# CONJUGACY CLASS SIZES OF SUBGROUPS AND THE STRUCTURE OF FINITE GROUPS 

Zhangjia Han<br>School of Applied Mathematics<br>Chengdu University of Information Technology<br>Sichuan 610225<br>China<br>e-mail: hzjmm11@163.com<br>\section*{Huaguo Shi}<br>Sichuan Vocational and Technical College<br>Sichuan 629000<br>China<br>e-mail: shihuaguo@126.com


#### Abstract

The authors investigate the influences of conjugacy class sizes of subgroups of a finite groups $G$ on the structure of $G$. Some sufficient conditions for a finite group to be $p$-nilpotent, $p$ - solvable and supersolvable are obtained.


Keywords: index; $p$ - solvable group; supersolvable group; $p$-nilpotent group.
2000 Mathematics Subject Classification: 20D10; 20D15.

## 1. Introduction

One of the questions that were studied extensively is what can be said about the structure of the group $G$ if some information is known about the arithmetical structure of $\operatorname{Con}(G)$, the set of the conjugacy classes of $G$. Answers in many cases were given. On the other hand, few studies about the conjugacy classes of subgroups of a group $G$ were done. In [12], the author proved that a finite group $G$ is p-nilpotent for some prime $p$ if and only if $\left(p,\left|G: N_{G}(Q)\right|\right)=1$ for any Sylow subgroups $Q$ of $G$. In the same paper, the author showed also that if $\left|G: N_{G}(Q)\right|$ is square-free for any Sylow subgroups $Q$ of $G$, then either $G$ is supersolvable or $G=H K$, where $H$ is normal in $G$ and $H=\operatorname{PSL}(2, p)$ or $S L(2, p)$ for some prime $p=8 k+5, K$ is a supersolvable subgroup of $G$. Guo Wenbin proved in [6] that if $\left|G: N_{G}(Q)\right|$ is prime power numbers for any Sylow subgroups $Q$ of $G$, then $G$ is solvable. Further, if $\left|G: N_{G}(Q)\right|$ is prime power numbers or odd numbers, then $G$ is a solvable group. Recently, in [2], Berkovich and Kazarin
showed that $G$ is solvable with $n l(G) \leq 2$ if $\left|G: N_{G}(H)\right|$ is a power of a prime for all primary subgroup $H \leq G$. In this paper, we consider the conjugacy class sizes of subgroups of a finite groups $G$ and investigate the influences of conjugacy class sizes of subgroups of $G$ on the structure of $G$.

In what follows, $G$ is a finite group of order $|G| ; \pi(G)$ denotes the set of all prime divisors of $|G| ; n l(G)$ denotes the nilpotent length of $|G|$ and $c l(G)$ denotes the nilpotent class of $|G|$. The $p$-length of $|G|$ is denoted by $l_{p}(G)$. All further unexplained notation and terminologies are standard can be found in [5].

## 2. Preliminaries

In this section, we give some lemmas which are useful in the sequel.
Lemma 2.1 Let $N \unlhd G$, and $H \leq G$. Then
(1) $\left|N: N_{N}(H)\right|$ and $\left|\bar{G}: N_{\bar{G}}(\bar{H})\right|$ divide $\left|G: N_{G}(H)\right|$, if $N$ is contained in $H$, where $\bar{G}=G / N$.
(2) $\left|G: N_{G}(N H)\right|$ divides $\left|G: N_{G}(H)\right|$.

Proof. (1) Clearly,

$$
\left|N: N_{N}(H)\right|=\left|N N_{G}(H): N_{G}(H)\right|,
$$

which divides $\left|G: N_{G}(H)\right|$.
Also

$$
\left|\bar{G}: N_{\bar{G}}(\bar{H})\right|\left|\left|\bar{G}: \overline{N_{G}(H) N}\right|=\left|G: N_{G}(H) N\right| .\right.
$$

On the other hand,

$$
\left|G: N_{G}(H)\right|=\left|G: N_{G}(H) N\right|\left|N_{G}(H) N: N_{G}(H)\right| .
$$

Hence

$$
\left|\bar{G}: N_{\bar{G}}(\bar{H})\right|\left|\left|G: N_{G}(H)\right|\right.
$$

(2) follows by the fact that $N_{G}(H) \leq N_{G}(N H)$.

Lemma 2.2 Suppose that $\pi \subseteq \pi(G)$ and $x \in H$, where $H$ is a $\pi$-Hall subgroup of group $G$. If $\left|G: N_{G}(\langle x\rangle)\right|$ is a $\pi$-number. Then $\langle x\rangle \leq O_{\pi}(G)$.

Proof. Indeed, $G=N_{G}(\langle x\rangle) H$. So $\langle x\rangle^{G}=\langle x\rangle^{N_{G}(\langle x\rangle) H}=\langle x\rangle^{H} \leq H$.
Lemma 2.3 Let $G$ be a group and $p$ be the smallest odd prime divisor of $|G|$. Suppose that there exits an element $x$ of order $p$ such that $\left|G: N_{G}(\langle x\rangle)\right|$ is a power of two. Then $G$ is not a non-abelian simple group.

Proof. Assume that $G$ is a non-abelian simple group, $H=N_{G}(\langle x\rangle)$ is a proper subgroup of $G$ with index of $2^{\alpha}$, where $\alpha$ is a natural number. Then $G$ is one of the groups list in theorem 1 of [7].

If $G=A_{2^{n}}$, then $H=A_{2^{n}-1}$. As $2^{n}>6$, we obtain that $A_{2^{n}-1}$ is also a simple group. This is impossible.

If $G=P S L(n, q)$, then $\left|G: N_{G}(\langle x\rangle)\right|=\frac{q^{n}-1}{q-1}$. It is easy to check that $n=2$ and $q=2^{\alpha}-1$ is a prime in this case. Hence, $\left|N_{G}(\langle x\rangle)\right|=q(q-1)$. Suppose that $o(x)=q$, then $q-1=2^{\alpha}-2$ is a divisor of $|G|$. Hence $2^{\alpha}-2=2^{\beta}$ by the choice of $x$, where $\alpha, \beta$ are both natural numbers. Therefore, $\alpha=2$, and $q=3$, a contradiction. Hence, we may assume that $o(x) \mid q-1$. Since $N_{G}(\langle x\rangle) / C_{G}(\langle x\rangle)$ is isomorphic to some subgroups of $\operatorname{Aut}(\langle x\rangle)$, we have $\left|N_{G}(\langle x\rangle)\right|=q(q-1)$ is a divisor of $\left|C_{G}(\langle x\rangle)\right||A u t(\langle x\rangle)|$. On the other hand, by the structure of $\operatorname{PSL}(2, q)$ we know that $q \backslash\left|C_{G}(\langle x\rangle)\right|$, which implies that $\left(\left|C_{G}(\langle x\rangle)\right||A u t(\langle x\rangle)|, q\right)=1$. Thus, we obtain a contradiction.

Assume that $G=P S L(2,11)$. Then, $N_{G}(\langle x\rangle)=H=A_{5}$. Hence, we obtain $\langle x\rangle \unlhd A_{5}$, a contradiction.

If $G=M_{23}$, then $H=M_{22}$. Since in this case $\left|G: N_{G}(\langle x\rangle)\right|=23 \neq 2^{\alpha}$, we get a contradiction. Similarly, we have that $G \neq M_{11}$ and $\operatorname{PSU}(4,2)$, a final contradiction. The proof is complete.

Lemma 2.4 [4] Every group of odd order is solvable.
Lemma 2.5 [3, Theorem 1] If the subgroup $H$ of the group $G$ is quasinormal in $G$, then $H / H_{G}$ is nilpotent.

Lemma 2.6 [1, Theorem 3] Let the group $G=H K$ be the m-permutable product of the subgroups $H$ and $K$. Assume that $H$ is supersolvable and $K$ is nilpotent. If $K$ permutes with every Sylow subgroup of $H$, then $G$ is supersolvable.

## 3. Main results

We first prove the following:
Theorem 3.1 Let p be the minimal odd divisor of $|G|$. Suppose that $\left|G: N_{G}(\langle x\rangle)\right|$ is a power of two for any element $x \in G$ of order $p$. Then $G$ is $p$-solvable.

Proof. Assume that the theorem is false and let $G$ be a counterexample of minimal order. Then we have:
(1) Any nontrivial normal subgroup of $G$ is $p$-solvable and $O_{p^{\prime}}(G)=1$.

This follows by Lemma 2.1 and the choice of $G$.
(2) $O_{p}(G)>1$.

It follows by Lemma 2.3 that there exists a nontrivial minimal normal subgroup $N$ of $G$. By Lemma 2.1, $N$ is $p$-solvable. Since $O_{p^{\prime}}(N) \leq O_{p^{\prime}}(G)=1$, we obtain $O_{p^{\prime}}(N)=1$. Hence $1<O_{p}(N) \leq O_{p}(G)$.
(3) Every subgroup of order $p$ is contained in $O_{p}(G)$.

Suppose that there is a subgroup $\langle x\rangle$ of order $p$ such that $\langle x\rangle$ is not contained in $O_{p}(G)$. It follows that $\left|G: N_{G}(\langle x\rangle)\right|$ is a power of two by hypothesis. Hence $N_{G}(\langle x\rangle)$ contains a Sylow $p$-subgroup of $G$, giving $O_{p}(G) \leq N_{G}(\langle x\rangle)$. Let $C=C_{G}\left(O_{p}(G)\right)$. Then $\langle x\rangle \leq C \unlhd G$, and $O_{p}(C)=O_{p}(G)$ and hence $O_{p p^{\prime}}(C)=$ $O_{p}(C) \times H$, where, $H$ is a nontrivial $p^{\prime}$-group. Therefore, $1<H<O_{p^{\prime}}(G)=1$, a contradiction. Hence $C=G$.

Let $\bar{G}=G / O_{p}(G)$, and $\bar{x}=x O_{p}(G)$ be an element of order $p$. Then

$$
\left|\bar{G}: N_{\bar{G}}(\langle\bar{x}\rangle)\right|\left|\left|G: N_{G}(\langle x\rangle)\right|\right.
$$

is a power of two. Again by Lemma 2.3, $\bar{G}$ is not a non-abelian simple group. Hence there exists a normal subgroup $N$ of $G$ such that $O_{p}(G)<N<G$. Now, $O_{p}(N)=O_{p}(G) \leq Z(G)$. This implies that $O_{p^{\prime}}(G)>1$, which contradicts to (1).
(4) $G / M$ is a non-abelian simple group and $p \| G / M \mid$, where $M$ be a maximal normal subgroup of $G$ which is $p$-solvable.

This follows immediately by (1).
(5) The final contradiction.

Let $S_{0}$ be a Sylow 2-subgroup of $M$ and $H=N_{G}\left(S_{0}\right)$. Then, by Frattini argument, we obtain that $G=M H$. It follows by (4) that $H / H \cap M \cong G / M$ is a non-abelian simple group and $p \| G / H / H \cap M \mid$. Let $D=C_{H}\left(O_{p}(H)\right)$. Then $D$ is $p$-nilpotent by Ito' theorem. Since $(H \cap M) D / H \cap M$ is normal in $H / H \cap M$, we have $D \leq H \cap M$.

By Lemma 2.4, there is a Sylow 2-subgroup $S$ of $G$ such that $S_{0}<S$ and $S \leq H$. Let $S_{1} / S_{0}$ be a subgroup of order two of $Z\left(S / S_{0}\right)$. Then $S_{1}=S_{0}\langle u\rangle$, where $u^{2} \in S_{0}$ and $S_{0} \unlhd S_{1}$. Let $K=O_{p}(H) S_{1}$. If $S_{1}$ is normal in $K$, then $S_{0} \leq C_{H}\left(O_{p}(H)\right)=D \leq H \cap M$, which contradicts to the fact that $S_{1}$ be a Sylow 2-subgroup of $M$. Therefore, $K$ has no normal Sylow 2-subgroup, of course $K$ is not nilpotent. Suppose that $W$ is a minimal non-nilpotent group of $K$. Then $W=X\langle v\rangle$, where $o(v)=2^{\alpha}, \Phi(\langle v\rangle)=\left\langle v^{2}\right\rangle \leq Z(W)$, the center of $W$, and $X$ is a normal $p$-group of $W$ of exponent $p$. Now, $\langle v\rangle$ acts irreducible on $X / \Phi(X)$ and $v$ induces an automorphism of order two of $X / \Phi(X)$. Hence, $|X / \Phi(X)|=p$ and $X=\langle x\rangle$ is a cyclic group of order $p$. Further, $S_{0} \leq C_{G}(\langle x\rangle)<N_{G}(\langle x\rangle)$. So $N_{G}(\langle x\rangle)$ contains $S_{0}\langle v\rangle$, a Sylow 2-subgroup of $K$. Without lose of generality, we may assume $S_{1}=S_{0}\langle v\rangle$. Now, $\left|G: N_{G}(\langle x\rangle)\right|$ is a power of two by assumption. Thus $G=N_{G}(\langle x\rangle) S$. If $G=N_{G}(\langle x\rangle)$, then $C_{G}(\langle x\rangle) \unlhd G$. By $(1), C_{G}(\langle x\rangle)$ is $p$-solvable, of course we have $G$ is $p$-solvable, a contradiction. If $G>N_{G}(\langle x\rangle)$, we have

$$
S_{1}^{G}=S_{1}^{S N_{G}(\langle x\rangle)}=S_{1}^{N_{G}(\langle x\rangle)} \leq N_{G}(\langle x\rangle)
$$

since $S_{1} / S_{0} \leq Z\left(S / S_{0}\right)$. Hence $S_{1}^{G}$ is $p$-solvable, and we have $S_{1}^{G} \leq M$. Therefore, $|M|_{2}=\left|S_{0}\right|<\left|S_{1}\right| \leq|M|_{2}$, the final contradiction. This completes our proof.
Theorem 3.2 Let $G$ be a group. If $\left|G: N_{G}(\langle x\rangle)\right|$ is a power of a prime for all $x \in G$ of prime power order. Then $G$ is solvable with $n l(G) \leq 2$ and $l_{p}(G) \leq 1$ for any prime divisor $p$ of $|G|$.

Proof. First of all, $G$ is not a non-abelian simple group. Suppose $G$ is simple. Then $|\pi(G)| \geq 3$. Let $P \in \operatorname{Syl}_{p}(G)$, and $x \in Z(P)$, the center of $P$, where $p \in \pi(G)$. Then, by hypothesis $\left|G: N_{G}(\langle x\rangle)\right|$ is power of a prime $r$, which is different from $p$. Let R be a Sylow $r$-subgroup of $G$ and let $y \in Z(R)$. Then $\left|G: N_{G}(\langle y\rangle)\right|$ is also a power of a prime. It is well known that $G$ must be the simple group $P S L(2,7)$ (see [7, p.304, Note]). Obviously, $P S L(2,7)$ can not satisfy the hypothesis of our Theorem. This is a contradiction. Hence $G$ is not a non-abelian simple group and there exists a proper normal subgroup $N$ in $G$. By Lemma 2.1, $G / N$ and $N$ are all solvable groups, therefor $G$ is solvable.

In order to prove that $l_{p}(G) \leq 1$, we suppose $G$ is a counterexample of minimal order. Then by $[8$, Lemma $6.9, \mathrm{VI}]$, we know $\Phi(G)=1$ and $F(G)=O_{p}(G)$ is the unique minimal normal subgroup of $G$. Hence there exists a proper subgroup $M$ of $G$ such that $G=F(G) \rtimes M$, the semiproduct of $F(G)$ and $M$. Let $M_{p} \in \operatorname{Syl}_{p}(M)$ and $x \in Z\left(M_{p}\right)$. Then $F(G)$ is not contained in $N_{G}(\langle x\rangle)$. Otherwise we have that $x \in C_{G}(F(G))$, a contradiction since $C_{G}(F(G)) \leq F(G)$. Thus $\left|G: N_{G}(\langle x\rangle)\right|$ is a power of $p$. By Lemma 2.2, $x \in O_{p}(G)=F(G)$, a contradiction. Then we obtain that $F(G)$ must be a Sylow subgroup of $G$. Therefore, $l_{p}(G)=1$, and $G$ is not a counterexample, a contradiction too.

Now, we will show that $n l(G) \leq 2$. Assume that $G$ is a counterexample of minimal order. Since $F(G / \Phi(G))=F(G) / \Phi(G)$, we have $\Phi(G)=1$ by induction. Moreover, $F(G)=O_{p}(G)$ is the unique minimal normal subgroup of $G$. Hence, there exists a proper subgroup $M$ of $G$ such that $G=F(G) \rtimes M$. By using the same argument as the above, we get $M$ is a $p^{\prime}$-group and $\left|G: N_{G}(\langle x\rangle)\right|$ is a power of $p$ for any $x \in M$ of prime power order. It follows by Lemma 2.1 that $\left|G: N_{G}(F(G)\langle x\rangle)\right|$ divides $\left|G: N_{G}(\langle x\rangle)\right|$. However, $\left|G: N_{G}(F(G)\langle x\rangle)\right|$ is coprime to $p$ since $F(G)$ is the Sylow $p$-subgroup of $G$. Hence $F(G)\langle x\rangle$ is normal in $G$, which implies that all cyclic subgroup of $G / F(G)$ is normal in $G / F(G)$. Hence $G / F(G)$ is a Dedekind group, and $n l(G) \leq 2$, which contradicts to the choice of $G$. The proof is complete.

Moreover, for a group $G$, let $\operatorname{Norm}(G)=\cap\left\{N_{G}(\langle a\rangle) \mid \forall a \in G\right\}$. Then, we have $\operatorname{Norm}(G) \leq Z_{2}(G)$ by [11].

The following theorem gives a sufficient condition for a group to be p-nilpotent.
Theorem 3.3 Let $G$ be a solvable group and $p$ a prime divisor of $|G|$ such that $q$ does not divide $p-1$ for any prime divisor $q$ of $|G|$. Suppose that $\left|G: N_{G}(\langle x\rangle)\right|$ is not divided by $p^{2}$ for any $x \in G$ of prime power order. Then $G$ is a p-nilpotent group. Furthermore, if $P$ is a Sylow $p$-subgroup of $G$, then $c l(P) \leq 3$.

Proof. It follows by Lemma 2.1 that the conclusion holds for proper quotient groups of $G$. Hence we may assume that $G$ has a unique minimal normal subgroup $N$, since the class of $p$-nilpotent groups forms a saturated formation. Clearly, we may assume also that $N$ is an elementary abelian group of order $r^{n}$ for a prime $r$ and a natural number $n$. Obviously $r=p$. Let $M$ be a maximal normal subgroup of $G$. Then $|G / M|=q$ is a prime. By Lemma 2.1, $M$ satisfies the
assumptions of the theorem and therefore it is $p$-nilpotent. If $q=p$, then it follows that the normal $p$-complement of $M$ is also the normal $p$-complement of $G$, a contradiction. So we have $q \neq p$. Since $G / N$ is $p$-nilpotent and it has no quotient group of order $p$, we have $G / N$ is a $p^{\prime}$-group. If $M \neq N$, then $O_{p^{\prime}}(M) \neq 1$ since $M$ is $p$-nilpotent. Hence $N \leq O_{p^{\prime}}(M)$ by the uniqueness of $N$, a contradiction. Therefore $M=N$ and $|G / N|=q$. If $n=1$, then we have $q \mid p-1$, since $|G / N|=\left|N_{G}(N) / C_{G}(N)\right|$ divides $|\operatorname{Aut}(N)|$. This is a contradiction. Hence $n \geq 2$. By the Schur-Zassenhaus Theorem, $G=N\langle x\rangle$, where $o(x)=q$. If there is an element $u(\neq 1) \in N$ such that $u \in N_{G}(\langle x\rangle)$, then $u \in Z(G)$ since $N$ is abelian. Thus, $N=\langle u\rangle \leq Z(G)$, a contradiction. Hence, we obtain $N_{G}(\langle x\rangle)=\langle x\rangle$. This implies that $p^{2} \| G: N_{G}(\langle x\rangle) \mid$, a contradiction too.

It remains to prove that $c l(P) \leq 3$. It follows by the first part of the proof that $P \cong G / O_{p^{\prime}}(G)$. Thus $P$ satisfies the assumptions of the theorem. Let $x \in P$, by the hypothesis, $\left|P: N_{P}(\langle x\rangle)\right| \leq p$, and so $\Phi(P) \leq N_{P}(\langle x\rangle)$ for all $x \in P$, giving $\Phi(P) \leq \operatorname{Norm}(P) \leq Z_{2}(P)$. Hence $c l(P) \leq 3$. Our proof is complete now.

The following two theorems give some sufficient conditions for a group to be supersolvable.

Theorem 3.4 Let $G$ be a solvable group. Suppose that $\left|G: N_{G}(\langle x\rangle)\right|$ is a squarefree number for all $x \in G$ of prime power order. Then $G$ is supersolvable.

Proof. Assume that the result is false and $G$ be a counterexample of minimal order. Since $G$ is solvable, we have that $G$ has a minimal normal subgroup $N$ of order $p^{n}$, where $p$ is a prime and $n$ is a natural number. Since the class of supersolvable groups forms a saturated formation, we may suppose that $N$ is a unique minimal normal subgroup of $G$ and $\Phi(G)=1$. If $n=1$, then $G$ is supersolvable since $G / N$ is supersolvable, which contradicts to the choice of $G$. Hence $n>1$. Since $N \not \leq \Phi(G)$, there exists a maximal subgroup $M$ of $G$ such that $G=M N, M \cap N=1$, and $M \cong G / N$ is supersolvable. Let $Q$ be a minimal normal subgroup of $M$. Then $Q=\langle x\rangle$, and $N_{G}(\langle x\rangle) \geq M$, where $x \in M$ is of prime order. Assume that $N_{G}(\langle x\rangle) \cap N \neq 1$, then $N_{G}(\langle x\rangle)=G$. Hence $Q \unlhd G$. This implies that $G$ is supersolvable since $G / Q$ is supersolvable, a contradiction. Now,

$$
p<p^{n}| | N N_{G}(\langle x\rangle): N_{G}(\langle x\rangle)\left|=\left|G: N_{G}(\langle x\rangle)\right|,\right.
$$

contrary to the hypothesis. The proof is hence completed.
Recall that a subgroup $K$ of a group $G$ is said to be quasi-normal in $G$ if $K H=H K$ for any subgroup $H$ of $G$.

Theorem 3.5 Let $A$ and $B$ be quasi-normal subgroups of a solvable group $G$ such that $G=A B$. Suppose that $\left|G: N_{G}(\langle x\rangle)\right|$ is a square-free number for every $x \in A \cup B$ of prime power order. Then $G$ is supersolvable.

Proof. Assume that the theorem is not true and $G$ a counterexample of minimal order. Because supersolvable groups form a saturated formation, we may suppose
that $G$ has a unique minimal normal subgroup $N$ and $\Phi(G)=1$. Let $|N|=p^{n}$ for a prime $p$ and a natural number $n$, then $n>1$. Obviously, $F(G)=N=C_{G}(N)$. If either $A_{G}=1$ or $B_{G}=1$, then either $A$ or $B$ is nilpotent by Lemma 2.5. Therefore, by Lemma 2.6 we obtain $G$ is supersolvable, a contradiction. Now, we have $N \leq A_{G}$ and $N \leq B_{G}$ by the uniqueness of $N$. Since $A$ and $B$ are quasi-normal in $G, F(A)$ and $F(B)$ are contained in $F(G)=N$. Therefore, $F(A)=F(B)=N$.

Let $q$ be the largest prime divisor of $|A|$, and $S_{q} \in \operatorname{Syl}_{q}(A)$. Then $S_{q} \unlhd A$ since $A$ is supersolvable and $S_{q} \leq N$. This implies that $p=q$ and $N$ is the Sylow $p$ - subgroup of $A$. By the same reason, we know that $p$ is the largest prime divisor of $|B|$ and $N$ is a Sylow subgroup of $B$. Therefore, $N$ is a Sylow subgroup of $G$ and $p$ is the largest prime divisor of $|G|$. Let $K / N$ be a minimal normal subgroup of $G / N$. By a result of [9], we may assume that $K \leq A$ or $K \leq B$. Since $G / N$ is supersolvable, we have $|K / N|=q$ is a prime, which is not equal to $p$. By the Schur-Zassenhaus Theorem, $K=N\langle v\rangle$, where $o(v)=q$. If there is an element $u(\neq 1) \in N$ such that $u \in N_{K}(\langle v\rangle)$, then $u \in Z(K)$ since $N$ is abelian. Thus, we have either $Z(K)=K$ or $Z(K)<N$, a contradiction. Hence we obtain $N_{K}(\langle v\rangle)=\langle v\rangle$. This implies that $|N|=\left|K: N_{K}(\langle v\rangle)\right|$, that is, $p^{2} \| K: N_{K}(\langle v\rangle) \mid$, contrary to the hypothesis. The proof is complete.

Acknowledgements. This work is supported by the National Scientific Foundation of China (No:11301426 and No: 11471055)the Scientific Research Foundation of SiChuan Provincial Education Department (No:14ZA0314) and the Scientific Research Foundation of CUIT (No: J201418).

## References

[1] Ballester-Bolinches, A., Cossey, J., Pedraza-Aguilera, M.C., On products of finite supersolvable groups, Comm. Algebra, 29 (7) (2001), 31453152.
[2] Berkovich, Y., Kazarin, L., Indices of elements and normal structure of finite groups, J. Algebra, 283 (2005), 564-583.
[3] Deskins, W.E., On quasinormal subgroups of finite groups, Math. Z., 82 (1963), 125-132.
[4] Feit, W., Thompson, J.G., Solvability of groups of odd order, Pacific Journal of Mathematics, 13 (1963), 775-1029.
[5] Gorenstein, D., Finite Groups, Chelsea, New York, 1980.
[6] Guo, W.B., The theory of classes of groups, Science Press-Kluwer Academic Publishers, Beijing, New York, 2000.
[7] Guralnick, R.M., Subgroups of prime power index in a simple group, J. Algebra, 81 (1983), 304-311.
[8] Huppert, B., Endliche Gruppen. I, Berlin, 1967.
[9] Ito, N., Uber das Produkt Von zwei wbelschen Gruppen, Math. Z., 62 (1995), 400-401.
[10] Liu, X.L., Wang, Y.M., Wei, H.Q., Notes on the length of conjugacy classes of finite groups, J. Pure and App. Algebra, 196 (2005), 111-117.
[11] Schenkman, E., On the norm of a group, Illinois J. Math., 4(1960), 150-152.
[12] Zhang, J.P., Sylow numbers of finite groups, J. Algebra, 176 (1995), 111123.

Accepted: 20.06.2013

