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1. Introduction

Generalized open sets play a very important role in General Topology and they
are now the research topics of many topologists worldwide. Indeed a significant
theme in General Topology and Real analysis concerns the various modified forms
of continuity, separation axioms, etc., by utilizing generalized open sets. One
of the most well known notions and also an inspiration source is the notion of
ω-open [10] sets introduced by H.Z. Hdeib in 1982 and used by Al-Zoubi and
Al-Nashef [1] in 2003. Various types of functions play a significant role in the
theory of classical point set topology. A great number of papers dealing with such
functions have appeared, and a good many of them have been extended to the
setting of multifunction [2], [6],[7], [9], [17], [18]. In this paper, we introduce and
study almost contra-ω-continuous multifunctions between topological spaces and
obtain some characterizations of such multifunctions.

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y ) always mean
topological spaces in which no separation axioms are assumed unless explicitly
stated. For a subset A of (X, τ), Cl(A) and Int(A) denote the closure of A
with respect to τ and the interior of A with respect to τ , respectively. Recently,
as generalization of closed sets, the notion of ω-closed sets were introduced and
studied by Hdeib [10]. A point x ∈ X is called a condensation point of A if for
each U ∈ τ with x ∈ U , the set U ∩ A is uncountable. A is said to be ω-closed
[10] if it contains all its condensation points. The complement of an ω-closed
set is said to be ω-open. It is well known that a subset W of a space (X, τ)
is ω-open if and only if for each x ∈ W , there exists U ∈ τ such that x ∈ U
and U\W is countable. The family of all ω-open subsets of a topological space
(X, τ) denoted by ωO(X, τ), forms a topology on X finer than τ and the family
of all ω-closed subsets of a topological space (X, τ) is denoted by ωC(X, τ). The
ω-closure and the ω-interior, that can be defined in the same way as Cl(A) and
Int(A), respectively, will be denoted by ωCl(A) and ω Int(A), respectively. We set
ωO(X, x) = {A : A ∈ ωO(X) and x ∈ A} and ωC(X, x) = {A : A ∈ ωC(X) and
x ∈ A}. A subset A is said to be regular open [20] (resp. semiopen [13], preopen
[14], α-open [15], semi-preopen [3]) if A = Int(Cl(A)) (resp. A ⊂ Cl(Int(A)),
A ⊂ Int(Cl(A)), A ⊂ Int(Cl(Int(A))), A ⊂ Cl(Int(Cl(A)))). The complement of a
regular open (resp. semiopen, preopen, semi-preopen) set is called a regular closed
(resp. semiclosed, preclosed, semi-preclosed). The intersection of all semiclosed
(resp. preclosed, α-closed, semi-preclosed) subsets of (X, τ) containing A ⊂ X is
called the semiclosure (resp. preclosure, α-closure, semi-preclosure) of A and is
denoted by sCl(A) (resp. pCl(A), αCl(A), spCl(A)). The θ-semiclosure [12] of
A, denoted by sClθ(A), is defined to be the set of all x ∈ X such that A ∩ Cl(U)
̸= ∅ for every semiopen set U containing x. A subset A is called θ-semiclosed [12]
if and only if A = sClθ(A). The complement of a θ-semiclosed set is called a θ-
semiopen set [12]. The family of all regular open (resp. regular closed, semiopen,
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semiclosed, α-open, semi-preopen, semi-preclosed) sets of (X, τ) is denoted by
RO(X) (resp. RC(X), SO(X), SC(X), αO(X), SPO(X), SPC(X)). By a
multifunction F : (X, τ) → (Y, σ), following [4], we shall denote the upper and
lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is, F+(B)
= {x ∈ X : F (x) ⊂ B} and F−(B) = {x ∈ X : F (x) ∩ B ̸= ∅}. In particular,
F−(Y ) = {x ∈ X : y ∈ F (x)} for each point y ∈ Y and for each A ⊂ X, F (A)
= ∪x∈AF (x). Then F is said to be surjection if F (X) = Y and injection if x ̸= y
implies F (x) ∩ F (y) = ∅.

Definition 2.1 A multifunction F : (X, τ) → (Y, σ) is said to be:

1. upper almost ω-continuous [5] if for each point x ∈ X and each open set V
containing F (x), there exists U ∈ ωO(X, x) such that U ⊂ F+(Int(Cl(V )));

2. lower almost ω-continuous [5] if for each point x ∈ X and each open set
V such that F (x) ∩ V ̸= ∅, there exists U ∈ ωO(X, x) such that U ⊂
F−(Int(Cl(V ))).

3. upper contra-ω-continuous [6] if for each point x ∈ X and each closed set V
containing F (x), there exists U ∈ ωO(X, x) such that U ⊂ F+(V );

4. lower contra-ω-continuous [6] if for each point x ∈ X and each closed set V
such that F (x) ∩ V ̸= ∅, there exists U ∈ ωO(X, x) such that U ⊂ F−(V );

5. upper weakly ω-continuous [7] if for each x ∈ X and each open set V of Y
such that x ∈ F+(V ), there exists U ∈ ωO(X, x) such that U ⊂ F+(Cl(V ));

6. lower weakly ω-continuous [7] if for each x ∈ X and each open set V of Y
such that x ∈ F−(V ), there exists U ∈ ωO(X, x) such that U ⊂ F−(Cl(V )).

Definition 2.2 A subset K of a space X is said to be S-closed [21] (resp. ω-
compact [2]) relative to X if every cover of K by regular closed (resp. ω-open)
sets of X has a finite subcover. A space X is said to be S-closed (resp. ω-compact)
if X is S-closed (resp. ω-compact) relative to X.

Lemma 2.3 [1] Let A and B be subsets of a space (X, τ).

1. If A ∈ ωO(X) and B ∈ τ , then A ∩B ∈ ωO(B);

2. If A ∈ ωO(B) and B ∈ ωO(X), then A ∈ ωO(X).

Lemma 2.4 [17] For a multifunction F : (X, τ) → (Y, σ), the following holds:

1. G+
F (A×B) = A ∩ F+(B);

2. G−
F (A×B) = A ∩ F−(B),

for any subset A of X and B of Y , where GF : X → X × Y is defined as
GF (x) = {x} × F (x) for every x ∈ X.
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Definition 2.5 [2] A function f : (X, τ) → (Y, σ) is said to be almost contra-ω-
continuous if f−1(W ) ∈ ωO(X) for every W ∈ RC(Y ).

3. On upper and lower almost contra-ω-continuous multifunctions

Definition 3.1 A multifunction F : (X, τ) → (Y, σ) is said to be:

1. upper almost contra-ω-continuous if for each point x ∈ X and each regu-
lar closed set V with x ∈ F+(V ), there exists U ∈ ωO(X, x) such that
U ⊂ F+(V );

2. lower almost contra-ω-continuous if for each point x ∈ X and each regu-
lar closed set V with x ∈ F−(V ), there exists U ∈ ωO(X, x) such that
U ⊂ F−(V ).

Theorem 3.2 If F : (X, τ) → (Y, σ) is an upper (lower) almost contra-ω-conti-
nuous multifunction, then it is upper (lower) weakly ω-continuous.

Proof. Let x ∈ X and V be an open subset of Y with F (x) ⊂ V . This implies that
Cl(V ) is a regular closed set with F (x) ⊂ Cl(V ). Since F is upper almost contra-
ω-continuous, there exists U ∈ ωO(X, x) such that U ⊂ F+(Cl(V )). Hence, F is
upper weakly ω-continuous.

The following example shows that the converse of the above Theorem 3.2 is
not true in general.

Example 3.3 Let X = ℜ with the topologies τ = {∅,ℜ,ℜ − Q} and σ =
{∅,ℜ,ℜ − Q}. Define F : (ℜ, τ) → (ℜ, σ) as follows: F (x) = {x}. Then F
is upper weakly-ω-continuous multifunction but is not upper almost contra-ω-
continuous multifunction.

Corollary 3.4 If F : (X, τ) → (Y, σ) is almost contra-ω-continuous, then it is
weakly ω-continuous.

Theorem 3.5 If F : (X, τ) → (Y, σ) is an upper (lower) contra-ω-continuous
multifunction, then it is upper (lower) almost contra ω-continuous multifunction.

Proof. The proof is obvious.

The following example shows that the converse of the above Theorem 3.5 is
not true in general.

Example 3.6 Let X = ℜ with the topology τ = {∅,ℜ,ℜ−Q}. And Y = {a, b, c}
with the topology σ = {∅, Y, {a}, {b}, {a, b}, {b, c}}. Take a fixed number e ∈ Q,
and define F : (ℜ, τ) → (Y, σ) as follows:

F (x) =

{
{b} if x ∈ Q− {e}
{c} if x ∈ (ℜ−Q) ∪ {e}.

Then F is upper almost contra-ω-continuous multifunction but is not upper
contra-ω-continuous multifunction.
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Corollary 3.7 [2] If F : (X, τ) → (Y, σ) is contra-ω-continuous, then F is almost
contra-ω-continuous.

Theorem 3.8 For a multifunction F : (X, τ) → (Y, σ), the following statements
are equivalent:

1. F is upper almost contra-ω-continuous;

2. F+(A) ∈ ωO(X) for every regular closed A of Y ;

3. F−(U) ∈ ωC(X) for every regular open subset U of Y ;

4. F−(Int(Cl(A))) ∈ ωC(X) for every open subset A of Y ;

5. F+(Cl(Int(A))) ∈ ωO(X) for every closed subset A of Y ;

6. for each x ∈ X and for each V ∈ SO(Y ) with F (x) ⊂ V , there exists
U ∈ ωO(X, x) such that F (U) ⊂ Cl(V );

7. F+(V ) ⊂ ω Int(F+(Cl(V ))) for every V ∈ SO(Y ).

Proof. (1) ⇔ (2): Let A ∈ RC(Y ) and x ∈ F+(A). Since F is upper almost
contra-ω-continuous, there exists U ∈ ωO(X, x) such that U ⊂ F+(A). Thus,
F+(A) ∈ ωO(X). The converse is obvious.

(2) ⇔ (3) and (4) ⇔ (5): It follows from the fact that F+(Y \A) = X\F−(A) for
every subset A of Y .

(3) ⇔ (4): Let A be an open subset of Y . Since IntCl(A)) is regular open, then
F−(Int(Cl(A))) is ω-closed. The converse is obvious.

(5) ⇔ (2): It is similar to that of (3) ⇔ (4).

(6) ⇒ (7): Let V ∈ SO(Y ) and x ∈ F+(V ). Then F (x) ⊂ V . By (6), there exists
U ∈ ωO(X, x) such that F (U) ⊂ Cl(V ). This implies that x ∈ U ⊂ F+(Cl(V )).
Hence, x ∈ ω Int(F+(Cl(V ))) and F+(V ) ⊂ ω Int(F+(Cl(V ))).

(7) ⇒ (2): Let A ∈ RC(Y ). Since A ∈ SO(Y ), then F+(A) ⊂ ω Int(F+(Cl(A)));
hence F+(A) ∈ ωO(X).

(2) ⇒ (6): Let x ∈ X and V ∈ SO(Y ) with F (x) ⊂ V . Since Cl(V ) ∈ RC(Y ),
there exists A ∈ ωO(X, x) such that A ⊂ F+(Cl(V )). Hence F (A) ⊂ Cl(V ).

Theorem 3.9 For a multifunction F : (X, τ) → (Y, σ), the following statements
are equivalent:

1. F is lower almost contra-ω-continuous;

2. F−(A) ∈ ωO(X) for every regular closed A of Y ;

3. F+(U) ∈ ωC(X) for every regular open subset U of Y ;

4. F+(Int(Cl(A))) ∈ ωC(X) for every open subset A of Y ;
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5. F−(Cl(Int(A))) ∈ ωO(X) for every closed subset A of Y ;

6. for each x ∈ X and for each V ∈ SO(Y ) with F (x) ∩ V ̸= ∅, there exists
U ∈ ωO(X, x) such that F (u) ∩ Cl(V ) ̸= ∅ for each u ∈ U ;

7. F−(V ) ⊂ ω Int(F−(Cl(V ))) for every V ∈ SO(Y ).

Proof. The proof is similar to that of Theorem 3.8.

Definition 3.10 [8] Let U be a subset of a topological space (X, τ). The set
∩{V ∈ RO(X) : U ⊂ V } is called the r-kernel of U and is denoted by r-Ker(U).

Lemma 3.11 [8] The following properties hold for subsets U, V of a space X:

1. x ∈ r-Ker(U) if and only if U ∩ V ̸= ∅ for any regular closed set V con-
taining x.

2. U ⊂ r-Ker(U) and U = r-Ker(U) if U is regular open in X.

3. If U ⊂ V then r-Ker(U) ⊂ r-Ker(V ).

Corollary 3.12 [2] For a function f : (X, τ) → (Y, σ), the following statements
are equivalent:

1. f is almost contra-ω-continuous;

2. f−1(F ) ∈ ωO(X) for every F ∈ RC(Y );

3. for each x ∈ X and each F ∈ RC(Y, f(x)), there exists U ∈ ωO(X, x) such
that f(U) ⊂ F ;

4. for each x ∈ X and each U ∈ RO(Y, f(x)), there exist V ∈ ωC(X, x) such
that f(V ) ⊂ U ;

5. f−1(Int(Cl(G))) ∈ ωC(X) for every open subset G of Y ;

6. f−1(Cl(Int(F ))) ∈ ωO(X) for every closed subset F of Y ;

7. f(ωCl(A)) ⊂ rKer(f(A)) for every subset A of X;

8. ωCl(f−1(B)) ⊂ f−1(rKer(B)) for every subset B of Y .

Theorem 3.13 For a multifunction F : (X, τ) → (Y, σ), the following statements
are equivalent:

1. F is lower almost contra-ω-continuous;

2. F−(A) ∈ ωO(X) for every θ-semiopen A of Y ;

3. F+(U) ∈ ωC(X) for every θ-semiclosed subset U of Y ;

4. ωCl(F+(Int(Cl(B)))) ⊂ F+(sCl(B) for every subset B of Y ;
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5. ωCl(F+(B)) ⊂ F+(sClθ(B)) for every subset B of Y ;

6. F (ωCl(A)) ⊂ sClθ(F (A)) for every subset A of X.

Proof. (1) ⇒ (2): Let G be any θ-semiopen set of Y . There exists a family of
regular closed sets {Kα : α ∈ ∆} such that G = ∪{Kα : α ∈ ∆}. It follows from
Theorem 3.9 (ii) that F−(G) = ∪{F−(Kα) : α ∈ ∆} is ω-open.

(2) ⇒ (3): This is obvious.

(3) ⇒ (4): Let B be any subset of Y . Then Int(Cl(B)) is regular open and it
is θ-semiclosed in Y . Therefore, we have that F+(Int(Cl(B))) is ω-closed and
ωCl(F+(Int(Cl(B)))) = F+(Int(Cl(B))) ⊂ F+(sCl(B)).

(4) ⇒ (5): Let B be any subset of Y . For any regular open set V with B ⊂ V ,
we have ωCl(F+(B)) ⊂ Cl(F+(V )) = ωCl(F+(Int(Cl(V )))) ⊂ F+(sCl(V )) =
F+(V ). Therefore, ωCl(F+(B)) ⊂ F+(∩{V ∈ RO(Y ) : B ⊂ V }) = F+(sClθ(B)).

(5) ⇒ (1): Let V be any semiopen set of Y . Then we have X\ω Int(F−(Cl(V ))) =
ωCl(F+(Y \Cl(V ))) ⊂ F+(sClθ(Y \Cl(V ))) = F+(Y \Cl(V )) = X\F−(Cl(V )).
Therefore, we obtain F−(V ) ⊂ F−(Cl(V )) ⊂ ω Int(F−(Cl(V ))). By Theorem 3.9
(7), F is lower almost contra-ω-continuous.

(5) ⇒ (6): Let A be a subset of X and B = F (A). Then A ⊂ F+(B) and
ωCl(A) ⊂ ωCl(F+(B)) ⊂ F+(sClθ(B)). Therefore, we have F (ωCl(A)) ⊂
F (F+(sClθ(B))) ⊂ sClθ(B) = sClθ(F (A)).

(6) ⇒ (5): Let B be any subset of Y . Then we have F (ωCl(F+(B))) ⊂
sClθ(F (F+(B))) ⊂ sClθ(B); hence ωCl(F+(B)) ⊂ F+(sClθ(B)).

Corollary 3.14 For a function f : (X, τ) → (Y, σ), the following properties are
equivalent:

1. f is almost contra-ω-continuous;

2. f−1(V ) ∈ ωO(X) for each θ-semiopen set V of Y ;

3. f−1(F ) ∈ ωC(X) for each θ-semiclosed set F of Y .

4. for each x ∈ X and each U ∈ SO(Y, f(x)), there exist V ∈ ωO(X, x) such
that f(V ) ⊂ Cl(U);

5. f−1(V ) ⊂ ω Int(f−1(Cl(V ))) for every V ∈ SO(Y ).

6. f(ωCl(A)) ⊂ sClθ(f(A)) for every subset A of X;

7. ωCl(f−1(B)) ⊂ f−1(sClθ(B)) for every subset B of Y .

8. ωCl(f−1(V )) ⊂ f−1(sClθ(V )) for every open subset V of Y .

9. ωCl(f−1(V )) ⊂ f−1(sCl(V )) for every open subset V of Y .

10. ωCl(f−1(V )) ⊂ f−1(Int(Cl(V ))) for every open subset V of Y .
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Theorem 3.15 For a multifunction F : (X, τ) → (Y, σ), the following statements
are equivalent:

1. F is upper almost contra-ω-continuous;

2. ωCl(F−(Int(K))) ⊂ F−1(K) for every semiclosed set K of Y ;

3. ωCl(F−(Int(sCl(B)))) ⊂ F−(sCl(B)) for every B ⊆ Y ;

4. F+(s Int(B)) ⊂ ω Int(F+(Cl(s Int(B)))) for every B ⊆ Y .

Proof. (1) ⇒ (2): Let K be a semiclosed set of Y . Then Y \K is semiopen.
By Theorem 3.8 (7), it follows that F+(Y \K) ⊂ ω Int(F+(Y \ Int(K))). Hence
X\F−(K) ⊂ ω Int(F+(Y \ Int(K)))=ω Int(X\F−(Int(K)))=X\ωCl(F−(Int(K))).
Hence, ωCl(F−(Int(K))) ⊂ F−1(K).

(2) ⇒ (3): Let B be any subset of Y . Then sCl(B) is semiclosed in Y and hence
ωCl(F−(Int(sCl(B)))) ⊂ F−(sCl(B)).

(3) ⇒ (4): Let B be any subset of Y . Then we have

X\F+(s Int(B)) = F−(sCl(Y \B)) ⊃ ωCl(F−(Int(sCl(Y \B))))

= ωCl(F−(Int(Y \s Int(B)))) = ωCl(F−(Y \Cl(s Int(B))))

= ωCl(X\F+(Cl(s Int(B)))) = X\ω Int(F+(Cl(s Int(B)))).

Hence, F+(s Int(B)) ⊂ ω Int(F+(Cl(s Int(B)))).

(4) ⇒ (1): Let V be any semiopen set of Y . Then V = s Int(V ) and hence
F+(V ) ⊂ ω Int(F+(Cl(V ))). By Theorem 3.8 (7), F is upper almost contra-ω-
continuous.

Theorem 3.16 For a multifunction F : (X, τ) → (Y, σ), the following statements
are equivalent:

1. F is lower almost contra-ω-continuous;

2. ωCl(F+(Int(K))) ⊂ F+(K) for every semiclosed set K of Y ;

3. ωCl(F+(Int(sCl(B)))) ⊂ F+(sCl(B)) for every B ⊆ Y ;

4. F−(s Int(B)) ⊂ ω Int(F−(Cl(s Int(B)))) for every B ⊆ Y .

Proof. The proof is similar to that of Theorem 3.15.
Recall that a topological space is said to be extremely disconnected if the

closure of every open set is open in the space.

Theorem 3.17 Let (Y, σ) be an extremely disconnected space. Then a multifunc-
tion F : (X, τ) → (Y, σ) is upper almost contra-ω-continuous if and only if it is
upper almost ω-continuous.
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Proof. Let x ∈ X and V be any regular open set of Y containing F (x). Since
(Y, σ) is extremely disconnected, V is regular closed and hence semiopen. By
Theorem 3.8, there exists U ∈ ωO(X, x) such that F (U) ⊂ Cl(V ) = V . Then
F is upper almost ω-continuous. Conversely, let K be any regular closed subset
of Y . Since (Y, σ) is extremely disconnected, K is also regular open and by
Theorem 3.4 of [5], F+(K) is ω-open. By Theorem 3.8, F is upper almost contra-
ω-continuous.

Theorem 3.18 Let (Y, σ) be an extremely disconnected space. Then a multifunc-
tion F : (X, τ) → (Y, σ) is lower almost contra-ω-continuous if and only if F is
lower almost ω-continuous.

Proof. The proof is similar to that of Theorem 3.17.

Theorem 3.19 The following statements are equivalent for a multifunction
F : (X, τ) → (Y, σ):

1. F is upper (lower) almost contra-ω-continuous;

2. F+(Cl(V ))(F−(Cl(V ))) is ω-open in X for every V ∈ SPO(Y );

3. F+(Cl(V ))(F−(Cl(V ))) is ω-open in X for every V ∈ SO(Y );

4. F−(Int(Cl(V )))(F+(Int(Cl(V )))) is ω-closed in X for every V ∈ PO(Y ).

Proof. (1) ⇒ (2): Suppose that V is any semi-preopen set of Y . Since
Cl(V ) ∈ RC(Y ), by Theorem 3.8, F−(Cl(V )) is ω-open in X.

(2) ⇒ (3): This is obvious, since SO(Y ) ⊂ SPO(Y ).

(3) ⇒ (4): Let V ∈ PO(Y ). Then Y \ Int(Cl(V )) is regular closed and hence
it is semiopen. Then, we have X\F−(Int(Cl(V ))) = F+(Y \ Int(Cl(V ))) =
F+(Cl(Y \ Int(Cl(V )))) ∈ ωO(X). Hence F−(Int(Cl(V ))) ∈ ωC(X).

(4) ⇒ (1): If V is any regular open set of Y . Then V ∈ PO(Y ) and hence
F−(V ) = F−(Int(Cl(V ))) is ω-closed in X. Therefore, F is upper almost contra-
ω-continuous.

The proof of the second case is similar.

Lemma 3.20 [16] For a subset V of a topological space (Y, σ), the following prop-
erties hold:

1. αCl(V ) = Cl(V ) for every V ∈ SPO(Y );

2. pCl(V ) = Cl(V ) for every V ∈ SO(Y );

3. sCl(V ) = Int(Cl(V )) for every V ∈ PO(Y ).

Corollary 3.21 The following statements are equivalent for a multifunction
F : (X, τ) → (Y, σ):
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1. F is upper (lower) almost contra-ω-continuous;

2. F+(αCl(V ))(F−(αCl(V ))) is ω-open in X for every V ∈ SPO(Y );

3. F+(pCl(V ))(F−(pCl(V ))) is ω-open in X for every V ∈ SO(Y );

4. F−(sCl(V ))(F+(sCl(V ))) is ω-closed in X for every V ∈ PO(Y ).

Proof. This is an immediate consequence of Theorem 3.19 and Lemma 3.20.

Theorem 3.22 The following statements are equivalent for a multifunction
F : (X, τ) → (Y, σ):

1. F is upper almost contra-ω-continuous;

2. ωCl(F−(V )) ⊂ F−(Int(Cl(V )) for every open subset V of Y ;

3. ωCl(F−(V )) ⊂ F−(sCl(V )) for every open subset V of Y .

Proof. (2) ⇒ (1): Let V ∈ RO(Y ). Then ωCl(F−(V )) ⊂ F−(Int(Cl(V )) =
F−(V ). This implies that F−(A) is ω-closed and hence F is upper almost contra-
ω-continuous.

(1) ⇒ (2): Let V be an open set. We have Int(Cl(V )) ∈ RO(Y ). By (1),
F−(Int(Cl(V )) is ω-closed. Since V ⊂ Int(Cl(A)), then F−(A) ⊂ F−(Int(Cl(A))).
Thus, ωCl(F−(V )) ⊂ F−(sCl(V )).

(2) ⇔ (3): It follows from Lemma 3.20.

Theorem 3.23 The following statements are equivalent for a multifunction
F : (X, τ) → (Y, σ):

1. F is lower almost contra-ω-continuous;

2. ωCl(F+(V )) ⊂ F+(Int(Cl(V )) for every open subset V of Y ;

3. ωCl(F+(V )) ⊂ F+(sCl(V )) for every open subset V of Y .

Proof. The proof is similar to that of Theorem 3.22.

Theorem 3.24 Let F : (X, τ) → (Y, σ) be any multifunction. If ωCl(F−(V )) ⊂
F−(r-Ker(V )) for every subset V of Y , then F is upper almost contra-ω-con-
tinuous.

Proof. Let V ∈ RO(Y ). By Lemma 3.11, ωCl(F−(V )) ⊂ F−(r-Ker(V )) =
F−(V ). This implies that ωCl(F−(V )) = F−(V ); hence F−(V ) is ω-closed.
By Theorem 3.8, F is upper almost contra-ω-continuous.

Theorem 3.25 Let F : (X, τ) → (Y, σ) be any multifunction. If F (ωCl(V )) ⊂ r-
Ker(F (V )) for every subset V of Y , then F is lower almost contra-ω-continuous.



on upper and lower almost contra-ω-continuous ... 455

Proof. Let H be a regular open set of X. Then F (ωCl(F+(H))) ⊂ r-Ker(H)
and ωCl(F+(H)) ⊂ F+(r-Ker(H)). By Lemma 3.11,

ωCl(F+(H)) ⊂ F+(r-Ker(H)) = F+(H).

We have ωCl(F+(H)) = F+(H). This implies that F+(H) is ω-closed in X.
By Theorem 3.9, F is lower almost contra-ω-continuous.

Definition 3.26 A topological space (X, τ) is said to ω-T2 [2], if for each pair of
distinct points x and y in X, there exist disjoint ω-open sets U and V in X such
that x ∈ U and y ∈ V .

Lemma 3.27 [19] If A and B are disjoint compact subsets of an Urysohn space
X, there exist open sets U and V of X such that A ⊂ U , B ⊂ V and Cl(U) ∩
Cl(V ) = ∅.

Theorem 3.28 If F : (X, τ) → (Y, σ) is an upper almost contra-ω-continuous
injective multifunction into an Urysohn space Y and F (x) is compact for each
x ∈ X, then X is ω-T2.

Proof. For any distinct points x1, x2 ∈ X, we have F (x1) ∩ F (x2) = ∅, since
F is injective and F (x1) and F (x2) are disjoint compact sets, by Lemma 3.27,
there exist open sets V1 and V2 such that F (x1) ⊂ V1, F (x2) ⊂ V2 and Cl(V1) ∩
Cl(V2) = ∅. Since Cl(V1) and Cl(V2) are regular closed sets and F is upper almost
contra-ω-continuous, there exist U1 ∈ ωO(X, x1) and U2 ∈ ωO(X, x2) such that
F (U1) ⊂ Cl(V1), F (U2) ⊂ Cl(V2); hence U1 ∩ U2 = ∅ and X is ω-T2.

Definition 3.29 A subset A of a topological space (X, τ) is said to be ω-dense
in X if ωCl(A) = X.

Definition 3.30 A multifunction F : (X, τ) → (Y, σ) is called upper weakly
continuous [19], if for each open set V containing F (x) and for each x ∈ X, there
exists an open set U containing x such that F (U) ⊂ Cl(V ).

Theorem 3.31 Let X be a topological space and Y an Urysohn space. If the
following four conditions are satisfied:

1. F : (X, τ) → (Y, σ) is an upper weakly continuous multifunction,

2. G : X → Y is an upper almost contra-ω-continuous multifunction,

3. F (x) and G(x) are compact sets of Y for each x ∈ X,

4. A = {x ∈ X : F (x) ∩G(x) ̸= ∅},

then A is ω-closed. Moreover if F (x) ∩ G(x) ̸= ∅ for each point x ∈ X in a
ω-dense set D, then F (x) ∩G(x) ̸= ∅ for each x ∈ X.
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Proof. Suppose that x ∈ X\A. Then we have F (x) ∩G(x) = ∅. Since F (x) and
G(x) are disjoint compact sets of an Urysohn space, by Lemma 3.27, there exist
open sets V and W such that F (x) ⊂ V and G(x) ⊂ W and Cl(V ) ∩Cl(W ) = ∅.
Since F is upper weakly continuous and F (x) ⊂ V , there exists an open set U1

containing x such that F (U1) ⊂ Cl(V ). Since Cl(W ) is regular closed, G(x) ⊂ W
and G is upper almost contra-ω-continuous, there exists U2 ∈ ωO(X, x) such that
G(U2) ⊂ Cl(W ). Let U = U1 ∩ U2, then U is ω-open and U ∩ A = ∅. Therefore,
x ∈ X\ωCl(A) and hence A is ω-closed. On the other hand, if F (x) ∩ G(x) ̸= ∅
on an ω-dense set D of X, then we have X = ωCl(D) ⊂ ωCl(A) = A. Therefore,
we obtain F (x) ∩G(x) ̸= ∅ for each x ∈ X.

Definition 3.32 A subset A of a space (X, τ) is said to be:

1. α-regular [11], if for each a ∈ A and any open set U containing a, there
exists an open set V of X such that a ∈ V ⊂ Cl(V ) ⊂ U ;

2. α-paracompact [11], if every X-open cover A has an X-open refinement
which covers A and is locally finite for each point of X.

Lemma 3.33 [11] If A is an α-regular and α-paracompact subset of a space X
and U is an open neighborhood of A, then there exists an open set V of X such
that A ⊂ V ⊂ Cl(V ) ⊂ U .

For a multifunction F : (X, τ) → (Y, σ), the multifunction Cl(F ) : X → Y
is defined by Cl(F )(x) = Cl(F (x)) for each point x ∈ X. Similarly, we denote
sCl(F ), pCl(F ), αCl(F ), spCl(F ), ωCl(F ).

Lemma 3.34 [18] If F : (X, τ) → (Y, σ) is a multifunction such that F (x) is
α-paracompact α-regular for each x ∈ X, then for each open set V of Y , G+(V )
= F+(V ) and for each closed set K of Y , G−(K) = F−(K), where G denotes
Cl(F ), sCl(F ), pCl(F ), αCl(F ), spCl(F ), ωCl(F ).

Lemma 3.35 [18] If F : (X, τ) → (Y, σ) is a multifunction, then for each open
set V of Y , G−(V ) = F−(V ) and for each closed set K of Y , G+(K) = F+(K),
where G denotes Cl(F ), sCl(F ), pCl(F ), αCl(F ), spCl(F ), ωCl(F ).

Theorem 3.36 A multifunction F : (X, τ) → (Y, σ) is upper almost contra-ω-
continuous if and only if G is upper almost contra-ω-continuous.

Proof. Let K be a regular closed set of Y . By Theorem 3.8 and Lemma 3.35,
G+(K) = F+(K) is a ω-open set of X. Hence, G is upper almost contra-ω-
continuous. Conversely, Let K be a regular closed set of Y . By Theorem 3.8 and
Lemma 3.35, F+(K) = G+(K) is a ω-open set of X. Hence, G is upper almost
contra-ω-continuous.

Theorem 3.37 Let F : (X, τ) → (Y, σ) be a multifunction such that F (x) is
α-regular α-paracompact for each x ∈ X. Then F is lower almost contra-ω-
continuous if and only if G is lower almost contra-ω-continuous.
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Proof. Let K be a regular closed set of Y . By Theorem 3.9 and Lemma 3.34,
G−(K) = F−(K) is an ω-open set of X. Hence, G is lower almost contra-ω-
continuous. Conversely, Let K be a regular closed set of Y . By Theorem 3.9 and
Lemma 3.34, F−(K) = G−(K) is an ω-open set of X. Hence, G is lower almost
contra-ω-continuous.

Theorem 3.38 Let F : (X, τ) → (Y, σ) be a multifunction and U be an open sub-
set of X. If F is a lower (upper) almost contra-ω-continuous, then F |U : U → Y
is lower (upper) almost contra-ω-continuous.

Proof. Let V be any regular closed set of Y . Let x ∈ U and x ∈ (F |U)−(V ).
Since F is a lower almost contra-ω-continuous multifunction, then there exists
G ∈ ωO(X, x) such that G ⊂ F−(V ). Then by Lemma 2.3, x ∈ G ∩ U ∈ ωO(U)
and G ∩ U ⊂ (F |U)−(V ). This shows that F |U is a lower almost contra-ω-conti-
nuous multifunction. The proof of the second case is similar.

Theorem 3.39 Let {Ui : i ∈ ∆} be an open cover of a space X. A multifunc-
tion F : (X, τ) → (Y, σ) is upper almost contra-ω-continuous if and only if the
restriction F |Ui

: Ui → Y is upper almost contra-ω-continuous for each i ∈ ∆.

Proof. Suppose that F is an upper almost contra-ω-continuous multifunction.
Let i ∈ ∆, x ∈ Ui and V be a regular closed set of Y containing F |Ui

(x). Since F
is an upper almost contra-ω-continuous multifunction and F (x) = F |Ui

(x), there
existsG ∈ ωO(X, x) such that F (G) ⊂ V . Set U = G∩Ui, then x ∈ U ∈ ωO(Ui, x)
and F |Ui

(U) = F (U) ⊂ V . Therefore, F |Ui
is upper almost contra-ω-continuous.

Conversely, let x ∈ X and V ∈ RC(Y ) containing F (x). There exists i ∈ ∆ such
that x ∈ Ui. Since F |Ui

is upper almost contra-ω-continuous and F (x) = F |Ui
(x),

there exists U ∈ ωO(Ui, x) such that F |Ui
(U) ⊂ V . Then we have U ∈ ωO(X, x)

and F (U) ⊂ V . Therefore, F is upper almost contra-ω-continuous.

Theorem 3.40 Let {Ui : i ∈ ∆} be an open cover of a space X. A multifunc-
tion F : (X, τ) → (Y, σ) is lower almost contra-ω-continuous if and only if the
restriction F |Ui

: Ui → Y is lower almost contra-ω-continuous for each i ∈ ∆.

Proof. The proof is similar to that of Theorem 3.39 and is thus omitted.

For a multifunction F : (X, τ) → (Y, σ), the graph multifunctionGF : X → Y
is defined as follows: GF (x) = {x} × F (x) for every x ∈ X.

Theorem 3.41 If GF : X → X × Y is an upper almost contra-ω-continuous
multifunction, then F : (X, τ) → (Y, σ) is an upper almost contra-ω-continuous
multifunction.

Proof. Let x ∈ X and K ∈ RC(Y ) with F (x) ⊂ K. Since X × K is regular
closed in X × Y and GF (x) ⊂ X ×K, then there exists U ∈ ωO(X, x) such that
GF (U) ⊂ X × K. By Lemma 2.4, U ⊂ G+

F (X × K) = F+(K) and F (U) ⊂ K.
Thus, F is an upper almost contra-ω-continuous multifunction.
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Theorem 3.42 If GF : X → X × Y is a lower almost contra-ω-continuous mul-
tifunction, then F : (X, τ) → (Y, σ) is a lower almost contra-ω-continuous multi-
function.

Proof. Let x ∈ X and K ∈ RC(Y ) with x ∈ F−(K). Since X × K is regular
closed inX×Y andGF (x)∩(X×K)=({x}×F (x))∩(X×K)={x}×(F (x)∩K) ̸= ∅.
Since GF is lower almost contra-ω-continuous, then there exists U ∈ ωO(X, x)
such that U ⊂ G−

F (X × K). Then U ⊂ F−(K). Hence, F is a lower almost
contra-ω-continuous.

Theorem 3.43 Let F : (X, τ) → (Y, σ) be an upper almost contra-ω-continuous
surjective multifunction and F (x) is a S-closed relative to Y for each x ∈ X. If
A is a ω-compact relative to X, then F (A) is a S-closed relative to Y .

Proof. Let {Vi : i ∈ ∆} be any cover of F (A) by regular closed sets of Y . For
each x ∈ A, there exists a finite subset ∆(x) of ∆ such that

F (x) ⊂ ∪{Vi : i ∈ ∆(x)}.

Put V (x) = ∪{Vi : i ∈ ∆(x)}. Then F (x) ⊂ V (x) and there exists U(x) ∈
ωO(X, x) such that F (U(x)) ⊂ V (x). Since {U(x) : x ∈ A} is a cover of A by
ω-open sets in X, there exists a finite number of points of A, say, x1, x2,....xn such
that A ⊂ ∪{U(xi) : 1 = 1, 2, ....n}. Therefore, we obtain

F (A) ⊂ F

(
n∪

i=1

U(xi)

)
n∪

i=1

F (U(xi))
n∪

i=1

V (xi) ⊂
n∪

i=1

∪
i∈∆(xi)

Vi.

This shows that F (A) is a S-closed relative to Y .

Theorem 3.44 Let X and Xi be topological spaces for i ∈ I. If F : X →
∏
i∈I

Xi

is an upper (lower) almost contra-ω-continuous multifunction, then Pi ◦ F is an
upper (lower) almost contra-ω-continuous multifunction for each i ∈ I, where

Pi :
∏
i∈I

Xi → Xi is the projection for each i ∈ I.

Proof. Let Hi be a regular closed subset of Xj. We have

(Pj ◦ F )+(Hj) = F+(P+
j (Hj)) = F+

(
Hj ×

∏
i̸=j

Xi

)
.

Since F is an upper almost contra-ω-continuous multifunction, F+

(
Hj ×

∏
i̸=j

Xi

)
is ω-open in X. Hence, Pi ◦ F is an upper (lower) almost contra-ω-continuous.
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Theorem 3.45 Let Xi and Yi be topological spaces and Fi : Xi → Yi be a mul-

tifunction for each i ∈ I. If F :
∏
i∈I

Xi →
∏
i∈I

Yi, defined by F (xi) =
∏
i∈I

Fi(xi),

is upper (lower) almost contra-ω-continuous multifunction, then Fi is upper (lower)
almost contra-ω-continuous multifunction for each i ∈ I.

Proof. Let Hi ⊂ Yi be a regular closed subset. Since F is upper almost contra-
ω-continuous multifunction, F+(Hi × Π

i ̸=j
Yj) = F+

i (Hi)× Π
i̸=j

Xj is an ω-open set.

Thus, F+
i (Hi) is an ω-open set; hence F is upper almost contra-ω-continuous

multifunction.
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