YOUNG TYPE INEQUALITIES FOR MATRICES

Yang Peng

School of Mathematics and Statistics
Chongqing Three Gorges University
Chongqing, 404100
P.R. China
e-mail: peng_yang2011@163.com

Abstract. In this note, we present a refinement of an inequality due to Hirzallah and Kittaneh [Linear Algebra Appl., 308 (2000), 77-84]. Meanwhile, we also obtain an improvement of a result shown by Kittaneh and Manasrah [Linear Multilinear Algebra, 59 (2011), 1031-1037].

Keywords: Young type inequalities; Hilbert-Schmidt norm; positive semidefinite matrices; Kantorovich constant.

MSC (2010) Subject Classification: 15A60.

1. Introduction

Let M_n be the space of $n \times n$ complex matrices. For $A = (a_{ij}) \in M_n$, the Hilbert-Schmidt norm of A is defined by

$$\|A\|_2 = \left(\sum_{i,j=1}^{n} |a_{ij}|^2 \right)^{1/2}.$$

It is known that the Hilbert-Schmidt norm is unitarily invariant.

The classical Young inequality for scalar says that if a, $b \geq 0$ and $0 \leq v \leq 1$, then

$$a^v b^{1-v} \leq va + (1 - v)b$$

with equality if and only if $a = b$. By using Young’s inequality, we can obtain some results of Heinz mean. For more information on Heinz inequality for matrices the reader is referred to [1]–[3].

The Kontorovich constant is defined as

$$K(t, 2) = \frac{(t + 1)^2}{4t}$$

for $t > 0$. Zuo, Shi, Fujii [4] proved that if a, $b \geq 0$ and $0 \leq v \leq 1$, then

$$K(h, 2)^r a^v b^{1-v} \leq va + (1 - v)b,$$

(1.1)
where $h = \frac{a}{b}$, $r = \min \{v, 1-v\}$. This is a refinement of the classical Young inequality.

Let $A, X, B \in M_n$ such that A and B are positive semidefinite. Kosaki [5] and Bhatia-Parthasarathy [6] proved that if $0 \leq v \leq 1$, then

\begin{equation}
\|A^vXB^{1-v}\|_2^2 \leq \|vAX + (1-v)XB\|_2^2.
\end{equation}

This is a matrix version of Young inequality. Hirzallah and Kittaneh [7] proved that if $0 \leq v \leq 1$, then

\begin{equation}
\|A^vXB^{1-v}\|_2^2 + v_0^2 \|AX - XB\|_2^2 \leq \|vAX + (1-v)XB\|_2^2,
\end{equation}

where $v_0 = \min \{v, 1-v\}$. Inequality (1.3) is an improvement of inequality (1.2).

Kittaneh-Manasrah [8] and He-Zou [9] proved that if $0 \leq v \leq 1$, then

\begin{equation}
\|vAX + (1-v)XB\|_2^2 \leq \|A^vXB^{1-v}\|_2^2 + s_0^2 \|AX - XB\|_2^2,
\end{equation}

where $s_0 = \max \{v, 1-v\}$. Inequality (1.4) is a reverse inequality of (1.3).

In this note, we present refinements of inequalities (1.3) and (1.4).

2. Main results

In this section, we first give a refinement of inequality (1.3). To achieve it, we need the following lemma.

Lemma 2.1. If $a, b \geq 0$ and $0 \leq v \leq 1$, then

\begin{equation}
K(h, 2)^r (a^v b^{1-v})^2 + v_0^2 (a-b)^2 \leq (va + (1-v)b)^2,
\end{equation}

where $h = \frac{a}{b}$, $v_0 = \min \{v, 1-v\}$, $r = \min \{2v_0, 1-2v_0\}$.

Proof. If $v = \frac{1}{2}$, inequality (2.1) becomes equality. If $v < \frac{1}{2}$, then by (1.1), we have

\[(va + (1-v)b)^2 - v_0^2 (a-b)^2 = (va + (1-v)b)^2 - v^2 (a-b)^2 = 2vab + (1-2v)b^2 \geq K(h, 2)^r (a^v b^{1-v})^2.\]

If $v > \frac{1}{2}$, then by (1.1), we have

\[(va + (1-v)b)^2 - v_0^2 (a-b)^2 = (va + (1-v)b)^2 - (1-v)^2 (a-b)^2 = (2v-1) a^2 + 2 (1-v) ab \geq K(h, 2)^r (a^v b^{1-v})^2.\]

This completes the proof. \hfill \blacksquare
Theorem 2.2. Let $A, X, B \in M_n$ such that A and B are positive semidefinite. Suppose that the spectral decomposition of A, B are $A = U\Lambda_1 U^*$, $B = V\Lambda_2 V^*$ respectively, where $\Lambda_1 = \text{diag}(\lambda_1, \ldots, \lambda_n), \Lambda_2 = \text{diag}(\mu_1, \ldots, \mu_n), \lambda_i, \mu_i \geq 0, i = 1, \ldots, n$. Let

$$K = \min \left\{ K \left(\frac{\lambda_i}{\mu_j}, 2 \right), i, j = 1, \ldots, n \right\}.$$

Then

$$K^r \parallel A^v XB^{1-v} \parallel_2^2 + v_0^2 \parallel AX - XB \parallel_2^2 \leq \parallel vAX + (1 - v) XB \parallel_2^2,$$ \hspace{1cm} (2.2)

where $v_0 = \min \{ v, 1 - v \}, r = \min \{2v_0, 1 - 2v_0 \}$.

Proof. Let $Y = U^* XV = [y_{ij}]$. We have as in [10],

$$\parallel vAX + (1 - v) XB \parallel_2^2 = \sum_{i,j=1}^n (v\lambda_i + (1 - v) \mu_j)^2 |y_{ij}|^2,$$

$$\parallel A^v XB^{1-v} \parallel_2^2 = \sum_{i,j=1}^n (\lambda_i^v \mu_j^{1-v})^2 |y_{ij}|^2,$$

$$\parallel AX - XB \parallel_2^2 = \sum_{i,j=1}^n (\lambda_i - \mu_j)^2 |y_{ij}|^2.$$

Inequality (2.2) deduces from inequality (2.1) and above equalities. This completes the proof. \hfill \blacksquare

Next, we show an improvement of inequality (1.4). To do this, we need the following lemma.

Lemma 2.3. If $a, b \geq 0$ and $0 \leq v \leq 1$, then

$$\left(va + (1 - v) b \right)^2 \leq K(h, 2)^{-r} \left(a^v b^{1-v} \right)^2 + s_0^2 (a - b)^2,$$ \hspace{1cm} (2.3)

where $h = \frac{a}{b}, s_0 = \max \{ v, 1 - v \}, r = \min \{2s_0 - 1, 2 - 2s_0 \}$.

Proof. If $v = \frac{1}{2}$, inequality (2.3) becomes equality. If $v < \frac{1}{2}$, then by (1.1), we have

$$s_0^2 (a - b)^2 - (va + (1 - v) b)^2 = (1 - v)^2 (a - b)^2 - (va + (1 - v) b)^2$$

$$= (1 - 2v) a^2 - 2 (1 - v) ab$$

$$= (1 - 2v) a^2 + 2va b - 2ab$$

$$\geq K(h, 2)^{-r} \left(a^v b^{1-v} \right)^2 - 2ab$$

$$\geq -K(h, 2)^{-r} \left(a^v b^{1-v} \right)^2.$$

If $v > \frac{1}{2}$, then by (1.1), we have

$$s_0^2 (a - b)^2 - (va + (1 - v) b)^2 = v^2 (a - b)^2 - (va + (1 - v) b)^2$$

$$= (2v - 1) b^2 - 2va b$$

$$= (2v - 1) b^2 + 2 (1 - v) ab - 2ab$$

$$\geq K(h, 2)^{-r} \left(a^v b^{1-v} \right)^2 - 2ab$$

$$\geq -K(h, 2)^{-r} \left(a^v b^{1-v} \right)^2.$$

\hfill \blacksquare
This completes the proof.

Theorem 2.4. Let \(A, X, B \in M_n \) such that \(A \) and \(B \) are positive semidefinite. Suppose that the spectral decomposition of \(A, B \) are \(A = U\Lambda_1 U^* \), \(B = V\Lambda_2 V^* \) respectively, where \(\Lambda_1 = \text{diag}(\lambda_1, ..., \lambda_n) \), \(\Lambda_2 = \text{diag}(\mu_1, ..., \mu_n) \), \(\lambda_i, \mu_i \geq 0 \), \(i = 1, ..., n \). Let

\[
K = \min \left\{ K \left(\frac{\lambda_i}{\mu_j} \right), i, j = 1, ..., n \right\}.
\]

Then

\[
\| vAX + (1-v)XB \|_2^2 \leq K^{-r} \| A^r XB^{1-r} \|_2^2 + s_0^2 \| AX - XB \|_2^2,
\]

where \(s_0 = \max \{v, 1-v\} \), \(r = \min \{ 2v_0, 1 - 2v_0 \} \).

Proof. The result follows from inequality (2.3) and by using an argument similar to that used for the proof of Theorem 2.2. This completes the proof.

Since \(K(t, 2) = \frac{(t+1)^2}{4t} \geq 1 \) for \(t > 0 \), it follows that inequalities (2.2) and (2.4) are refinements of inequalities (1.3) and (1.4) respectively.

References

Accepted: 06.05.2014