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1. Introduction

One of the questions that were studied extensively is what can be said about the
structure of the group G if some information is known about the arithmetical
structure of Con(G), the set of the conjugacy classes of G. Answers in many
cases were given. On the other hand, few studies about the conjugacy classes of
subgroups of a group G were done. In [12], the author proved that a finite group
G is p-nilpotent for some prime p if and only if (p, |G : NG(Q)|) = 1 for any Sylow
subgroups Q of G. In the same paper, the author showed also that if |G : NG(Q)|
is square-free for any Sylow subgroups Q of G, then either G is supersolvable or
G = HK, where H is normal in G and H = PSL(2, p) or SL(2, p) for some
prime p = 8k + 5, K is a supersolvable subgroup of G. Guo Wenbin proved in
[6] that if |G : NG(Q)| is prime power numbers for any Sylow subgroups Q of
G, then G is solvable. Further, if |G : NG(Q)| is prime power numbers or odd
numbers, then G is a solvable group. Recently, in [2], Berkovich and Kazarin
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showed that G is solvable with nl(G) ≤ 2 if |G : NG(H)| is a power of a prime for
all primary subgroup H ≤ G. In this paper, we consider the conjugacy class sizes
of subgroups of a finite groups G and investigate the influences of conjugacy class
sizes of subgroups of G on the structure of G.

In what follows, G is a finite group of order |G|; π(G) denotes the set of all
prime divisors of |G|; nl(G) denotes the nilpotent length of |G| and cl(G) denotes
the nilpotent class of |G|. The p-length of |G| is denoted by lp(G). All further
unexplained notation and terminologies are standard can be found in [5].

2. Preliminaries

In this section, we give some lemmas which are useful in the sequel.

Lemma 2.1 Let N E G, and H ≤ G. Then

(1) |N : NN(H)| and |G : NG(H)| divide |G : NG(H)|, if N is contained in H,
where G = G/N .

(2) |G : NG(NH)| divides |G : NG(H)|.

Proof. (1) Clearly,

|N : NN(H)| = |NNG(H) : NG(H)|,

which divides |G : NG(H)|.
Also

|G : NG(H)|||G : NG(H)N | = |G : NG(H)N |.
On the other hand,

|G : NG(H)| = |G : NG(H)N ||NG(H)N : NG(H)|.

Hence

|G : NG(H)|||G : NG(H)|.
(2) follows by the fact that NG(H) ≤ NG(NH).

Lemma 2.2 Suppose that π ⊆ π(G) and x ∈ H, where H is a π-Hall subgroup
of group G. If |G : NG(〈x〉)| is a π-number. Then 〈x〉 ≤ Oπ(G).

Proof. Indeed, G = NG(〈x〉)H. So 〈x〉G = 〈x〉NG(〈x〉)H = 〈x〉H ≤ H.

Lemma 2.3 Let G be a group and p be the smallest odd prime divisor of |G|.
Suppose that there exits an element x of order p such that |G : NG(〈x〉)| is a
power of two. Then G is not a non-abelian simple group.
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Proof. Assume that G is a non-abelian simple group, H = NG(〈x〉) is a proper
subgroup of G with index of 2α, where α is a natural number. Then G is one of
the groups list in theorem 1 of [7].

If G = A2n , then H = A2n−1. As 2n > 6, we obtain that A2n−1 is also a
simple group. This is impossible.

If G = PSL(n, q), then |G : NG(〈x〉)| = qn−1
q−1

. It is easy to check that n = 2

and q = 2α − 1 is a prime in this case. Hence, |NG(〈x〉)| = q(q − 1). Suppose
that o(x) = q, then q − 1 = 2α − 2 is a divisor of |G|. Hence 2α − 2 = 2β by the
choice of x, where α, β are both natural numbers. Therefore, α = 2, and q = 3,
a contradiction. Hence, we may assume that o(x)|q − 1. Since NG(〈x〉)/CG(〈x〉)
is isomorphic to some subgroups of Aut(〈x〉), we have |NG(〈x〉)| = q(q − 1) is a
divisor of |CG(〈x〉)||Aut(〈x〉)|. On the other hand, by the structure of PSL(2, q)
we know that q 6 ||CG(〈x〉)|, which implies that (|CG(〈x〉)||Aut(〈x〉)|, q) = 1. Thus,
we obtain a contradiction.

Assume that G = PSL(2, 11). Then, NG(〈x〉) = H = A5. Hence, we obtain
〈x〉E A5, a contradiction.

If G = M23, then H = M22. Since in this case |G : NG(〈x〉)| = 23 6= 2α,
we get a contradiction. Similarly, we have that G 6= M11 and PSU(4, 2), a final
contradiction. The proof is complete.

Lemma 2.4 [4] Every group of odd order is solvable.

Lemma 2.5 [3, Theorem 1] If the subgroup H of the group G is quasinormal in
G, then H/HG is nilpotent.

Lemma 2.6 [1, Theorem 3] Let the group G = HK be the m-permutable product
of the subgroups H and K. Assume that H is supersolvable and K is nilpotent.
If K permutes with every Sylow subgroup of H, then G is supersolvable.

3. Main results

We first prove the following:

Theorem 3.1 Let p be the minimal odd divisor of |G|. Suppose that |G : NG(〈x〉)|
is a power of two for any element x ∈ G of order p. Then G is p-solvable.

Proof. Assume that the theorem is false and let G be a counterexample of
minimal order. Then we have:

(1) Any nontrivial normal subgroup of G is p-solvable and Op′(G) = 1.

This follows by Lemma 2.1 and the choice of G.

(2) Op(G) > 1.

It follows by Lemma 2.3 that there exists a nontrivial minimal normal sub-
group N of G. By Lemma 2.1, N is p-solvable. Since Op′(N) ≤ Op′(G) = 1, we
obtain Op′(N) = 1. Hence 1 < Op(N) ≤ Op(G).
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(3) Every subgroup of order p is contained in Op(G).

Suppose that there is a subgroup 〈x〉 of order p such that 〈x〉 is not con-
tained in Op(G). It follows that |G : NG(〈x〉)| is a power of two by hypothesis.
Hence NG(〈x〉) contains a Sylow p-subgroup of G, giving Op(G) ≤ NG(〈x〉). Let
C = CG(Op(G)). Then 〈x〉 ≤ C E G, and Op(C) = Op(G) and hence Opp′(C) =
Op(C)×H, where, H is a nontrivial p′-group. Therefore, 1 < H < Op′(G) = 1, a
contradiction. Hence C = G.

Let G = G/Op(G), and x = xOp(G) be an element of order p. Then

|G : NG(〈x〉)|||G : NG(〈x〉)|
is a power of two. Again by Lemma 2.3, G is not a non-abelian simple group.
Hence there exists a normal subgroup N of G such that Op(G) < N < G. Now,
Op(N) = Op(G) ≤ Z(G). This implies that Op′(G) > 1, which contradicts to (1).

(4) G/M is a non-abelian simple group and p||G/M |, where M be a maximal
normal subgroup of G which is p-solvable.

This follows immediately by (1).

(5) The final contradiction.

Let S0 be a Sylow 2-subgroup of M and H = NG(S0). Then, by Frattini
argument, we obtain that G = MH. It follows by (4) that H/H ∩M ∼= G/M is
a non-abelian simple group and p||G/H/H ∩M |. Let D = CH(Op(H)). Then D
is p-nilpotent by Ito’ theorem. Since (H ∩M)D/H ∩M is normal in H/H ∩M ,
we have D ≤ H ∩M .

By Lemma 2.4, there is a Sylow 2-subgroup S of G such that S0 < S and
S ≤ H. Let S1/S0 be a subgroup of order two of Z(S/S0). Then S1 = S0〈u〉,
where u2 ∈ S0 and S0 E S1. Let K = Op(H)S1. If S1 is normal in K, then
S0 ≤ CH(Op(H)) = D ≤ H ∩M , which contradicts to the fact that S1 be a Sylow
2-subgroup of M . Therefore, K has no normal Sylow 2-subgroup, of course K
is not nilpotent. Suppose that W is a minimal non-nilpotent group of K. Then
W = X〈v〉, where o(v) = 2α, Φ(〈v〉) = 〈v2〉 ≤ Z(W ), the center of W , and X
is a normal p-group of W of exponent p. Now, 〈v〉 acts irreducible on X/Φ(X)
and v induces an automorphism of order two of X/Φ(X). Hence, |X/Φ(X)| = p
and X = 〈x〉 is a cyclic group of order p. Further, S0 ≤ CG(〈x〉) < NG(〈x〉). So
NG(〈x〉) contains S0〈v〉, a Sylow 2-subgroup of K. Without lose of generality, we
may assume S1 = S0〈v〉. Now, |G : NG(〈x〉)| is a power of two by assumption.
Thus G = NG(〈x〉)S. If G = NG(〈x〉), then CG(〈x〉) E G. By (1), CG(〈x〉) is
p-solvable, of course we have G is p-solvable, a contradiction. If G > NG(〈x〉),
we have

SG
1 = S

SNG(〈x〉)
1 = S

NG(〈x〉)
1 ≤ NG(〈x〉)

since S1/S0 ≤ Z(S/S0). Hence SG
1 is p-solvable, and we have SG

1 ≤ M . Therefore,
|M |2 = |S0| < |S1| ≤ |M |2, the final contradiction. This completes our proof.

Theorem 3.2 Let G be a group. If |G : NG(〈x〉)| is a power of a prime for all
x ∈ G of prime power order. Then G is solvable with nl(G) ≤ 2 and lp(G) ≤ 1
for any prime divisor p of |G|.
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Proof. First of all, G is not a non-abelian simple group. Suppose G is simple.
Then |π(G)| ≥ 3. Let P ∈ Sylp(G), and x ∈ Z(P ), the center of P , where
p ∈ π(G). Then, by hypothesis |G : NG(〈x〉)| is power of a prime r, which is
different from p. Let R be a Sylow r-subgroup of G and let y ∈ Z(R). Then
|G : NG(〈y〉)| is also a power of a prime. It is well known that G must be the
simple group PSL(2, 7) (see [7, p.304, Note]). Obviously, PSL(2, 7) can not
satisfy the hypothesis of our Theorem. This is a contradiction. Hence G is not a
non-abelian simple group and there exists a proper normal subgroup N in G. By
Lemma 2.1, G/N and N are all solvable groups, therefor G is solvable.

In order to prove that lp(G) ≤ 1, we suppose G is a counterexample of minimal
order. Then by [8, Lemma 6.9, VI], we know Φ(G) = 1 and F (G) = Op(G) is the
unique minimal normal subgroup of G. Hence there exists a proper subgroup M of
G such that G = F (G)oM , the semiproduct of F (G) and M . Let Mp ∈ Sylp(M)
and x ∈ Z(Mp). Then F (G) is not contained in NG(〈x〉). Otherwise we have that
x ∈ CG(F (G)), a contradiction since CG(F (G)) ≤ F (G). Thus |G : NG(〈x〉)| is a
power of p. By Lemma 2.2, x ∈ Op(G) = F (G), a contradiction. Then we obtain
that F (G) must be a Sylow subgroup of G. Therefore, lp(G) = 1, and G is not a
counterexample, a contradiction too.

Now, we will show that nl(G) ≤ 2. Assume that G is a counterexample of
minimal order. Since F (G/Φ(G)) = F (G)/Φ(G), we have Φ(G) = 1 by induction.
Moreover, F (G) = Op(G) is the unique minimal normal subgroup of G. Hence,
there exists a proper subgroup M of G such that G = F (G) o M . By using
the same argument as the above, we get M is a p′-group and |G : NG(〈x〉)| is a
power of p for any x ∈ M of prime power order. It follows by Lemma 2.1 that
|G : NG(F (G)〈x〉)| divides |G : NG(〈x〉)|. However, |G : NG(F (G)〈x〉)| is coprime
to p since F (G) is the Sylow p-subgroup of G. Hence F (G)〈x〉 is normal in G,
which implies that all cyclic subgroup of G/F (G) is normal in G/F (G). Hence
G/F (G) is a Dedekind group, and nl(G) ≤ 2, which contradicts to the choice of
G. The proof is complete.

Moreover, for a group G, let Norm(G) = ∩{NG(〈a〉)|∀a ∈ G}. Then, we
have Norm(G) ≤ Z2(G) by [11].

The following theorem gives a sufficient condition for a group to be p-nilpotent.

Theorem 3.3 Let G be a solvable group and p a prime divisor of |G| such that q
does not divide p − 1 for any prime divisor q of |G|. Suppose that |G : NG(〈x〉)|
is not divided by p2 for any x ∈ G of prime power order. Then G is a p-nilpotent
group. Furthermore, if P is a Sylow p-subgroup of G, then cl(P ) ≤ 3.

Proof. It follows by Lemma 2.1 that the conclusion holds for proper quotient
groups of G. Hence we may assume that G has a unique minimal normal subgroup
N , since the class of p-nilpotent groups forms a saturated formation. Clearly, we
may assume also that N is an elementary abelian group of order rn for a prime
r and a natural number n. Obviously r = p. Let M be a maximal normal
subgroup of G. Then |G/M | = q is a prime. By Lemma 2.1, M satisfies the
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assumptions of the theorem and therefore it is p-nilpotent. If q = p, then it
follows that the normal p-complement of M is also the normal p-complement of
G, a contradiction. So we have q 6= p. Since G/N is p-nilpotent and it has
no quotient group of order p, we have G/N is a p′-group. If M 6= N , then
Op′(M) 6= 1 since M is p-nilpotent. Hence N ≤ Op′(M) by the uniqueness of N , a
contradiction. Therefore M = N and |G/N | = q. If n = 1, then we have q|p− 1,
since |G/N | = |NG(N)/CG(N)| divides |Aut(N)|. This is a contradiction. Hence
n ≥ 2. By the Schur-Zassenhaus Theorem, G = N〈x〉, where o(x) = q. If there is
an element u(6= 1) ∈ N such that u ∈ NG(〈x〉), then u ∈ Z(G) since N is abelian.
Thus, N = 〈u〉 ≤ Z(G), a contradiction. Hence, we obtain NG(〈x〉) = 〈x〉. This
implies that p2||G : NG(〈x〉)|, a contradiction too.

It remains to prove that cl(P ) ≤ 3. It follows by the first part of the proof
that P ∼= G/Op′(G). Thus P satisfies the assumptions of the theorem. Let x ∈ P ,
by the hypothesis, |P : NP (〈x〉)| ≤ p, and so Φ(P ) ≤ NP (〈x〉) for all x ∈ P , giving
Φ(P ) ≤ Norm(P ) ≤ Z2(P ). Hence cl(P ) ≤ 3. Our proof is complete now.

The following two theorems give some sufficient conditions for a group to be
supersolvable.

Theorem 3.4 Let G be a solvable group. Suppose that |G : NG(〈x〉)| is a square-
free number for all x ∈ G of prime power order. Then G is supersolvable.

Proof. Assume that the result is false and G be a counterexample of minimal
order. Since G is solvable, we have that G has a minimal normal subgroup N
of order pn, where p is a prime and n is a natural number. Since the class of
supersolvable groups forms a saturated formation, we may suppose that N is
a unique minimal normal subgroup of G and Φ(G) = 1. If n = 1, then G is
supersolvable since G/N is supersolvable, which contradicts to the choice of G.
Hence n > 1. Since N � Φ(G), there exists a maximal subgroup M of G such
that G = MN , M ∩N = 1, and M ∼= G/N is supersolvable. Let Q be a minimal
normal subgroup of M . Then Q = 〈x〉, and NG(〈x〉) ≥ M , where x ∈ M is of
prime order. Assume that NG(〈x〉) ∩ N 6= 1, then NG(〈x〉) = G. Hence Q E G.
This implies that G is supersolvable since G/Q is supersolvable, a contradiction.
Now,

p < pn||NNG(〈x〉) : NG(〈x〉)| = |G : NG(〈x〉)|,
contrary to the hypothesis. The proof is hence completed.

Recall that a subgroup K of a group G is said to be quasi-normal in G if
KH = HK for any subgroup H of G.

Theorem 3.5 Let A and B be quasi-normal subgroups of a solvable group G
such that G = AB. Suppose that |G : NG(〈x〉)| is a square-free number for every
x ∈ A ∪B of prime power order. Then G is supersolvable.

Proof. Assume that the theorem is not true and G a counterexample of minimal
order. Because supersolvable groups form a saturated formation, we may suppose
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that G has a unique minimal normal subgroup N and Φ(G) = 1. Let |N | = pn for
a prime p and a natural number n, then n > 1. Obviously, F (G) = N = CG(N).
If either AG = 1 or BG = 1, then either A or B is nilpotent by Lemma 2.5.
Therefore, by Lemma 2.6 we obtain G is supersolvable, a contradiction. Now,
we have N ≤ AG and N ≤ BG by the uniqueness of N . Since A and B are
quasi-normal in G, F (A) and F (B) are contained in F (G) = N . Therefore,
F (A) = F (B) = N .

Let q be the largest prime divisor of |A|, and Sq ∈ Sylq(A). Then Sq E A
since A is supersolvable and Sq ≤ N . This implies that p = q and N is the
Sylow p- subgroup of A. By the same reason, we know that p is the largest prime
divisor of |B| and N is a Sylow subgroup of B. Therefore, N is a Sylow subgroup
of G and p is the largest prime divisor of |G|. Let K/N be a minimal normal
subgroup of G/N . By a result of [9], we may assume that K ≤ A or K ≤ B.
Since G/N is supersolvable, we have |K/N | = q is a prime, which is not equal to
p. By the Schur-Zassenhaus Theorem, K = N〈v〉, where o(v) = q. If there is an
element u(6= 1) ∈ N such that u ∈ NK(〈v〉), then u ∈ Z(K) since N is abelian.
Thus, we have either Z(K) = K or Z(K) < N , a contradiction. Hence we obtain
NK(〈v〉) = 〈v〉. This implies that |N | = |K : NK(〈v〉)|, that is, p2‖K : NK(〈v〉)|,
contrary to the hypothesis. The proof is complete.
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