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Abstract. In this paper, we consider explicit representations and convergence of
Lagrange–Hermite Interpolation on two disjoint set of nodes, which are obtained by
projecting vertically the zeros of

(
1− x2

)
P

(α,β)
n (x) and

(
1− x2

)
P

(α,β)′
n (x) respectively

on the unit circle, where P
(α,β)
n (x) stands for Jacobi polynomials.
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1. Introduction

In 1975, L.G. Pál [10] introduced a new type of interpolation on the zeros of two
different polynomials. He considered two systems of real numbers {xn}n

k=0 and
{x∗n}n−1

k=0 , which are the zeros of Wn (x) and W ′
n (x) respectively, then there exists

a unique polynomials P (x) of degree at most 2n− 1 satisfying the interpolatory
properties:

P (xk) = yk, k = 1 (1) n,

P ′ (x∗k) = yk, k = 1 (1) n− 1,

and gave the explicit formulae of this polynomial. In another paper, L.G. Pál
[11] considered the (0; 0, 1)-Interpolation and obtained the convergence for the
same. In 2003, H.P. Dikshit [7] also considered the Pál-type interpolation on
non-uniformly distributed nodes on the unit circle. Later on P. Mathur [9] con-
sidered (0, 1; 0) interpolation on infinite interval. P. Mathur and his associates
[13] considered (0; 0, 1) interpolation.
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In a paper, S. Xie [15] considered the regularity of (0, 1, ..., r − 2, r) and
(0, 1, ..., r − 2, r)∗−interpolation on the sets obtained by projecting vertically the

zeros of (1− x2) P
(α,β)
n (x) on the unit circle, where P

(α,β)
n (x) stands for the Jacobi

polynomials. After that S. Bahadur [3, 5] considered (0, 1; 0) and (0; 0, 1) interpo-
lation on the unit circle and establish the convergence theorem for the same. In
another paper, the authors [6] have considered Hermite–Lagrange interpolation
and established a convergence theorem on the unit circle.

In this paper, we consider Lagrange–Hermite interpolation on the unit circle.
Here, we consider two pairwise disjoint sets {zk}2n+1

k=0 and {tk}2n−1
k=0 , which are the

vertically projected zeros of (1− x2) P
(α,β)
n (x) and (1− x2) P

(α,β)′
n (x) on the unit

circle, respectively.
Let Zn and Tn be two sets satisfying:

(1.1)

Zn =





zk : k = 0(1)2n + 1 :

z0 = 1, z2n+1 = −1

zk = cos θk + i sin θk, zn+k = −zk, k = 1 (1) n

and

Tn =





tk : k = 0(1)2n− 1 :

t0 = 1, t2n−1 = −1

tk = cos φk + i sin φk, tn+k = −tk, k = 1 (1) n− 1

,

which are the zeros of (1− x2) P
(α,β)
n (x) and P

(α,β)′
n (x), respectively.

In Section 2, we give some preliminaries and in Section 3, we describe the
problem and obtained the regularity of the same. In Section 4, we give the explicit
formulae of the interpolatory polynomials. In Sections 5 and 6, estimation of
interpolatory polynomials and convergence are given, respectively.

2. Preliminaries

In this section, we shall give some well known results, which we shall use.
The differential equation satisfied by P

(α,β)
n (x) is:

(2.1)
(
1− x2

)
P (α,β)′′

n (x) + [β − α− (α + β + 2) x] P (α,β)′
n (x)

+ n (n + α + β + 1) P
(α,β)
n (x) = 0

(2.2) W (z) =
2n∏

k=1

(z − zk) = KnP
(α,β)
n

(
1 + z2

2z

)
zn

(2.3) H(z) =
2n−2∏

k=1

(z − tk) = K∗
nP (α,β)′

n

(
1 + z2

2z

)
zn−1.
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We shall require the fundamental polynomials of Lagrange interpolation based
on Zn and Tn

(2.4) Lk (z) =
R(z)

R′ (zk) (z − zk)
, k = 0(1)2n + 1,

where R(z) = (z2 − 1) W (z),

(2.5) lk (z) =
H(z)

H ′ (tk) (z − tk)
, k = 1(1)2n− 2.

We will also use the following results

(2.6)
(−1)n W ′ (zn+k) = W ′ (zk) = −1

2
KnP

(α,β)′
n (xk)

(
1− z2

k

)
zn−2

k ,

k = 1 (1) n.

We will also use the following well known inequalities (see [8])

(2.7) (1− x2)
1
2 P

(α,β)
n (x) = o (nα−1) ,

(2.8) (1− x2
k)
−1 ∼

(
k

n

)−2

(2.9)
∣∣∣ P

(α,β)′
n (xk)

∣∣∣ ∼ k−α− 3
2 nα+2

(2.10)
∣∣∣P (α,β)

n (x)
∣∣∣ = o (nα) ,

(2.11) (1− x2)
∣∣∣P (α,β)′

n (x)
∣∣∣ ≤ cnα+1,

(2.12)
∣∣∣ P

(α,β)
n (xk)

∣∣∣ ∼ k−α− 1
2 nα,

(2.13)
∣∣∣ P

(α,β)′
n (x)

∣∣∣ ∼ o (nα+2) .

3. The problem

Let {zk}2n+1
k=0 and {tk}2n−1

k=0 be the two disjoint sets of nodes obtained by projecting

vertically the zeros of (1− x2) P
(α,β)
n (x) and (1− x2)P

(α,β)′
n (x) on the unit circle

respectively, we seek to determine the interpolatory polynomial Rn (z) of degree
≤ 6n− 1 satisfying the conditions:

(3.1)





Rn (zk) = αk, k = 0 (1) 2n + 1,

Rn (tk) = βk, k = 1 (1) 2n− 2,

R′
n (tk) = γk, k = 0 (1) 2n− 1,

where αk, βk and γk are arbitrary complex numbers. We are also interested in
establishing a convergence theorem for the same.
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Regularity

Theorem 1. The Lagrange–Hermite interpolation is regular on Zn and Tn.

Proof. It is sufficient, if we show the unique solution of (3.1) is Rn (z) ≡ 0, when
all data αk = βk = γk = 0. Clearly, in this case we have Rn (z) = R (z) H (z) q (z) ,
where q (z) is a polynomial of degree ≤ 2n− 1.

Let Rn (z) = R (z) H (z) q (z). Obviously, Rn (zk) = 0 and Rn (tk) = 0. Then,
from R′

n (tk) ≡ 0, we have q (tk) = 0. Therefore, q (z) = (az + b) H (z) , where a
and b are arbitrary constants.

As q (±1) = 0, we get a = b = 0. It indicates

Rn (z) ≡ q (z) ≡ 0.

Hence the theorem follows.

4. Explicit representation of interpolatory polynomials

We shall write Rn (z) satisfying (3.1) as

(4.1) Rn (z) =
2n+1∑

k=0

αkAk (z) +
2n−2∑

k=1

βkBk (z) +
2n−1∑

k=0

γkCk (z) ,

where Ak (z) , Bk (z) and Ck (z) are unique polynomials, each of degree atmost
6n− 1 satisfying the following conditions:

For k = 0 (1) 2n + 1

(4.2)





Ak (zj) = δjk; j = 0 (1) 2n + 1,

Ak (tj) = 0; j = 1 (1) 2n− 2,

A′
k (tj) = 0; j = 0 (1) 2n− 1.

For k = 1 (1) 2n− 2

(4.3)





Bk (zj) = 0; j = 0 (1) 2n + 1,

Bk (tj) = δjk; j = 1 (1) 2n− 2,

B′
k (tj) = 0; j = 0 (1) 2n− 1.

For k = 0 (1) 2n− 1

(4.4)





Ck (zj) = 0; j = 0 (1) 2n + 1,

Ck (tj) = 0; j = 1 (1) 2n− 2

C ′
k (tj) = δjk; j = 0 (1) 2n− 1
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Theorem 2. For k = 1(1)2n− 2, we have,

(4.5) Ck (z) =
(z2 − 1) R (z) H (z) lk (z)

(t2k − 1) R (tk) H ′ (tk)
.

For k = 0, 2n− 1

(4.6) Ck (z) = −(1 + tkz) H2 (z) R (z)

2H2 (tk) R′ (tk)
.

Theorem 3. For k = 1(1)2n− 2, we have,

(4.7) Bk (z) =
(z2 − 1) R (z) l2k (z)

(t2k − 1) R (tk)
−

{
2tk

(t2k − 1)
+

R′ (tk)
R (tk)

+
H ′′ (tk)
H ′ (tk)

}
Ck (z) ,

where Ck (z) is given by (4.5).

Theorem 4. For k = 0(1)2n + 1, we have,

(4.8) Ak (z) =
(z2 − 1) H2 (z) Lk (z)

(z2
k − 1) H2 (zk)

.

One can establish Theorems 2, 3 and 4 owing to conditions (4.2) , (4.3) and
(4.4), respectively.

5. Estimation of fundamental polynomials

Lemma 1. [2] Let Lk (z) be given by (2.4). Then

(5.1)
2n+1∑

k=0

| Lk (z) | ≤ c

2n+1∑

k=0

1

k−α+ 3
2

,

where c is a constant independent of n and z.

Lemma 2. [6] Let lk (z) be given by (2.5). Then

(5.2)
2n−2∑

k=1

| lk (z) | ≤ c

2n−2∑

k=1

1

k−α− 1
2

,

where c is a constant independent of n and z.

Lemma 3. Let Ck (z) be given by (4.5),we have

(5.3)
2n−1∑

k=0

|Ck(z)| ≤ c log n, −1 < α ≤ −1

2
, |z| ≤ 1

and c is a constant independent of n and z.
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Proof. From (4.5) and (4.6) using (2.8) , (2.10) , (2.12) and Lemma 2, we get the
required result.

Lemma 4. Let Bk (z) be given by (4.7), we have

(5.4)
2n−2∑

k=1

|Bk(z)| ≤ cn log n, −1 < α ≤ −1

2
, |z| ≤ 1

where c is a constant independent of n and z.

Proof. From (4.6), using (2.7) , (2.8) , (2.12) and Lemmas 2 and 3, we get the
required result.

Lemma 5. Let Ak (z) be given by (4.8), we have

(5.7)
2n+1∑

k=0

|Ak(z)| ≤ cn log n, −1 < α ≤ −1

2
, |z| ≤ 1,

where c is a constant independent of n and z.

Proof. Proof is similar to Lemma 3.

6. Convergence

Let f(z) be analytic for |z| < 1 and continuous for |z| ≤ 1 and ω (f, δ) be the
modulus of continuity of f (eix) .

Theorem 5. Let f(z) be continuous in |z| ≤ 1 and analytic in |z| < 1. Let the
arbitrary numbers βk’s and γ′ks be such that:

(6.1)

{
|βk| = o (ω2(f, n−1)) , k = 1 (1) 2n− 2,

|γk| = o (nω2(f, n−1)) , k = 1 (1) 2n− 2.

Then, {Rn} defined by

(6.2) Rn (z) =
2n+1∑

k=0

f(zk)Ak (z) +
2n−2∑

k=1

βkBk (z) +
2n−1∑

k=0

γkCk (z)

satisfies the relation

(6.3) |Rn (z)− f(z)| = o
(
nω2(f, n−1) log n

)
for − 1 < α ≤ −1

2

where ω2 (f, n−1) is the modulus of continuity of f (z) .

Remark. To prove Theorem 5, we shall need the following:
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Let f(z) be continuous in |z| ≤ 1 and f ′ ∈ Lip ν, ν > 0. Then the sequence
{Rn} converges uniformly to f (z) in |z| ≤ 1, follows from (6.3) provided

(6.4) ω2(f, n−1) = o
(
n−1−ν

)
.

Let f(z) be continuous in |z| ≤ 1 and analytic in |z| < 1. Then there exists
a polynomial Fn(z) of degree 6n− 1 satisfying Jackson’s inequality

(6.5) |Fn (z)− f(z)| ≤ cω2

(
f, n−1

)
, z = eiθ (0 < θ ≤ 2π)

and also an inequality due to O. Kǐs [8]

(6.6)
∣∣F (m)

n (z)
∣∣ ≤ cnmω2

(
f, n−1

)
, for m ∈ I+.

Proof. Since Rn (z) be given by (6.2) is a uniquely determined polynomial of de-
gree ≤ 6n−1, the polynomial Fn (z) satisfying (6.5) and (6.6) can be expressed as

Rn (z) =
2n+1∑

k=0

Fn(zk)Ak (z) +
2n−2∑

k=1

Fn (tk) Bk (z) +
2n−1∑

k=0

F ′
n (tk) Ck (z) .

Then,

|Rn (z)− f(z)| ≤ |Rn (z)− Fn(z)|+ |Fn (z)− f(z)|

≤
2n+1∑

k=0

|f (zk)− Fn(zk)| |Ak(z)|+
2n−2∑

k=1

{|βk|+ |Fn (tk)|} |Bk(z)|

+
2n−1∑

k=0

{|γk|+ |F ′
n (tk)|} |Ck (z)|+ |Fn (z)− f(z)| .

Using z = eiθ (0 < θ ≤ 2π), (6.1), (6.4), (6.5), (6.6) and Lemmas 3, 4 and 5, we
get (6.3).
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[8] Kǐs, O., Remarks on interpolation (Russian), Acta Math. Acad. Sci. Hun-
gar, 11 (1960), 49-64.

[9] Mathur, P., (0, 1; 0)-interpolation on infinite interval (−∞,∞), Analysis
in Theory and Application, 22 (2) (2006), 105-113.

[10] Pál, L.G., A new modification to Hermite-Fejer interpolation, Analysis
Math., (1975), 197-205.

[11] Pál, L.G., A general Lacunary (0; 0, 1)-interpolation process, Annals Univ.
Budapest, Sect.Comp., 16 (1996), 291-301.
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