f(m) = (x ∗ y).f(m) = x.f(m)− y.f(m) = x • f(m)− y • f(m).

Theorem 3.15. Let X be a bounded implicative BCK-algebra. Then, by the

assumption of Example 3.9,

(∑
i∈I

X, +′
)

is an abelian group, where {xi}i∈I +′

{yi}i∈I = {xi +yi}i∈I , for any {xi}i∈I , {yi}i∈I ∈
∑
i∈I

X. Moreover, if the operation

. : X ×
∑
i∈I

X −→
∑
i∈I

X is defined by x.{xi} = {x∧xi}, for any x, xi ∈ X, i ∈ N,

then
∑
i∈I

X is an XE-module.

Proof. Since by Theorem 2.7, (X, +) is an abelian group, then it is clear that(∑
i∈I

X, +′
)

is an abelian group.

Now, for any x, y, xi, yi ∈ X and i ∈ N, we have:

(XM1): (x ∧ y).{xi} = {(x ∧ y) ∧ xi} = {x ∧ (y ∧ xi)} = x.{y ∧ xi} = x.(y.{xi}).
(XM2): By Lemma 2.3(v),

x.({xi}+′ {yi}) = x.{xi + yi} = {x ∧ (xi + yi)} = {x ∧ xi + x ∧ yi}
= {x ∧ xi}+′ {x ∧ yi} = x.{xi}+′ x.{yi}.
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(XM3): 0.{xi} = {0 ∧ xi} = {0}.
(XM4): Let x ∗ y 6= 0 for x 6= y. Then by Lemma 2.3(v) and (vi),

x.{xi} −′ y.{xi} = {x ∧ xi} −′ {y ∧ xi}
= {x ∧ xi}+′ {y ∧ xi}
= {x ∧ xi + y ∧ xi}
= {(x + y) ∧ xi}
= (x + y).{xi}
= (x ∗ y + y ∗ x).{xi}
= (x ∗ y + 0).{xi} = (x ∗ y).{xi}.

Theorem 3.16. Let X be BCK-algebra in Theorem 3.15, and A be an ideal

in X. Then

(∑
i∈I

X

A
, +̄

)
is an abelian group, where {Cxi

}+̄{Cyi
} = {Cxi+yi

}
and xi + yi = xi ∗ yi ∨ yi ∗ xi, for any xi, yi ∈ X and i ∈ I. Moreover, if we

define • : X ×
∑
i∈I

X

A
−→

∑
i∈I

X

A
by x • {Cxi

} = {Cx∧xi
}, then

(∑
i∈I

X

A

)
is an

XE-module.

Proof. It is easy to show that

(∑
i∈I

X

A
, +̄

)
is an abelian group and

∑
i∈I

X

A
is an

XE-module.

Theorem 3.17. Let (X, ∗) and (Y, ?) be two BCK-algebras, M be a Y E-module
and Φ : X −→ Y be a BCK-homomorphism such that x 6= 0 implies that
φ(x) 6= 0, for any x ∈ X. If operation • : X ×M −→ M is defined by x •m =
φ(x).m, for any x ∈ X and m ∈ M , then M is an XE-module.

Proof. Let M be a Y E-module and Φ : X −→ Y be a BCK-homomorphism
such that x 6= 0 implies that φ(x) 6= 0 , for any x ∈ X. Then for any x, y ∈ X
and m,n ∈ M , we have:

(XM1)X : By (XM1)Y , we have

(x ∧ y) •m = φ(x ∧ y).m = φ(y ∗ (y ∗ x)).m = (φ(y) ? (φ(y) ? φ(x))).m,

= (φ(x) ∧ φ(y)).m = φ(x).(φ(y).m) = x • (y •m).

(XM2)X : By (XM2)Y , we have

x • (m + n) = φ(x).(m + n) = φ(x).m + φ(x).n = x •m + x • n

(XM3)X : 0 •m = φ(0).m = 0.m = 0

(XM4)X : By (XM4)Y , where x ∗ y 6= 0, for x 6= y we have

(x ∗ y) •m = φ(x ∗ y).m = (φ(x) ?φ(y)).m = φ(x).m−φ(y).m = x •m− y •m.
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Theorem 3.18. Let X be a bounded commutative BCK-algebra, (X, +) be an
XE-module and A be an ideal of X. Then X

A
is an XE-module.

Proof. Let X be a bounded commutative BCK-algebra, (X, +) be an XE-

module and A be an ideal of X. It is easy to show that

(
X

A
, +′

)
is an abelian

group, where Cx +′ Cy = Cx+y and x + y = (x ∗ y)∨ (y ∗ x), for any x, y ∈ X. Let

operation • : X × X

A
−→ X

A
is defined by x • Cy = Cx.y, for any x, y ∈ X. Then

we show that
X

A
is an XE-module. For x, x′, y ∈ X,

(XM1)X
A
: By (XM1), (x ∧ x′) • Cy = C(x∧x′).y = Cx.(x′.y) = x • (x′ • Cy)

(XM2)X
A
: By (XM2),

x•(Cx+′Cy) = x•Cy+y′ = Cx.(y+y′) = Cx.y+x.y′ = Cx.y+
′Cx.y′ = x•Cy+′x•Cy′

(XM3)X
A
: By (XM3), 0 • Cx = C0

(XM4)X
A
: Let x ∗ y 6= 0, for x 6= y. By (XM4),

(x ∗ y) • Cy′ = C(x∗y).y′ = Cx.y′−y.y′ = Cx.y′ −′ Cy.y′ = x • Cy′ −′ y • Cy′ .

3. Prime submodules in XE-modules

Definition 3.1. A subgroup N of XE-module M is a submodule of M if for any
x ∈ X and any n ∈ N , x.n ∈ N .

Example 3.2. (i) By considering the Example 3.10 (ii), 2Z is a submodule of Z.

(ii) Let X be a bounded implicative BCK-algebra with the assumption of Exam-
ple 3.9, and Mr = {x ∈ X : x ≤ r}, where r ∈ X. Then Mr is a submodule of
X. First we show that M is a subgroup of X. Let m,n ∈ Mr. By assumption,
m ∗ n = 0 or n ∗m = 0. W.L.G, n ∗m = 0. Hence, by Lemma 2.3(vi), m− n =
m + n = (m ∗n)∨ (n ∗m) = (m ∗n)∨ 0 = m ∗n. On the other hand by (BCK6),
m ∗ n ≤ m and m ≤ r. Hence m ∗ n ≤ r and so m− n ∈ Mr. It means that Mr is
a subgroup of X. Now, we will show that x.m ∈ Mr, for any x ∈ X and m ∈ Mr.
By (BCK4) and (BCK6), we have

(x.m) ∗ r = (x ∧m) ∗ r = (m ∗ (m ∗ x)) ∗ r = (m ∗ r) ∗ (m ∗ x) = 0 ∗ (m ∗ x) = 0

Hence, x.m ≤ r and so x.m ∈ Mr. Therefore, Mr is a submodule of X.

Lemma 3.3. Let M be an XE-module and N be a submodule of M . Then
M

N
is

an XE-module.
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Proof. Let N be a submodule of M and operation • : X×M

N
−→ M

N
is defined by

x•(m+N) = x.m+N , for any x ∈ X and m ∈ M . Let x = y and m+N = m′+N .
Then m−m′ ∈ N . Since N is a submodule of M , x.(m−m′) = x.m− x.m′ ∈ N
and so x • m + N = x • m′ + N . It means that ” • ” is well defined. For any
x, y ∈ X and m,m′ ∈ M ,

(XM1)M
N

: By (XM1),

(x∧y)•(m+N) = (x∧y).m+N = x.(y.m)+N = x•(y.m+N) = x•(y•(m+N))

(XM2)M
N

: By (XM2),

x • (m + N + m′ + N) = x.(m + m′) + N = x.m + x.m′ + N

= x.m + N + x.m′ + N = x • (m + N) + x • (m′ + N)

(XM3)M
N

: By (XM3), 0 • (m + N) = 0.m + N = N

(XM4)M
N

: Let x ∗ y 6= 0, for x 6= y. By (XM4),

(x ∗ y) • (m + N) = (x ∗ y).m + N = (x.m− y.m) + N = x.m + N − y.m + N

= x • (m + N)− y • (m + N).

Theorem 3.4. Let M,M ′ be XE-modules, φ : M −→ M ′ be an XE-homomorphism
and N be a submodule of M such that φ(N) = 0. Then there exists an XE-

homomorphism from
M

N
to M ′.

Proof. We define φ̄ :
M

N
−→ M ′ by φ̄(m + N) = φ(m). It is easy to show that φ̄

is well defined and it is an XE-homomorphism.

Theorem 3.5. Let M,M ′ be XE-modules and φ : M −→ M ′ be an XE-homo-
morphism. Then

(i) Kerφ and Imgφ are submodules of M and M ′, respectively,

(ii)
M

Kerφ
' Imgφ.

Proof. (i) The proof is clear.

(ii) We know that, φ : M −→ Imgφ is an epimorphism. Now, in Theorem 3.4, it
is enough to consider N = Kerφ.

Theorem 3.6. Let M be an XE-module and N, K are submodules of M . Then

(i) N + K = {n + k : n ∈ N, k ∈ K} and N ∩K are XE-modules,

(ii)
K

N ∩K
' N + K

N
,
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(iii)
K

N
is a submodule of M

N
and

M
N
K
N

' M

K
, where N ⊆ K.

Proof. (i) N + K is an X-module (see[3]). Now, let x ∗ y 6= 0, where x 6= y, for
any x, y ∈ X and n + k ∈ N + K. Then,

(x∗y).(n+k) = (x∗y).n+(x∗y).k = x.n−y.n+x.k−y.k = x.(n+k)−y.(n+k)

and so we have (XM4)N+K . Therefore, N+K is an XE-module. Moreover, N∩K
is an X-module (see [3]) and it is not difficult to verify the condition (XM4)N∩K .
Hence N ∩K is an XE-module, too.

(ii), (iii) The proofs are easy.

Theorem 3.7. Let X be a bounded commutative BCK-algebra such that x∗y 6= x,
where x 6= y for x, y 6= 0, M be an XE-module and K be a proper submodule of
M . Then (K : M) = {x ∈ X : x.M ⊆ K} is a prime ideal of X.

Proof. First, we show that (K : M) is an ideal of X. If (K : M) = X, then
1.M ⊆ K and so M ⊆ K, which is a contradiction. Since K is a subgroup of M ,
0.m = 0 ∈ K, for any m ∈ M and so 0 ∈ (K : M). Now, for any x, y ∈ X, let
x ∗ y ∈ (K : M) = {x ∈ X : x.M ⊆ K} and y ∈ (K : M). Then (x ∗ y).m ∈ K
and y.m ∈ K, for any m ∈ M . If x = y or x = 0, then it is clear that x.m ∈ M .
So let x 6= y. If x ∗ y = 0, then x ∗ (x ∗ y) = x and so x ∧ y = x. Since
y.m ∈ K, x.(y.m) ∈ K, for any m ∈ M and K is a submodule of M and so
x.m = (x ∧ y).m ∈ K. If x ∗ y 6= 0, then by (XM4), x.m− y.m = (x ∗ y)m ∈ K.
Since (K, +) is a subgroup of M and y.m ∈ K, we have x.m ∈ K. Therefore,
(K : M) is an ideal of X.

Now, we prove that (K : M) is prime. Let x ∧ y ∈ (K : M), for x, y ∈ X.
Then for any m ∈ M , (x ∧ y).m ∈ K and so (y ∗ (y ∗ x)).m ∈ K. Now if x = y,
then x.m = (x ∗ 0).m = (x ∗ (x ∗ x)).m = (x ∧ y).m ∈ K. If x = 0 or y = 0, then
it is clear that x ∈ (K : M) or y ∈ (K : M). If x 6= y, x, y 6= 0 and x ∗ y = 0,
then x.m = (x ∗ 0).m = (x ∗ (x ∗ y)).m = (y ∧ x).m = (x ∧ y).m ∈ K, for any
m ∈ M . If x 6= y, x, y 6= 0, x ∗ y 6= 0, x 6= x ∗ y and x ∗ (x ∗ y) 6= 0. Then by
(XM4), y.m = x.m−(x.m−y.m) = x.m−(x∗y).m = x∗(x∗y).m = (y∧x).m =
(x ∧ y).m ∈ K, for any m ∈ M . Finally, if x 6= y, x, y 6= 0, x ∗ y 6= 0, x 6= x ∗ y
and x ∗ (x ∗ y) = 0, then by (BCK6), we have (x ∗ y) ∗ x = 0 and so x = x ∗ y,
which is a contradiction. Therefore, (K : M) is a prime ideal of X.

Proposition 3.8. Let M be an XE-module. If for any x, y ∈ X, x 6= y implies
that x ∗ y 6= 0, then AnnX(M) = {x ∈ X : x.m = 0, ∀m ∈ M} is an ideal of X.

Proof. It is clear that 0 ∈ AnnX(M). Now, let x ∗ y, y ∈ AnnX(M) and x 6= y,
for any x, y ∈ X. If x = 0, then it is clear that x ∈ AnnX(M). Now, let x 6= 0.
Then by (XM4), x.m = x.m− 0 = x.m− y.m = (x ∗ y).m = 0, for any m ∈ M ,
and so x ∈ AnnX(M). Therefore, AnnX(M) is an ideal of X.

Theorem 3.9. Let M be an XE-module and I be an ideal of X such that
I ⊆ AnnX(M). If the operation • : X/I ×M −→ M is defined by cx •m = x.m,
for any x, y ∈ X and m ∈ M , then M is an (X/I)E-module.
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Proof. Let • : X/I × M −→ M is defined by cx • m = x.m, for any x ∈ X
and m ∈ M . First we prove that • is well defined. Let cx = cy, m = n and
x 6= y, for all x, y ∈ X and m, n ∈ M . Then x ∗ y ∈ I and y ∗ x ∈ I. If
x ∗ y = y ∗ x = 0, then by (BCK5), x = y, which is a contradiction. If x ∗ y 6= 0
or y ∗ x 6= 0, since I ⊆ AnnX(M), by (XM4), 0 = (x ∗ y).m = x.m − y.m or
0 = (y ∗ x).m = y.m − x.m and so x.m = y.m. Now, since m = n, x.m = y.n.
Hence, • is well defined. Now, we will show that M is an (X/I)E-module.

(XM1)X/I : We have cx ∧ cy = cy ? (cy ? cx) = cy∗(y∗x), then by (XM1)X ,

(cx ∧ cy) •m = (y ∗ (y ∗ x).m = (x ∧ y).m = x.(y.m) = cx • (cy •m)

(XM2)X/I : By (XM2)X ,

cx • (m + n) = x.(m + n) = x.m + x.n = cx •m + cx • n.

(XM3)X/I : c0 •m = 0.m = 0.

(XM4)X/I : Let cx ?cy 6= c0, for cx 6= cy. Hence cx∗y 6= c0. Since 0∗ (x∗y) = 0 ∈ I,
(x ∗ y) ∗ 0 = x ∗ y /∈ I and so x ∗ y 6= 0. Therefore, by (XM4)X ,

(cx ? cy) •m = cx∗y •m = (x ∗ y).m = x.m− y.m = cx •m− cy •m.

Notion. For XE-module M , Y ⊆ X and submodule N of M , we consider

Y.M = Y M = {x.m : x ∈ Y, m ∈ M}.
Lemma 3.10. Let X be a commutative BCK-algebra, M be an XE-module, N
be a submodule of M and I be an ideal of X. Then

I.M + N =

{
n∑

i=1

ti.mi + n : ti ∈ I, mi ∈ M, n ∈ N

}

is a submodule of M .

Proof. Let N be a submodule of M and I be an ideal of X. It is clear that ” + ”
is an associative operation in I.M + N and 0 ∈ I.M + N . Moreover, by (XM4),

n∑
i=1

ti.mi + n−
(

n∑
i=1

ti.mi + n

)
=

n∑
i=1

(ti ∗ ti).mi = 0,

for any
n∑

i=1

ti.mi +n ∈ I.M +N. Hence, every element in I.M +N has an inverse

element and so I.M + N is a subgroup of M . Now, by (XM1) and (XM2),

x.

(
n∑

i=1

ti.mi + n

)
=

n∑
i=1

x.(ti.mi) + x.n =
n∑

i=1

(x ∧ ti).mi + x.n

=
n∑

i=1

(ti ∧ x).mi + x.n =
n∑

i=1

ti.(x.mi) + x.n ∈ I.M + N,
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for any
n∑

i=1

ti.mi + n ∈ I.M + N and x ∈ X. Therefore, I.M + N is a submodule

of M .

Theorem 3.11. Let X be a bounded BCK-algebra, I be a proper ideal of X and
M be an XE-module. Then M/IM is an (X/I)E-module.

Proof. Let I be a proper ideal of X and M be an XE-module. By Lemma 3.10,
IM is a submodule of M . Now, we define • : X/I × M/IM −→ M/IM by
cx • m + IM = x.m + IM , for any x ∈ X and m ∈ M . Since I • (M/IM) =
{x • (m + IM) : x ∈ I, m ∈ M} = {x.m + IM : x ∈ I, m ∈ M} = IM , then
I ⊆ annX(M/IM). By Lemma 3.9, ” • ” is well defined. Now, we show that
M/IM is an (X/I)E-module, for any x, y ∈ X and m,n ∈ M .

(XM1)X/I : Since (cx ∧ cy) = cy ? (cy ? cx) = cy∗(y∗x), by (XM1)X ,

(cx ∧ cy) • (m + IM) = cy∗(y∗x) • (m + IM) = (y ∗ (y ∗ x)).m + IM,

= (x ∧ y).m + IM = x.(y.m) + IM,

= cx • (y.m + IM) = cx • (cy • (m + IM))

(XM2)X/I : By (XM2)X ,

cx • ((m + IM) + (n + IM)) = cx • (m + n + IM) = x.(m + n) + IM

= (x.m + x.n) + IM, = x.m + IM + x.n + IM

= cx • (m + IM) + cx • (n + IM)

(XM3)X/I : c0 • (m + IM) = 0.m + IM = 0 + IM = IM = 0M/IM

(XM4)X/I : If cx = cy, then by (XM4)X ,

(cx ? cy) • (m + IM) = cx∗x • (m + IM) = c0 • (m + IM)

= 0.m + IM = (x ∗ x).m + IM,
= x.m + IM − x.m + IM,
= cx • (m + IM)− cx • (m + IM)

Now, let cx ? cy 6= 0 where cx 6= cy. Then cx∗y 6= c0 i.e., (x ∗ y) ∗ 0 = x ∗ y /∈ I and
so x ∗ y 6= 0. Hence, by (XM4)X ,

(cx ? cy) • (m + IM) = cx∗y • (m + IM)=(x ∗ y).m + IM=(x.m− y.m) + IM,

= x.m + IM − y.m + IM=cx • (m + IM)− cy • (m + IM)

Therefore, M/IM is an (X/I)E-module.

Definition 3.12. Let M be an XE-module and N be a submodule of M . Then
N is called a prime submodule of M , if N 6= M and for any x ∈ X, x.m ∈ N
implies that m ∈ N or x ∈ (N : M).
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Example 3.13. By considering the Example 3.10 (ii), 2Z is a prime submodule
of Z. It is clear that 2Z is a subgroup of Z. Now, let x.n ∈ 2Z. If x 6= 0, x.n = n,
then n ∈ 2Z. If x = 0, then x.n = 0.n = 0 and so 0 ∈ (2Z : Z). Hence, 2Z is a
prime submodule of Z.

Theorem 3.14. Let X be a commutative BCK-algebra, M be an XE-module and
N 6= M be a submodule of M . Then N is a prime submodule of M if and only
if for any ideal I in X and for any submodule D of M , ID ⊆ N implies that
I ⊆ (N : M) or D ⊆ N .

Proof. (⇒) Let N be a prime submodule of M , I be an ideal in X and D be a
submodule of M such that ID ⊆ N . We show that I ⊆ (N : M) or D ⊆ N . Let
I * (N : M) and D * N . Then there exist x ∈ X and d ∈ D such that x.M * N
and d /∈ N . On the other hand, ID ⊆ N implies that x.d ∈ N . Since N is a
prime submodule of M , x.M ⊆ N , which is a contradiction.

(⇐) Let x ∈ X and m ∈ M such that x.m ∈ N and m /∈ N . Let I = (x] =
{y ∈ X : y ∗ x = 0} and D =≺ m Â= {y′.m : y′ ∈ X}. For any y ∈ I, we have

y.m = (y ∗ 0).m = y ∗ (y ∗ x).m = (x ∧ y).m = (y ∧ x).m = y.(x.m) ∈ N

So ID = {y.(y′.m) : y, y′ ∈ X} = {y′.(y.m) : y, y′ ∈ X} ⊆ N and so I ⊆ (N : M)
or D ⊆ N . Since m /∈ N , I ⊆ (N : M) and this implies that x.M ⊆ N . Therefore,
N is a prime submodule of M .

Proposition 3.15. Let M be an XE-module and N be a submodule of M . Then

P is a prime submodule of M if and only if
P

N
is a prime submodule of

M

N
, where

N ⊆ P .

Proof. By Lemma 3.3, the proof is easy.

Definition 3.16. Let M be an XE-module. M is called torsion free if x.m = 0
implies that m = 0 or x = 0, for any x ∈ X and m ∈ M .

Example 3.17. (i) In Example 3.10(ii), Z is a torsion free.

(ii) In Example 3.10(iv), M is not a torsion free. Because, a.a = 0 but a 6= 0.

Theorem 3.18. Let X be bounded, M be a unitary XE-module and K be a
submodule of M . Then K is a prime submodule of M if and only if P = (K : M)

is a prime ideal of X and
M

K
is a torsion free

(
X

P

)E

-module, where

(
X

P
, ?, P

)

is a quotient BCK-algebra.

Proof. (⇒) Let K be a prime submodule of M . By Theorem 3.7, P = (K : M)
is an ideal of X. If X = (K : M), then 1 ∈ P and so M = K, which is a
contradiction. Now, let x ∧ y ∈ P , for any x, y ∈ X. Then for any m ∈ M ,
(x ∧ y).m ∈ K and so by (XM1), x.(y.m) ∈ K. Since K is a prime submodule
of M, we have y.m ∈ K or x ∈ (K : M). It means that y ∈ (K : M) or
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x ∈ (K : M). Hence, (K : M) is a prime ideal. Now, we show that
M

K
is a

torsion free

(
X

P

)E

-module. Let the operation • :
X

P
× M

K
−→ M

K
is defined by

cx • (m+K) = x.m+K, for any x ∈ X, m ∈ M . Similar to the proof of Theorem

3.9, • is well defined. Finally, for any cx ∈ X

P
and m+K ∈ M

K
, we will show that,

cx • (m + K) = K implies that cx = c0 or m + K = K. Let cx • (m + K) = K, for
any x ∈ X and m ∈ M . Then x.m+K = K and so x.m ∈ K. Since K is a prime
submodule of M , m ∈ K or x ∈ (K : M). If m ∈ K, then m + K = K. Now, if
x ∈ (K : M) = P , then cx = c0 = P (because x ∗ 0 = x ∈ P and 0 ∗ x = 0 ∈ P ).

Therefore,
M

K
is a torsion free.

(⇐) Let P be a prime ideal in X and
M

K
is a torsion free

(
X

P

)E

-module.

First we show that K $ M . Since, if K = M , P = (K : M) = (M : M) = X,
which is a contradiction. Now, let x.m ∈ K, for any x ∈ X, m ∈ M . Hence

x.m + K = K and so cx • (m + K) = K. Since
M

K
is torsion free, cx = c0 = P

or m + K = K. This means that x ∈ P or m ∈ K. Therefore, K is a prime
submodule of M .

Theorem 3.19. Let X be a bounded commutative BCK-algebra, M be a uni-
tary XE-module, N be a submodule of M and P be a prime ideal of X. Then
K(N,P ) = {m ∈ M : c.m ∈ P.M + N, ∃c ∈ X − P} is a submodule of M and
P.M + N ⊆ K(N,P ).

Proof. First, we show that K(N,P ) is a subgroup of M . Let m,n ∈ K(N, P ).
Then there exists c, c′ ∈ X − P such that c.m, c′.n ∈ P.M + N . Let t = c ∧ c′.
Then

t.(m− n) = (c ∧ c′).(m− n),

= c.(c′.(m− n)) by (XM1),

= c.(c′.m− c′.n), by (XM2),

= c.(c′.m)− c.(c′.n) by (XM2),

= (c ∧ c′).m− c.(c′.n), by (XM1),

= (c′ ∧ c).m− c.(c′.n),

= c′.(c.m)− c.(c′.n) ∈ P.M + N, by Lemma 3.10.

and so m − n ∈ K(N, P ), which means that K(N, P ) is a subgroup. Now, let
x ∈ X and m ∈ K(N, P ). Since m ∈ K(N, P ), there exists c ∈ X − P such that
c.m ∈ P.M + N . Now, by Lemma 3.10,

c.(x.m) = (c ∧ x).m = (x ∧ c).m = x.(c.m) ∈ P.M + N

Hence, x.m ∈ K(N, P ) and so K(N, P ) is a submodule of M . Finally, for any
m ∈ P.M +N , if we let c = 1 then c.m = 1.m = m ∈ P.M +N , then m ∈ K(N, P )
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(note that 1 ∈ X − P , otherwise for any x ∈ X, x ∗ 1 = 0 ∈ P and 1 ∈ P results
in x ∈ P i.e., X = P , which is impossible). Therefore, P.M + N ⊆ K(N,P ).

Theorem 3.20. Let X be a bounded commutative BCK-algebra, M be a uni-
tary XE-module, N be a submodule of M and P be a prime ideal of X. Then
K(N,P ) = M or K(N, P ) is a prime submodule of M such that

P = (K(N, P ) : M).

Proof. Let K(N, P ) 6= M . We will show that K(N,P ) is a prime submodule of
M and P = (K(N, P ) : M). By Theorem 3.19, K(N, P ) is a submodule of M .
Let x.m ∈ K(N,P ), for any x ∈ X, m ∈ M . Then there exists c ∈ X − P such
that c.(x.m) ∈ P.M +N . We will show that m ∈ K(N, P ) or x ∈ (K(N, P ) : M).
If x ∈ P , then x.M ⊆ P.M + N ⊆ K(N, P ) and so x.M ⊆ K(N, P ). Hence
x ∈ (K(N, P ) : M). If x /∈ P , then x ∈ X − P . Since P is a prime ideal of X,
c∧x ∈ X−P . because, if c∧x ∈ P , then c ∈ P or x ∈ P , which is a contradiction.
On the other hand, c.(x.m) ∈ P.M + N and so (c ∧ x).m ∈ P.M + N . Hence,
m ∈ K(N, P ). Therefore, K(N,P ) is a prime submodule of M . Now, we will
prove that P = (K(N,P ) : M). Let p ∈ P . Then for any m ∈ M , p.m ∈ P.M+N .
Let c = 1. Then c.(p.m) ∈ P.M + N and so p.m ∈ K(N, P ), which implies that
P.M ⊆ K(N,P ). Hence, P ⊆ (K(N, P ) : M). Now, let q ∈ (K(N, P ) : M) such
that q /∈ P . Since q.M ⊆ K(N,P ), q.m ∈ K(N, P ), for any m ∈ M . Hence
there exists c ∈ X − P such that c.(q.t) ∈ P.M + N and so (c ∧ q).t ∈ P.M + N .
Now, since P is prime, c ∧ q /∈ P i.e., c ∧ q ∈ X − P and so t ∈ K(N, P ). Hence,
M = K(N, P ), which is a contradiction. Then q ∈ P and so (K(N,P ) : M) ⊆ P .
Therefore, P = (K(N,P ) : M).

Definition 3.21. Let M be an XE-module and N be a submodule of M . The
intersection of all prime submodules of M , including N , is called radical of N and
it is shown by radM(N). If there exists no prime submodule of M consisting of
N, then we let radM(N) = M .

Theorem 3.22. Let X be a bounded commutative BCK-algebra and M be an
XE-module. Then for any submodule N of M ,

radM(N) =
⋂
{K(N, P ) : P is a prime ideal of X}.

Proof. Let T =
⋂{K(N,P ) : P is a prime ideal of X} and m ∈ T . Let L be a

prime submodule of M including of N . Hence, by Theorem 3.7, Q = (L : M) is a
prime ideal of X. Since for any prime ideal P of X, m ∈ K(N, P ), m ∈ K(N, Q)
and so there exists c ∈ X − Q such that c.m ∈ Q.M + N = (L : M).M +
N ⊆ L + L ⊆ L. Since L is a prime submodule of M and c /∈ Q = (L : M),
m ∈ L. Hence T ⊆ radM(N). Now, let m ∈ radM(N). Hence, m ∈ L, where
L is any prime submodule of M consisting of N and P be a prime ideal of X. If
K(N,P ) = M , then the proof is complete. Let K(N,P ) 6= M . By Theorem 3.20,
K(N,P ) is a prime submodule of M and P = (K(N, P ) : M). Now, we show
that N ⊆ K(N,P ). By Theorem 3.19, we have P.M + N ⊆ K(N,P ) and so
N ⊆ K(N,P ). Since m ∈ radM(N), then m ∈ K(N,P ). Hence m ∈ T and so
radM(N) ⊆ T . Therefore, radM(N) = T .
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