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1. Introduction

Let Mn(C) be the set of n× n complex matrices and A be a non-singular matrix
in Mn(C). Consider the linear system

Ax = b(1.1)

and let A(k) = (a
(k)
ij ) be the matrix resulted from applying the first k(1 ≤ k ≤ n−1)

steps of Gaussian elimination to A; in particular, A(n−1) is the upper triangular
matrix obtained from the LU factorization of A.

The quantity

ρn(A) =
max
i,j,k

|a(k)
ij |

max
i,j

|aij|(1.2)

is called the growth factor (in Gaussian elimination) of A.
For any A = (aij) ∈ Mn(C), A∗ stands for the conjugate transpose of A.

Similarly, x∗ means the conjugate transpose of x for any x ∈ C. A ∈ Mn(C) is
accretive-dissipative if it can be written as

A = B + iC,(1.3)

where B and C are both (Hermitian) positive definite.
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If B, C are real symmetric positive definite in (1.3), then A is called a Higham
matrix.

For nonsingular matrix A, its condition number is denoted by

κ(A) :=

√
λmax(A∗A)

λmin(A∗A)

which is the ratio of largest and smallest singular values of A.
It is conjectured in [1] that

ρn(A) ≤ 2(1.4)

for any Higham matrix A.
It is proved in [1] that if A in (1.1) is a Higham matrix, then no pivoting is

needed in Gaussian elimination.
George et al. obtained the following result in [2]:

Theorem 1 Let A ∈ Mn(C) be accretive-dissipative. Then

ρn(A) < 3
√

2.(1.5)

Furthermore, if A is a Higham matrix, then

ρn(A) < 3.(1.6)

They proved Theorem 1 by the Theorem 2 in [2] below:

Theorem 2 Let A ∈ Mn(C) be accretive-dissipative. Then

|a(k)
ij |
|aij| < 3, j = 1, . . . , n; k = 1, . . . , n− 1.(1.7)

Lin [3] got a stronger result as follows:

Theorem 3 Let A ∈ Mn(C) be accretive-dissipative. Then

|a(k)
ij |
|aij| < 2

√
2, j = 1, . . . , n; k = 1, . . . , n− 1.(1.8)

Consequently,

ρn(A) < 4.(1.9)

If A is a Higham matrix, then

ρn(A) < 2
√

2.(1.10)
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2. The main theorem

In this paper, we show a refinement of (1.8) which is a main result. Moreover, we
get the refinements of (1.9) and (1.10):

Theorem 4 Let A ∈ Mn(C) be accretive-dissipative. Then

(2.1)
|a(k)

ij |
|aij| <

[
1 +

(
1− κ

1 + κ

)2
]√

2, j = 1, ..., n; k = 1, ..., n− 1,

Consequently, ρn(A) < 2
[
1 +

(
1−κ
1+κ

)2
]
. If A is a Higham matrix, then

ρn(A) <

[
1 +

(
1− κ

1 + κ

)2
]√

2,

where κ ∈ [1, +∞) is the maximum of the condition numbers of B and C.

Proof. We fix numbers k ∈ 1, 2, ..., n− 1 and j, where j ≥ k + 1. Denote by Ak,
Bk and Ck, respectively, the leading principal order k submatrices in A, B and C.
Consider the (k + 1)× (k + 1) matrix

Akj =

(
Ak u
vT ajj

)

where
uT = (a1j, a2j, ..., akj)

and
vT = (aj1, aj2, ..., ajk).

Note that Akj is a principal order k + 1 submatrix in A.
Defining the vectors

bT = (b1j, b2j, ..., bkj)

and
cT = (c1j, c2j, ..., ckj),

we can rewrite Akj as

Akj =

(
Bk + iCk b + ic
b∗ + ic∗ bjj + icjj

)

It is easy to see that a
(k)
jj can be obtained by performing block Gaussian

eliminations in Akj; namely,

a
(k)
jj = ajj − vT A−1

k u = bjj + icjj − (b∗ + ic∗)(Bk + iCk)
−1(b + ic).

Setting
a

(k)
jj = β + iγ, β, γ ∈ R,
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we have by [2, Theorem 2.1]

β = bjj − b∗Xkb + c∗Xkc− b∗Ykc− c∗Ykb

and

γ = cjj + b∗Ykb− c∗Ykc− b∗Xkc− c∗Xkb,

where

Xk = (Bk + CkB
−1
k Ck)

−1(2.2)

Yk = (Ck + BkC
−1
k Bk)

−1(2.3)

with

(
Bk b
b∗ bjj

)
and

(
Ck c
c∗ cjj

)
(2.4)

positive definite. It is known that β, γ > 0.

By simple computation, we have

±(b∗Ykc + c∗Ykb) ≤ b∗Ykb + c∗Ykc;(2.5)

±(b∗Xkc + c∗Xkb) ≤ b∗Xkb + c∗Xkc.(2.6)

From (2.2) and (2.3) we have [2, Lemma 2.3]

Xk ≤ 1

2
C−1

k and Yk ≤ 1

2
B−1

k .(2.7)

From (2.4) and [4, (6)], we get

(
λ1 − λn

λ1 + λn

)2bjj ≥ b∗B−1
k b and (

λ
′
1 − λ

′
n

λ
′
1 + λ′n

)2cjj ≥ c∗C−1
k c(2.8)

In (2.8), λ1 and λn (λ
′
1 and λ

′
n) are the largest and the smallest eigenvalues of B

(C), respectively.
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Note that f(x) = (x−1
x+1

)m(m ≥ 1) is increasing for x ∈ [1,∞). Then we have

|a(k)
jj | = |β + iγ|

≤ β + γ

= bjj − b∗Xkb + c∗Xkc− b∗Ykc− c∗Ykb

+cjj + b∗Ykb− c∗Ykc− b∗Xkc− c∗Xkb

≤ bjj − b∗Xkb + c∗Xkc + (b∗Ykb + c∗Ykc) (by (2.5))

+ cjj + b∗Ykb− c∗Ykc + (b∗Xkb + c∗Xkc) (by (2.6))

= bjj + 2b∗Ykb + cjj + 2c∗Xkc

≤ bjj + b∗B−1
k b + cjj + c∗C−1

k c (by (2.7))

≤ bjj +

(
λn − λ1

λn + λ1

)2

bjj + cjj +

(
λ
′
n − λ

′
1

λ′n + λ
′
1

)2

cjj (by (2.8))

=

[
1 +

(
λn − λ1

λn + λ1

)2
]

bjj +

[
1 +

(
λ
′
n − λ

′
1

λ′n + λ
′
1

)2
]

cjj

≤
[
1 +

(
1− κ

1 + κ

)2
]

(bjj + cjj)

≤
[
1 +

(
1− κ

1 + κ

)2
]√

2|bjj + icjj|

=

[
1 +

(
1− κ

1 + κ

)2
]√

2|ajj|.

where κ =max( λ1

λn
,

λ
′
1

λ
′
n
) ≥ 1, i.e., the maximum of the condition numbers of B

and C. This completes the proofs of (2.1).

It is easy to know that
[
1 +

(
1−κ
1+κ

)2
]√

2 < 2
√

2 for κ ∈ [1, +∞). So (2.1) is a

refinement of (1.8).
To show the remaining claims, we need the following facts:

Fact1. [2, Corollary 2.3] The property of being an accretive-dissipative matrix is
hereditary under Gaussian elimination.

Fact2. [2, Lemma 2.1, 2.2] If A = (aij) ∈ Mn(C) is accretive-dissipative, then√
2 max

l
|all| ≥ max

l 6=j
|alj|. If A is a Higham matrix, then max

l
|all| ≥ max

l,j
|alj|.

Suppose maxj,k |a(k)
jj | = |a(k0)

j0j0
| for some j0, k0, then by (2.1) the result below

holds:

ρn(A) =
maxi,j,k |a(k)

ij |
maxi,j |aij| ≤

√
2 maxj,k |a(k)

ij |
maxi,j |aij| ≤

√
2|a(k0)

j0j0
|

|aj0j0|
< 2

[
1 +

(
1− κ

1 + κ

)2
]

.

Similarly, if A is a Higham matrix, then ρn(A) <
[
1 +

(
1−κ
1+κ

)2
]√

2. The proof is

thus complete.
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3. Conclusion

Our results in Theorem 4 are refinements of the results in Lin [3, Theorem 3].
Although it is a minor improvement, the result is much closer to the final solution
of Higham’s conjecture.
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