
italian journal of pure and applied mathematics – n. 33−2014 (377−382) 377

NEW CHARACTERIZATIONS OF SOLUBILITY
OF FINITE GROUPS

Jinbao Li

Department of Mathematics
Chongqing University of Arts and Sciences
Chongqing 402160
P.R. China
e-mail: leejinbao25@163.com

Wujie Shi

Department of Mathematics
Chongqing University of Arts and Sciences
Chongqing 402160
P.R. China
e-mail: shiwujie@gmail.com

Guiyun Chen1

School of Mathematics and Statistics
Southwest University
Chongqing 400715
P.R. China
e-mail: gychen1963@163.com

Dapeng Yu
Department of Mathematics
Chongqing University of Arts and Sciences
Chongqing 402160
P.R. China
e-mail: yudapeng0@sina.com

Abstract. A subgroup H of a group G is said to be S-supplemented in G if there
exists a subgroup T of G such that G = HT and H ∩ T ≤ HsG, where HsG denotes
the subgroup of H generated by all those subgroups of H which are S-permutable in
G. In this paper, two new characterizations of solubility of finite groups are presented
in terms of S-supplemented subgroups of primes power orders, where primes belong to
{3, 5}. In particular, a counterexample is given to show that the conjecture, proposed by
Heliel at the end of [A.A. Heliel, A note on c-supplemented subgroups of finite groups,
Comm. Algebra, 42 (2014), 1650-1656] and related to c-supplemented subgroups of
primes power orders, is negative.
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All groups considered are finite.
Following Ballester-Bolinches, Wang and Guo [2], [12], a subgroup H of a

group G is said to be c-supplemented in G if G has a subgroup T such that
G = HT and H ∩ T ≤ HG, where HG denotes the largest normal subgroup of
G contained in H. In [1], Asaad and Ramadan prove that a group G is soluble
provided that every minimal subgroup of G is c-supplemented in G. Recently, in
[6], Heliel has generalized this result and proved the following theorems.

Theorem A. If each subgroup of prime odd order of a group G is c-supplemented
in G, then G is soluble.

Theorem B. A group G is soluble if and only if every Sylow subgroup of G of
odd order is c-supplemented in G.

In connection with the above two results, the following conjecture is posed at
the end of [6].

Conjecture. Let G be a group such that every non-cyclic Sylow subgroup P of
odd order of G has a subgroup D such that 1 < |D| ≤ |P | and all subgroups H of
P with |H| = |D| are c-supplemented in G. Then, is G soluble?

In this short note, we first present a counterexample to show that the answer
to this conjecture is negative in general and then give a generalization of Theorems
A and B.

Example. Let G = A5 × H, where A5 is the alternating group of degree 5 and
H is an elementary group of order pn with p > 5 and n ≥ 2. Then G satisfies the
condition of the preceding conjecture, but G is insoluble.

Next, we generalize Theorems A and B as the following two results respec-
tively.

Theorem C. Let G be a group and π = π(G) ∩ {3, 5}. If every subgroup of G of
order p with p ∈ π is c-supplemented in G, then G is soluble.

Theorem D. Let G be a group and π = π(G) ∩ {3, 5}. Then G is soluble if and
only if every Sylow p-subgroup of G with p ∈ π is c-supplemented in G and L2(8)
is not involved in G.

Here, we say that a group K is involved in a group G if K is isomorphic to a
homomorphic image of a subgroup H of G. Note that such a homomorphic image
is often called a section of G.

Recall that a subgroup H of a group G is said to be S-supplemented in G if
G has a subgroup T such that G = HT and H ∩T ≤ HsG, where HsG denotes the
subgroup of H generated by all those subgroups of H which are S-quasinormal
(permutable with all Sylow subgroups of G) in G (see Skiba [11] or [10]). By
the definition, all c-supplemented subgroups are also S-supplemented subgroups.
Hence, Theorems C and D are special cases of the following results.

Theorem E. Let G be a group and π = π(G) ∩ {3, 5}. If every subgroup of G of
order p with p ∈ π is S-supplemented in G, then G is soluble.

Theorem F. Let G be a group and π = π(G) ∩ {3, 5}. Then G is soluble if and
only if every Sylow p-subgroup of G with p ∈ π is S-supplemented in G and L2(8)
is not involved in G.
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In order to prove these two results, we need the following lemmas.

Lemma 1. [3, Theorem 5.4] Let G be a group such that (|G|, 15) = 1. Then G is
soluble.

Lemma 2. [10, Lemma 2.10] Let G be a group and H ≤ K ≤ G.

(1) If H is S-supplemented in G, then H is S-supplemented in K.

(2) Suppose that H is normal G. Then K/H is S-supplemented in G/H if and
only if K is S-supplemented in G.

(3) Suppose that H is normal in G. Then the subgroup EH/H is S-supplemented
in G/H for every S-supplemented subgroup E of G satisfying (|E|, |H|) = 1.

Lemma 3. Let P be a nontrivial normal p-subgroup of a group G with p odd. If
all cyclic subgroups of P of order p are S-supplemented in G, then each G-chief
factor below P is cyclic.

Proof. This follows directly from Theorem A in [11].

Lemma 4. [5, Theorem 1] Let G be a nonabelian simple group with H a subgroup
of G such that |G : H| = pa. Then one of the following holds.

(1) G = An and H ' An−1 with n = pa.

(2) G = Ln(q) and H is the stabilizer of a line or hyperplane.
Then |G : H| = (qn − 1)/(q − 1) = pa.

(3) G = L2(11) and H ' A5.

(4) G = M23 and H ' M22 or G = M11 and H ' M10.

(5) G = U4(2) and H is the parabolic subgroup of index 27.

Lemma 5. [9, §5] Let H be a Hall π-subgroup of the finite simple group G and
3 /∈ π. Then either H has a Sylow tower or H = G = 2B2(q).

Lemma 6. Let G = Ln(q) and H a subgroup of G such that |G : H| = 3a, where
a ≥ 1. Then G = L2(8) and H ' 23.Z7 with index 9.

Proof. This is a special case of Theorem 1.1 in [8].

Proof of Theorem E. Suppose the result is false and let G be a counterexample
of minimal order. Then

(1) Every proper subgroup of G is soluble.
It follows from Lemmas 2 and 1 and the choice of G.

(2) G is not a nonabelian simple group.
Assume that G is a nonabelian simple group. Then G is a minimal simple

group by (1). Let H be a subgroup of G of order p ∈ π. If H is S-quasinormal
in G, then H ≤ Op(G), a contradiction. Suppose G has a subgroup T such that
G = HT and H ∩ T = 1. If p = 3, then we deduce that G is soluble. If p = 5,
then G is isomorphic to A5. However, the subgroups of A5 of order 3 are not
S-supplemented, which contradicts our initial assumption for G. Hence G cannot
be a nonabelian simple group.
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(3) G = G/Φ(G) is a minimal simple group.
By (2), suppose that N is any nontrivial proper normal subgroup of G. Let

M be any maximal subgroup of G. By (1), both N and M are soluble. If N is not
contained in M , then G = MN and so G/N ' M/M ∩ N is soluble. It follows
that G is soluble, a contradiction. Hence N ≤ Φ(G) and (3) holds.

(4) Final contradiction.
By (3), G is isomorphic to one of the following simple groups (see Huppert

[7, Ch.II, Remark 7.5]):

(i) L2(p), p > 3 is a prime, and 5 does not divide p2 − 1;

(ii) L2(3
r), r is an odd prime;

(iii) L2(2
r), r is a prime;

(iv) Sz(2r), r is an odd prime;

(v) L3(3).

Suppose first that G is isomorphic to one of the simple groups in (i)-(iv). By
[7, Ch.II, Theorem 8.27] and [13, p.117, Theorem 4.1], every Sylow p-subgroup
of G is cyclic, where p = 3 or 5. We claim that p does not divide the order of
Φ(G). Otherwise, let P be the Sylow p-subgroup of Φ(G) and Gp be a Sylow
p-subgroup of G. Then Gp/P is cyclic. By Lemma 2 and Lemma 3, every G-
chief factor below P is cyclic. It follows that G/CG(P ) is supersoluble (see [4,
Corollary 3.2.9]). Thus, G = CG(P ) by (1). Hence P ≤ Z(G) and so Gp is
abelian. Furthermore, G = G′ according to Step (3). Therefore, we have that
P ∩Z(G)∩G′ = P , a contradiction by [7, Ch.VI, Theorem 14.3]. Thus, the order
of Φ(G) cannot be divisible by p. Let H/Φ(G) be a subgroup of G with order p.
Then H/Φ(G) = 〈x〉Φ(G)/Φ(G) for some element x of G of order p. By Lemma
2, H/Φ(G) is S-supplemented in G. Arguing as in (2), we deduce a contradiction.

Now, suppose that G is isomorphic to PSL3(3). We show that Φ(G) is a
3′-group. If not, let P be the Sylow 3-subgroup of Φ(G). As above, we see that
P ≤ Z(G). If all subgroups of G of order 3 are contained in P , then by [7, Ch.IV,
Theorem 5.5], G is 3-nilpotent, which implies that G is soluble. Thus, for some
element x of order 3 in G, x /∈ P . By the hypothesis, H = 〈x〉 is S-supplemented
in G. Then G has a subgroup T such that G = HT and H ∩ T ≤ HsG. If
H ∩ T = 1, then T is a proper subgroup of G of index 3. It is easy to see that
Φ(G) ≤ T and therefore G has a subgroup of index 3, a contradiction. Suppose
that H is S-quasinormal in G. Then H ≤ Op(G) ≤ Φ(G) and consequently
H ≤ P , a contradiction. Hence 3 does not divide the order of Φ(G). As in the
foregoing paragraph, we derive a contraction, completing the proof.

Proof of Theorem F. If G is soluble, then every Sylow subgroup of G is com-
plemented in G and thereby is S-supplemented in G. In addition, L2(8) is clearly
not involved in G. Hence the necessity holds.

Now, we suppose that all Sylow p-subgroups of G with p ∈ π are S-supple-
mented in G and G does not involve L2(8). We proceed by induction on the order
of G. Let P be an arbitrary Sylow p-subgroup of G, where p ∈ π. Then, by the
hypothesis, there exists a subgroup T in G such that G = PT and P ∩T ≤ PsG. If
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PsG 6= 1, then PsG ≤ Op(G), where Op(G) denotes the largest normal p-subgroup
of G. Consider the factor group G/Op(G). Then, it is easy to see that G/Op(G)
satisfies the hypothesis and so G/Op(G) is soluble by induction. It follows that
G is soluble. Hence we may assume that PsG is trivial, which means that P is
complemented in G.

Next, we argue that G is not a nonabelian simple group. If not, then G is
a nonabelian simple group such that every Sylow p-subgroup of G with p ∈ π is
complemented in G by the foregoing discussion. Hence G has a subgroup H such
that |G : H| = pa, where p = 3 or 5. Thus, G is isomorphic to one of the groups
listed in Lemma 4. If G is isomorphic to one of the following:

L2(11), M23, M11, U4(2),

then π = {3, 5}. By the preceding paragraph, G has two subgroups with two
different indices 3a and 5b, where a ≥ 1 and b ≥ 1, which is impossible (see
[5, pp. 304]). If G = An and H ' An−1, then, by Lemma 5, we have that n = 5.
But the Sylow 3-subgroups of A5 are not complemented in A5, a contradiction.
At last, assume that G = Ln(q). Then, by Lemma 6, G must be isomorphic to
L2(8), contrary to our assumption for G. Thus, we have shown that G is not a
nonabelian simple group.

Let N be a minimal normal subgroup of G. Then N is nontrivial. If N is an
elementary abelian group, then, by Lemma 2, G/N satisfies the hypothesis and so
G/N is soluble by induction. Thereby G is soluble. Suppose that N is insoluble.
Denote π′ = π(N) ∩ {3, 5}. Obviously, π′ ⊆ π. Then, by Lemma 1, π′ 6= ∅. Let
P be any Sylow p-subgroup of G with p ∈ π′ and set L = PN . Then P ∩ N is
complemented in N by the first paragraph and therefore P ∩N is S-supplemented
in N . Note that P ∩N is a Sylow p-subgroup of N . Thus, we see that N satisfies
the hypothesis and so N is soluble by induction.

This contradiction completes the proof.

Remark.

(1) The converse of Theorem E is not true in general. The alternating group
A4 of degree 4 is such a counterexample because every involution of A4 is
not S-supplemented in A4 as A4 has no subgroup of order 6.

(2) In Theorem F, the condition “G does not involve L2(8)” can not be removed.
In fact, L2(8) is a counterexample. In L2(8), π = π(L2(8)) ∩ {3, 5} = {3}
and every Sylow 3-subgroup of L2(8) is complemented in L2(8). Of course,
every Sylow 3-subgroup of L2(8) is S-supplemented in L2(8). But L2(8) is
a nonabelian simple group.

With respect to Theorem E and Theorem F, the following problem seems
interesting.

Problem. Let G be a group and π = π(G)∩{3, 5}. Suppose that for every Sylow
p-subgroup P of G with p ∈ π, G has a subgroup D such that 1 < |D| < |P | and
all subgroups H of P with |H| = |D| are S-supplemented in G. What can we say
about the structure of G?
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