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Abstract. In this article, we introduce a generalization of Fourier and Hartely trans-

forms. The transform we have obtained has been investigated on certain space of distri-

butions. Two spaces of Boehmians are also established. The extended transform is then

obtained and is well-defined, linear, one-to-one and onto mapping. More properties are

also illustrated.
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1. Introduction

Let R be the set of real numbers and g be an integrable function defined on R.
The transform we consider in this article is given by the integral equation

(1) ιβ,γα,R (g) (ξ) =
1√
2π

∫
R
g (τ) (α cos (γξτ) + β sin (γξτ)) dτ.

The inversion formula is recovered from our transform (1) as

(2) g (τ) =
1√
2π

∫
R
ιβ,γα,R (g) (ξ)

(
γ

α
cos (γξτ) +

γ

β
sin (γξτ)

)
dξ.

Let γ = α = β = 1, then the shortness of (1) and (2) reduces to the Hartley
transform pair [2], [8], [12]. On the other hand, a substitution of α = 1, β = i,
γ = 1, in (1) and (2) , describes a Fourier transform pair [9].
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Denote by E
′
(R) the space of distributions of compact supports. Then, the

extention ι̃β,γα,R of ιβ,γα,R to a distribution g ∈ E
′
(R) can be given as

(3) ι̃β,γα,R (g) (ξ) =
1√
2π

⟨g (τ) , α cos (γξτ) + β sin (γξτ)⟩ .

This definition is indeed well-defined by the smoothness of α cos (γξτ)+β sin (γξτ).

Therefore, ι̃β,γα,R justifies its following properties:

(i) ι̃β,γα,R is linear;

(ii) ι̃β,γα,R is continuous;

(iii) ι̃β,γα,R is analytic.

The justification of those properties follows in fact from basic properties of distri-
butions.

In what follows, we spread the discussion to further space of Boehmians over
two sections.

In Section 2, we construct the image and preimage spaces of Boehmians. In
Section 3, we discuss the transform in the context of Boehmian spaces and obtain
some properties.

2. The constructed spaces of Boehmian

We assume the reader is acquainted with the concept of Boehmian spaces. For
further constructions, reader can check the citations [1], [3], [4], [6], [7], [10], [11],
[13] of this article.

Let us first define some auxiliary mappings that are useful to our next inves-
tigation of Boehmian spaces.

Denote by D the Schwartz space of test functions of bounded support. Then,
for every g ∈ E

′
and v ∈ D we introduce the operation • defined by

(4) (g • v) ℓ (ς) = g (v ∗ ℓ) (ς) ,

where ℓ ∈ E, and ∗ is the usual convolution product of two functions of first kind
[9], [5].

To establish the first space of Boehmians we are requested to establish the
following theorems.

Theorem 1. Let g ∈ E
′
and v ∈ D; then we have g • v ∈ E

′
.

Proof. Let ℓ ∈ E and K be a compact subset of R; then, by (4) , we have

(5) (g • v) ℓ (ς) = g (v ∗ ℓ) (ς) .
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So, to prove the theorem, it is sufficient to show that v∗ℓ ∈ E. By the property [9],

Dkf ∗ g = Dkf ∗ g

we derive that
dk

dςk
(v ∗ ℓ) (ς) = v ∗ dk

dςk
ℓ (ς) .

Hence, allowing K traverse the compact subsets of R implies

sup
ς∈K

∣∣∣∣ dkdςk
(v ∗ ℓ) (ς)

∣∣∣∣ = sup
ς∈K

∣∣∣v ∗ dk

dςk
ℓ (ς)

∣∣∣
≤ η∗

∫
K

∣∣∣∣ dkdςk
ℓ (ς − x)

∣∣∣∣ dx,
η∗ is certain positive constant.

This gives

sup
ς∈K

∣∣∣∣ dkdςk
(v ∗ ℓ) (ς)

∣∣∣∣ < ∞.

Hence, v ∗ ℓ ∈ E. Thus, g • ℓ ∈ E
′
.

This completes the proof of the theorem.

Theorem 2. Let g1, g2 ∈ E
′
and ℓ ∈ D, η ∈ C; then we have

η (g1 + g2) • ℓ = (ηg1 + ηg2) • ℓ.

The proof of this theorem is straightforward. Hence, we prefer to omit the details.

Theorem 3. Let gn → g in E
′
and v ∈ D; then gn • v → g • v as n → ∞.

Proof. For ℓ ∈ E, we can write

(6) (gn • v − g • v) ℓ = ((gn − g) • v) ℓ = (gn − g) (v ∗ ℓ) .

Right hand side of equation (6) is well defined by Theorem 1.
Considering the limit as n → ∞, the right hand side of (6) tends to 0 as

n → ∞.
Therefore,

(gn • v → g • v) ℓ → 0

as n → ∞.
Hence gn • v → g • v as n → ∞.
The proof of the theorem is completed.

As final in this construction, we merely need to establish the following
theorem.
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Theorem 4. Let g ∈ E
′
and (δn) ∈ ∆; then we have g • δn → g as n → ∞.

Proof. Let ℓ ∈ E and (δn) ∈ ∆; then, since (δn) is delta sequence, we have δn ∗ ℓ
as n → ∞. Hence,

(7) (g • δn) ℓ = g (δn ∗ ℓ) → g as n → ∞.

Thus our theorem is completely proved.

The space B
(
E

′
, D,∆, •

)
is therefore considered as a Boehmian space.

The sum and multiplication by a scalar of two Boehmians can be defined in
a natural way [

fn
ϵn

]
+

[
gn
τn

]
=

[
fn • τn + gn • ϵn

ϵn • τn

]
and

η

[
fn
ϵn

]
=

[
ηfn
ϵn

]
, η ∈ C.

The operation • and the differentiation are defined by[
fn
ϵn

]
•
[
gn
τn

]
=

[
fn • gn
ϵn • τn

]
and Dα

[
fn
ϵn

]
=

[
Dαfn
ϵn

]
.

If

[
fn
ϵn

]
∈ B

(
E

′
, D,∆, •

)
and ϕ ∈ D, then we have

[
fn
ϵn

]
• ϕ =

[
fn • ϕ
ϵn

]
.

A sequence of Boehmians (βn) in B
(
E

′
, D,∆, •

)
is said to be δ-convergent

to a Boehmian β in B
(
E

′
, D,∆, •

)
, denoted by βn

δ→ β, if there exists a delta

sequence (ϵn) such that (βn • ϵn) , (β • ϵn) ∈ E
′
, ∀k, n = 1, 2, 3, ...,and

(βn • ϵk) → (β • ϵk) as n → ∞, in E
′
, k = 1, 2, 3, ....

The following lemma is equivalent for the statement of δ-convergence:

βn
δ→ β ( as n → ∞) in B

(
E

′
, D,∆, •

)
if and only if there is fn,k, fk ∈ E

′

and (ϵk) ∈ ∆ such that βn =

[
fn,k
ϵk

]
, β =

[
fk
ϵk

]
and for each k = 1, 2, 3, ...,

fn,k → fk as n → ∞ in E
′
.

A sequence (βn) of Boehmians in B
(
E

′
, D,∆, •

)
is said to be a ∆-convergent to

a Boehmian β in B
(
E

′
, D,∆, •

)
, denoted by βn

∆→ β, if there exists a (ϵn) ∈ ∆
such that

(βn − β) • ϵn ∈ E
′
,

∀n = 1, 2, 3, ... and (βn − β) • ϵn → 0 as n → ∞ in E
′
.
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Let us now consider another space of Boehmians.
Let W be the space of ιβ,γα,R transforms of distributions in E

′
; then we define

a product ~ as

(8) (w ~ v) (ξ) =

∫
R
w (ξ + x) v (x) dx,

ξ ∈ R. Then, (8) can be simply written as

(w ~ v) (ξ) = v ∗ w̃ (ξ) ,

where w̃ (ξ) = w (−ξ) .

Theorem 5. Let g ∈ E
′
, v ∈ D; then

ιβ,γα,R (g • v) = ιβ,γα,R (g)~ v.

Proof. Over compact subsets K of R we by (3) have that

ιβ,γα,R (g • v) (ξ) = ⟨(g • v) (τ) , α cos γξτ + β sin γξτ⟩

i.e. = ⟨g (τ) , ⟨v (x) , α cos γξ (τ + x) + β sin γξ (τ + x)⟩⟩

i.e. =

∫
R
⟨g (τ) , α cos γξ (τ + x) + β sin γξ (τ + x)⟩ v (x) dx.

Therefore, we have obtained

ιβ,γα,R (g • v) (ξ) =
(
ιβ,γα,Rg ~ v

)
(ξ) .

This completes the proof of the theorem.

Theorem 6. Let w ∈ W, v ∈ D; then w ~ v ∈ W .

Proof. The assumption that w ∈ W implies w = ιβ,γα,Rg for some g ∈ E
′
.

Therefore, we get

(9) w ~ v = ιβ,γα,Rg ~ v.

By Theorem 5, equation (9) gives

(10) w ~ v = ιβ,γα,R (g • v) .

Theorem 1, therefore, implies w ~ v ∈ E
′
.

This completes the proof of the theorem.

The proofs of the following two theorems have similar techniques.

Theorem 7. wn, w ∈ W, (δn) ∈ ∆ and v ∈ D. Then we get
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(1) Let wn → w in W and v ∈ D; then wn ~ v → w ~ v.

(2) Let w ∈ W and (δn) ∈ ∆; then w ~ δn → w as n → ∞.

Theorem 8. Let w1, w2 ∈ W, v ∈ D; then for η1, η2 ∈ C, we get that

(η∗1w1 + η∗2w2)~ v = η∗1 (w1 ~ v)× η∗2 (w2 ~ v)

where v ∈ D .

The Boehmian space B (W,D,∆,~) is therefore constructed.
Addition, multiplication by scalars and convergence on B (W,D,∆,~) are

similar to that of B
(
E

′
, D,∆, •

)
. Hence details are avoided.

3. The generalized ιβ,γα,R transform of Boehmians

Let

[
gn
δn

]
∈ B

(
E

′
, D,∆, •

)
; then, we define the generalized transform ι̂β,γα,R

of

[
gn
δn

]
as

(11) ι̂β,γα,R

[
gn
δn

]
=

[
ιβ,γα,R (gn)

δn

]

in the space B (W,D,∆,~) .

Theorem 9. The mapping ι̂β,γα,R is well-defined.

Proof. Let

[
fn
ϵn

]
=

[
gn
τn

]
∈ B

(
E

′
, D,∆, •

)
; then we have

fn
ϵn

is equivalent to
gn
τn

in B
(
E

′
, D,∆, •

)
.

Therefore, fn • τm = gm • ϵn, ∀m,n ∈ N. The action of ιβ,γα,R jointly with Theorem 5
imply

ιβ,γα,R (fn)~ τm = ιβ,γα,R (gm)~ ϵn,

∀m,n ∈ N. Hence

ιβ,γα,R (fn)

ϵn
is equivalent to

ιβ,γα,R (gn)

τn
in B (W,D,∆,~) .

Hence, we have obtained

ι̂β,γα,R

[
fn
ϵn

]
= ι̂β,γα,R

[
gn
τn

]
.
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This completes the proof of the theorem.

Theorem 10. The mapping ι̂β,γα,R is linear.

Proof. Let

[
fn
ϵn

]
,

[
gn
τn

]
∈ B

(
E

′
, D,∆, •

)
, κ, η ∈ R; then

ι̂β,γα,R

(
κ

[
fn
ϵn

]
+ η

[
gn
τn

])
= ι̂β,γα,R

([
κfn
ϵn

]
+

[
ηgn
τn

])
i.e. = ι̂β,γα,R

([
(κfn) • τn + (ηgn) • ϵn

ϵn • τn

])

i.e. =

[
ιβ,γα,R ((κfn) • τn + (ηgn) • ϵn)

ϵn • τn

]
.

Linearity of ι̂β,γα,R and (11) imply

ι̂β,γα,R

(
κ

[
fn
ϵn

]
+ η

[
gn
τn

])
=

[
κιβ,γα,R (fn • τn) + ηιβ,γα,R (gn • ϵn)

ϵn ~ τn

]
.

Theorem 5 gives

ι̂β,γα,R

(
κ

[
fn
ϵn

]
+ η

[
gn
τn

])
=

[
κιβ,γα,R (fn)~ τn + ηιβ,γα,R (gn)~ ϵn

ϵn ~ τn

]
.

Thus, we have

ι̂β,γα,R

(
κ

[
fn
ϵn

]
+ η

[
gn
τn

])
=

[
κηβ,γα,R (fn)

ϵn

]
+

[
ηηβ,γα,R (gn)

τn

]
Hence, we got that

ι̂β,γα,R

(
κ

[
fn
ϵn

]
+ η

[
gn
τn

])
= κ

[
ιβ,γα,R (fn)

ϵn

]
+ η

[
ιβ,γα,R (gn)

τn

]
The theorem is completely proved.

Theorem 11. The mapping ι̂β,γα,R is an isomorphism from B
(
E

′
, D,∆, •

)
into

B (W,D,∆,~).

Proof. We first prove that ι̂β,γα,R is injective mapping from B
(
E

′
, D,∆, •

)
into

B (W,D,∆,~) .

Assume that

ι̂β,γα,R

[
fn
ϵn

]
= ι̂β,γα,R

[
gn
τn

]
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in B (W,D,∆,~) .

Then, by (11) , we have[
ιβ,γα,R (fn)

ϵn

]
=

[
ιβ,γα,R (gn)

τn

]
.

Hence, we derive that

ιβ,γα,R (fn)

ϵn
and

ιβ,γα,R (gn)

τn

are equivalent quotients in B (W,D,∆,~) .

Thus, the concept of equivalent classes of B (W,D,∆,~) implies

ιβ,γα,R (fn)~ τm = ιβ,γα,R (gm)~ ϵn.

Theorem 5 then gives

ιβ,γα,R (fn ~ τn) = ιβ,γα,R (gn ~ ϵn) .

Injectivity of ιβ,γα,R and the concept of equivalent classes of B
(
E

′
, D,∆, •

)
implies

fn
ϵn

are equivalent
gn
τn

in B
(
E

′
, D,∆, •

)
.

Therefore

[
fn
ϵn

]
and

[
gn
τn

]
are equivalent.

This proves the first part.

Surjectivity of ι̂β,γα,R is obvious.

The theorem is completely proved.

The proofs of the following theorems are obvious.

Theorem 12. If ι̂β,γα,R

[
gn
δn

]
= 0, then

[
gn
δn

]
= 0

in the sense of B
(
E

′
, D,∆, •

)
.

Theorem 13. If (βn) is sequence in B
(
E

′
, D,∆, •

)
such that βn

∆→ β as n → ∞,
then
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ι̂β,γα,R (βn)
∆→ ι̂β,γα,R (β)

as n → ∞ in B (W,D,∆,~) on compact subsets.

Theorem 14. Let

[
gn
δn

]
∈ B

(
E

′
, D,∆, •

)
; then

ι̂β,γα,R

([
gn
δn

]
~ ϵn

)
= ι̂β,γα,R

(
ϵn ~

[
gn
δn

])
,

(ϵn) ∈ ∆.

Readers can check the proofs from the citations given by the same author.
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