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1. Introduction

Fuzzy set theory and its applications are growing day by day in various branches
of Science like mathematics, computer science, engineering, physics, management
sciences, medical science, operational research, artificial intelligence, robotics, ex-
pert system and various other fields of sciences. Fuzzy mappings are used in fuzzy
image processing, fuzzy decision making, fuzzy linear programming and fuzzy
data bases. It is used in mechanical engineering, industrial engineering, computer
engineering and civil engineering. Also the uses of fuzzification can be found in
fuzzy systems, genetic algorithms mechanics and economics.

Mordeson et al. [20] has discovered the grand exploration of fuzzy semigroups,
where theory of fuzzy semigroups is explored along with the applications of fuzzy
semigroups in fuzzy coding, fuzzy finite state mechanics and fuzzy languages and
the use of fuzzification in automata and formal language has widely been explored.
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Moreover the complete l-semigroups have wide range of applications in the theories
of automata, formal languages and programming. It is worth mentioning that
some recent investigations of l-semigroups are closely connected with algebraic
logic and non-classical logic. Fuzzy sets are also closely related to other soft
computing models such as rough sets [23], random sets [7] and soft sets [5], [6], [19].
Zadeh further discussed the relationships between fuzzy set theory and probability
theory [31].

An AG-groupoid is a mid structure between a groupoid and a commuta-
tive semigroup. If an AG-groupoid contains left identity then this left identity
is unique. However an AG-groupoid with right identity becomes a commutative
semigroup with identity. Moreover every commutative AG-groupoid becomes a
commutative semigroup. Mostly an AG-groupoid works like a commutative semi-
group. For instance a2b2 = b2a2, for all a, b holds in a commutative semigroup,
while this equation also holds for an AG-groupoid with left identity e, moreover
ab = (ba)e for any subset {a, b} of an AG-groupoid. Now our aim is to discover
some logical investigations for regular AG-groupoids using the new generalized
concept of fuzzy sets. It is therefore concluded that this research work will give
a new direction for applications of fuzzy set theory particularly in algebraic logic,
non-classical logics, fuzzy coding, fuzzy finite state mechanics and fuzzy languages.

In [21], Murali gave the idea of belongingness of a fuzzy point to a fuzzy subset
under a natural equivalence on a fuzzy subset. The idea of quasi-coincidence of a
fuzzy point with a fuzzy set is defined in [27]. Bhakat and Das [1], [2], gave the
idea of (α, β)-fuzzy subgroups by using the “belongs to” relation ∈ and “quasi-
coincident with” relation q between a fuzzy point and a fuzzy subgroup, and
introduced the concept of an (∈,∈ ∨q)-fuzzy subgroups, where α, β ∈ {∈, q,∈
∨q,∈ ∧q} and α ̸=∈ ∧q. Davvaz defined (∈,∈ ∨q)-fuzzy subnearrings and ideals
of a near ring in [4]. Jun and Song initiated the study of (α, β)-fuzzy interior
ideals of a semigroup in [10]. In [29], regular semigroups are characterized by the
properties of their (∈,∈ ∨q)-fuzzy ideals. In [28], semigroups are characterized by
the properties of their (∈,∈ ∨qk)-fuzzy ideals.

In this paper we have introduced (∈,∈ ∨qk)-fuzzy ideals in a new non-
associative algebraic structure, that is, in an AG-groupoid and developed some
new results. We have defined a regular AG-groupoid and characterized it by the
properties of its (∈,∈ ∨qk)-fuzzy ideals.

2. AG-groupoids

A groupoid (S, .) is called AG-groupoid, if its elements satisfy left invertive law:
(ab)c = (cb)a. In an AG-groupoid medial law [12], (ab)(cd) = (ac)(bd), holds for
all a, b, c, d ∈ S. It is also known that in an AG-groupoid with left identity, the
paramedial law: (ab)(cd) = (db)(ca), holds for all a, b, c, d ∈ S. If an AG-groupoid
contains left identity, the following law holds,

(1) a(bc) = b(ac), for all a, b, c ∈ S.
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Let S be an AG-groupoid. By AG-subgroupoid of S we means a non-empty
subset A of S such that A2 ⊆ A, by a left (right) ideal of S we mean a non-empty
subset L of S such that SL ⊆ L (RS ⊆ R) and by a quasi-ideal of S we mean a
non-empty subset Q of S such that QS ∩ SQ ⊆ Q. By two-sided ideal or simply
ideal, we mean a non-empty subset of S which is both a left and a right ideal of
S. An AG-subgroupoid B of S is called bi-ideal of S if (BS)B ⊆ B. A subset B
of S is called generalized bi-ideal of S if (BS)B ⊆ B.

A fuzzy subset f of a given set S is described as an arbitrary function
f : G −→ [0, 1], where [0, 1] is the usual closed interval of real numbers. For any
two fuzzy subsets f and g of S, f ≤ g means that, f(x) ≤ g(x) for all x in S. The
symbols f ∩ g and f ∪ g will means that the following fuzzy subsets of S

(f ∩ g)(x) = min{f(x), g(x)} = f(x) ∧ g(x)

(f ∪ g)(x) = max{f(x), g(x)} = f(x) ∨ g(x)

for all x in S.
Let f and g be any fuzzy subsets of an AG-groupoid S, then the product f ◦g

is defined by

(f ◦ g) (a) =


∨
a=bc

{f(b) ∧ g(c)} , if there exist b, c ∈ S, such that a = bc

0, otherwise.

A fuzzy subset f of an AG-groupoid S is called a fuzzy AG-subgroupoid of
S if f(xy) ≥ f(x) ∧ f(y) for all x, y ∈ S.

A fuzzy subset f of an AG-groupoid S is called fuzzy left (right) ideal of S if
f(xy) ≥ f(y) (f(xy) ≥ f(x)) for all x, y ∈ S.

A fuzzy subset f of an AG-groupoid S is called fuzzy two-sided ideal of S if
it is both fuzzy left and fuzzy right ideal of S.

A fuzzy AG-subgroupoid f of an AG-groupoid S is called fuzzy bi-ideal of S
if f((xy)z) ≥ f(x) ∧ f(z), for all x, y and z ∈ S.

A fuzzy subset f of an AG-groupoid S is called fuzzy generalized bi-ideal of
S if f((xy)z) ≥ f(x) ∧ f(z), for all x, y and z ∈ S.

A fuzzy subset f of an AG-groupoid S is called fuzzy quasi-ideal of S if
(f ◦ S) (x) ∧ (S ◦ f) (x) ≤ f(x), for all x ∈ S.

Let F (S) denote the collection of all fuzzy subsets of an AG-groupoid S with
left identity, then (F (S), ◦) becomes an AG-groupoid with left identity S, that is
(F (S), ◦) satisfies left invertive law, medial law, paramedial law and property (1).
Note that S can be considered as a fuzzy subset of S itself and we write S = CS,
that is, S(x) = 1 for all x ∈ S. Moreover S ◦ S = S.

The characteristic function CA for a subset A of an AG-groupoid S is de-
fined by

CA(x) =

{
1, if x ∈ A,
0, if x /∈ A.

The proof of the following three lemmas are the same as in [20].
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Definition 1 A fuzzy subset f of an AG-groupoid S is called an (∈,∈ ∨q)-fuzzy
AG-subgroupoid of S if

xt ∈ f, yr ∈ f ⇒ (xy)t∧r ∈ ∨qf

for all x, y ∈ S and t, r ∈ (0, 1].

Theorem 1 Let f be a fuzzy subset of S. Then f is an (∈,∈ ∨q)-fuzzy AG-
subgroupoid of S if and only if f(xy) ≥ min{f(x), f(y), 1−k

2
} for all x, y ∈ S.

Proof. It is similar to the proof of Theorem 12 in [28].

Definition 2 A fuzzy subset f of an AG-groupoid S is called an (∈,∈ ∨q)-fuzzy
left (resp. right) ideal of S if it satisfies the following condition:

yt ∈ f ⇒ (xy)t ∈ ∨qf (resp. yt ∈ f ⇒ (yx)t ∈ ∨qf)

for all x, y ∈ S and t ∈ (0, 1].

A fuzzy subset f of S is called an (∈,∈ ∨q)-fuzzy ideal of S if it is both an
(∈,∈ ∨q)-fuzzy left ideal and an (∈,∈ ∨q)-fuzzy right ideal of S.

Theorem 2 A fuzzy subset f of S is an (∈,∈ ∨q)-fuzzy left (resp. right) ideal of
S, if and only if

f(xy) ≥ min

{
f(y),

1− k

2

} (
resp. f(xy) ≥ min

{
f(x),

1− k

2

})
.

Proof. It is similar to the proof of Lemma 5 in [28].

Definition 3 Let S be an AG-groupoid, and f be a fuzzy subset of S. Then f is
an (∈,∈ ∨q)-fuzzy generalized bi-ideal of S, if for all x, y,z ∈ S and t, r ∈ (0, 1],
we have

xt ∈ f, zr ∈ f ⇒ ((xy)z)t∧r ∈ ∨qf.

An (∈,∈ ∨q)-fuzzy generalized bi-ideal of S is called an (∈,∈ ∨q)-fuzzy bi-ideal
of S if it is also an (∈,∈ ∨q)-fuzzy AG-subgroupoid of S.

Definition 4 A fuzzy subset f of an AG-groupoid S is called an (∈,∈ ∨q)-fuzzy
quasi-ideal of S if it satisfies f(x) ≥ min(f ◦ CS(x), CS ◦ f(x), 1−k

2
), where CS is

the fuzzy subset of S mapping every element of S on 1.

Theorem 3 Let f be a fuzzy subset of an AG-groupoid S. Then f is an (∈,∈ ∨q)-
fuzzy bi-ideal of S if and only if it satisfies:

(i) f(xy) ≥ min{f(x), f(y), 1−k
2
}, for all x, y ∈ S.

(ii) f((xy)z) ≥ min{f(x), f(z), 1−k
2
}, for all x, y, z ∈ S.
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Definition 5 An element a of an AG-groupoid S is called regular if there exist x
in S such that a = (ax)a and S is called regular, if every element of S is regular.

Definition 6 An element a of an AG-groupoid S is called intra-regular if there
exist x, y ∈ S such that a = (xa2)y and S is called intra-regular, if every element
of S is intra-regular.

Lemma 1 For an AG-groupoid S, the following holds.

(i) A non empty subset I of AG-groupoid S is an ideal if and only if (CI)k
is (∈,∈ ∨qk)-fuzzy ideal.

(ii) A non empty subset L of AG-groupoid S is left ideal if and only if (CL)k
is (∈,∈ ∨qk)-fuzzy left ideal.

(iii) A non empty subset R of AG-groupoid S is right ideal if and only if (CR)k
is (∈,∈ ∨qk)-fuzzy right ideal.

(iv) A non empty subset B of AG-groupoid S is bi-ideal if and only if (CB)k
is (∈,∈ ∨qk)-fuzzy bi-ideal.

(v) A non empty subset Q of AG-groupoid S is quasi-ideal if and only if (CQ)k
is (∈,∈ ∨qk)-fuzzy quasi-ideal.

Lemma 2 Let A,B be non empty subsets of an AG-groupoid S. Then the fol-
lowing holds.

(i) (CA∩B)k = (CA ∧k CB) .

(ii) (CA∪B)k = (CA ∨k CB) .

(iii) (CAB)k = (CA ◦k CB) .

Lemma 3 Let S be an AG-groupoid. If a = a(ax), for some x in S. Then
a = a2y, for some y in S.

Proof. Using the medial law, we get

a = a(ax) = [a(ax)](ax) = (aa)((ax)x) = a2y, where y = (ax)x.

Lemma 4 Let S be an AG-groupoid with left identity. If a = a2x, for some x
in S. Then a = (ay)a, for some y in S.

Proof. Using the medial law, the left invertive law, (1), the paramedial law and
the medial law, we get

a = a2x = (aa)x = ((a2x)(a2x))x = ((a2a2)(xx))x = (xx2)(a2a2)

= a2((xx2)a2)) = ((xx2)a2)a)a = ((aa2)(xx2))a = ((x2x)(a2a))a

= [a2{(x2x)a}]a = [{a(x2x)}(aa)]a = [a({a(x2x)}a)]a
= (ay)a, where y = {a(x2x)}a.
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Lemma 5 In AG-groupoid S, with left identity, the following holds.

(i) (aS) a2 = (aS) a.

(ii) (aS) ((aS) a) = (aS) a.

(iii) S ((aS) a) = (aS) a.

(iv) (Sa) (aS) = a (aS) .

(v) (aS) (Sa) = (aS) a.

(vi) [a(aS)]S = (aS)a.

(vii) [(Sa)S](Sa) = (aS)(Sa).

(viii) (Sa)S = (aS).

(ix) S(Sa) = Sa.

(x) Sa2 = a2S.

Proof. It is easy.

Lemma 6 Every intra-regular AG-groupoid with left identity is regular but the
converse is not true.

Proof. It is easy.
For the converse of Lemma 6, see the following example.

Example 1 Let us consider an AG-groupoid S = {1, 2, 3} in the following mul-
tiplication table.

◦ 1 2 3
1 1 1 1
2 1 1 3
3 1 2 1

It is easy to check that {1, 2} is the quasi-ideal of S. Clearly S is regular because
1 = 1 ◦ 1, 2 = (2 ◦ 3) ◦ 2 and 3 = (3 ◦ 2) ◦ 3. But is not intra-regular AG-groupoid.

Let us define a fuzzy subset f on S as follows:

f(x) =


0.9 for x = 1
0.8 for x = 2
0.6 for x = 3

Then, clearly, f is an (∈,∈ ∨qk)-fuzzy ideal of S.

Theorem 4 For an AG-groupoid S, with left identity, the following are equiva-
lent.

(i) S is regular.

(ii) For bi-ideal B, ideal I and left ideal L of S, B ∩ I ∩ L ⊆ (BI)L.

(iii) B [a] ∩ I [a] ∩ L [a] ⊆ (B [a] I [a])L [a] , for some a in S.
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Proof. (i) ⇒ (ii) Assume that B, I and L are bi-ideal, ideal and left ideal of a
regular AG-groupoid S respectively. Let a ∈ B ∩ I ∩ L. This implies that a ∈ I,
a ∈ B and a ∈ L. Since S is regular so for a ∈ S there exist x ∈ S such that using
left invertive law and (1) , we have, a = (ax) a = (((ax) a)x) a = ((xa) (ax)) a =
(a ((xa)x)) a = (B ((SI)S))L = (BI)L. Thus, B ∩ I ∩ L ⊆ (BI)L.

(ii) ⇒ (iii) is obvious.

(iii) ⇒ (i) B [a] = a ∪ a2 ∪ (aS) a, I [a] = a ∪ Sa ∪ aS and L [a] = a ∪ Sa
are principle bi-ideal, principle ideal and principle left ideal of S generated by a
respectively. Thus, by (iii), Lemma 5, (1), left invertive law and paramedial law
we have,

(a ∪ a2 ∪ (aS) a) ∩ (a ∪ Sa ∪ aS) ∩ (a ∪ Sa)
⊆ ((a ∪ a2 ∪ (aS) a) (a ∪ Sa ∪ aS)) (a ∪ Sa)
⊆ {S (a ∪ Sa ∪ aS)} (a ∪ Sa)
⊆ {Sa ∪ S (Sa) ∪ S (aS)} (a ∪ Sa)
= (Sa ∪ aS) (a ∪ Sa)
= (Sa) a ∪ (Sa) (Sa) ∪ (aS) a ∪ (aS) (Sa)
= a2S ∪ a2S ∪ (aS) a ∪ (aS) a
= a2S ∪ (aS) a.

Hence S is regular.

Theorem 5 For an AG-groupoid S, with left identity, the following are equivalent.

(i) S is regular.

(ii) For (∈,∈ ∨qk)-fuzzy bi-ideal f , (∈,∈ ∨qk)-fuzzy ideal g, and (∈,∈ ∨qk)-
fuzzy left ideal h of S, (f ∧k g) ∧k h ≤ (f ◦k g) ◦k h.

(iii) For (∈,∈ ∨qk)-fuzzy generalized bi-ideal f , (∈,∈ ∨qk)-fuzzy ideal g, and
(∈,∈ ∨qk)-fuzzy left ideal h of S, (f ∧k g) ∧k h ≤ (f ◦k g) ◦k h.

Proof. (i) ⇒ (iii) Assume that f , g and h are (∈,∈ ∨qk)-fuzzy generalized
bi-ideal, (∈,∈ ∨qk)-fuzzy ideal and (∈,∈ ∨qk)-fuzzy left ideal of a regular AG-
groupoid S, respectively. Now since S is regular so for a ∈ S there exist x ∈ S
such that using left invertive law and (1) , we have, a = (ax) a = (((ax) a)x) a =
((xa) (ax)) a = (a ((xa) x)) a. Thus,

((f ◦k g) ◦k h)(a) =
∨
a=pq

(f ◦k g)(p) ∧ h(q) ∧ 1− k

2

=
∨
a=pq

({ ∨
p=uv

f(u) ∧ g(v) ∧ 1− k

2

}
∧ h(q) ∧ 1− k

2

)

=
∨

a=(uv)q

(
{f(u) ∧ g(v)} ∧ h(q) ∧ 1− k

2

)
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=
∨

a=(a((xa)x))a=(uv)q

(
{f(u) ∧ g(v)} ∧ h(q) ∧ 1− k

2

)
≥ {f(a) ∧ g ((xa)x)} ∧ h(a) ∧ 1− k

2

≥
{
f(a) ∧

(
g(a) ∧ 1− k

2

)}
∧ h(a) ∧ 1− k

2

= {f (a) ∧ g (a) ∧ 1− k

2
} ∧ h (a) ∧ 1− k

2
= ((f ∧k g) ∧k h) (a) .

Therefore (f ∧k g) ∧k h ≤ (f ◦k g) ◦k h.
(iii) ⇒ (ii) is obvious.
(ii) =⇒ (i) Assume that B, I and L are bi-ideal, ideal and left ideal of S

respectively. Then, by Lemma 1, (CB)k, (CI)k and (CL)k are (∈,∈ ∨qk)-fuzzy
bi-ideal, (∈,∈ ∨qk)-fuzzy ideal and (∈,∈ ∨qk)-fuzzy left ideal of S respectively.
Therefore, by Lemma 2, we have, (CB∩I∪L)k = (CB ∧k CI) ∧k CL ≤ (CB ◦k CI) ◦k
CL = (C(BI)L)k = (C(BI)L)k. Therefore B ∩ I ∩ L ⊆ (BI)L. Hence, by Theorem
4, S is regular.

Theorem 6 For an AG-groupoid S, with left identity, the following are equivalent.

(i) S is regular.

(ii) For left ideal L, ideal I and quasi-ideal Q of S, L ∩ I ∩Q ⊆ (LI)Q.

(iii) L [a] ∩ I [a] ∩Q [a] ⊆ (L [a] I [a])Q [a] , for some a in S.

Proof. (i) ⇒ (ii) Assume that L, I and Q are left ideal, ideal and quasi-ideal
of regular AG-groupoid S. Let a ∈ L ∩ I ∩ Q. This implies that a ∈ L, a ∈ I
and a ∈ Q. Now since S is regular so for a ∈ S there exist x ∈ S such that using
left invertive law and (1) , we have, a = (ax) a = (((ax) a) x) a = ((xa) (ax)) a =
(a ((xa)x)) a ∈ (L ((SI)S))Q ⊆ (LI)Q. Thus L ∩ I ∩Q ⊆ (LI)Q.

(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i) L [a] = a∪Sa, I [a] = a∪Sa∪aS and Q [a] = a∪(Sa ∩ aS) are left

ideal, ideal and quasi-ideal of S generated a respectively. Thus, by (iii), Lemma
5 and medial law we have,

(a ∪ Sa) ∩ (a ∪ Sa ∪ aS) ∩ (a ∪ (Sa ∩ aS)) ⊆ ((a ∪ Sa) (a ∪ Sa ∪ aS))

(a ∪ (Sa ∩ aS))

⊆ {(a ∪ Sa)S} (a ∪ aS)

= {aS ∪ (Sa)S} (a ∪ aS)

= (aS) (a ∪ aS)

= (aS) a ∪ (aS) (aS)

= (aS) a ∪ a2S.

Hence S is regular.
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Theorem 7 For an AG-groupoid S, with left identity, the following are equivalent.

(i) S is regular.

(ii) For (∈,∈ ∨qk)-fuzzy left ideal f , (∈,∈ ∨qk)-fuzzy ideal g, and (∈,∈ ∨qk)-
fuzzy quasi-ideal h of S, (f ∧k g) ∧k h ≤ (f ◦k g) ◦k h.

Proof. (i) ⇒ (ii) Assume that f , g and h are (∈,∈ ∨qk)-fuzzy left ideal, (∈
,∈ ∨qk)-fuzzy ideal and (∈,∈ ∨qk)-fuzzy quasi-ideal of a regular AG-groupoid S,
respectively. Now, since S is regular so for a ∈ S there exist x ∈ S such that using
left invertive law and (1) , we have, a = (ax) a = (((ax) a)x) a = ((xa) (ax)) a =
(a ((xa)x)) a. Thus,

((f ◦k g) ◦k h)(a) =
∨
a=pq

(f ◦k g)(p) ∧ h(q) ∧ 1− k

2

=
∨
a=pq

({ ∨
p=uv

f(u) ∧ g(v) ∧ 1− k

2

}
∧ h(q) ∧ 1− k

2

)

=
∨

a=(uv)q

(
{f(u) ∧ g(v)} ∧ h(q) ∧ 1− k

2

)

=
∨

a=(a((xa)x))a=(uv)q

(
{f(u) ∧ g(v)} ∧ h(q) ∧ 1− k

2

)
≥ {f(a) ∧ g ((xa) x)} ∧ h(a) ∧ 1− k

2

≥
{
f(a) ∧

(
g(a) ∧ 1− k

2

)}
∧ h(a) ∧ 1− k

2

= {f (a) ∧ g (a) ∧ 1− k

2
} ∧ h (a) ∧ 1− k

2
= ((f ∧k g) ∧k h) (a) .

Therefore, (f ∧k g) ∧k h ≤ (f ◦k g) ◦k h.
(ii) =⇒ (i) Assume that L, I and Q are left ideal, ideal and quasi-ideal of S

respectively. Thus, by Lemma 1, (CL)k, (CI)k and (CQ)k are (∈,∈ ∨qk)-fuzzy left
ideal, (∈,∈ ∨qk)-fuzzy ideal and (∈,∈ ∨qk)-fuzzy quasi-ideal of S respectively.
Therefore, by Lemma 2, we have, (CL∩I∪Q)k = (CL ∧k CI) ∧k CQ ≤ (CL ◦k CI) ◦k
CQ = (C(LI)Q)k = (C(LI)Q)k. Therefore L∩ I ∩Q ⊆ (LI)Q. Hence by Theorem 6,
S is regular.

Theorem 8 For an AG-groupoid S, with left identity, the following are equivalent.

(i) S is regular.

(ii) For bi-ideal B, ideal I and quasi-ideal Q of S, B ∩ I ∩Q ⊆ (BI)Q.

(iii) B [a] ∩ I [a] ∩Q [a] ⊆ (B [a] I [a])Q [a] , for some a in S.
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Proof. (i) ⇒ (ii) Assume that B, I and Q are bi-ideal, ideal and quasi-ideal of
regular AG-groupoid S. Let a ∈ B ∩ I ∩ Q. This implies that a ∈ B, a ∈ I and
a ∈ Q. Now, since S is regular so for a ∈ S there exist x ∈ S such that using
left invertive law and (1) , we have, a = (ax) a = (((ax) a)x) a = ((xa) (ax)) a =
(a ((xa)x)) a ∈ (B ((SI)S))Q ⊆ (BI)Q. Thus, B ∩ I ∩Q ⊆ (BI)Q.

(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i) Since B [a] = a ∪ a2 ∪ (aS) a, I [a] = a ∪ Sa ∪ aS and Q [a] =

a ∪ (Sa ∩ aS) are principle bi-ideal, principle ideal and principle quasi-ideal of S
generated by a respectively. Thus, by (ii) and Lemma 5, (1), medial law and left
invertive law, we have,

(a ∪ a2 ∪ (aS) a) ∩ (a ∪ Sa ∪ aS) ∩ (a ∪ (Sa ∩ aS))
⊆ ((a ∪ a2 ∪ (aS) a) (a ∪ Sa
∪aS)) (a ∪ (Sa ∩ aS))
⊆ (S(a ∪ Sa ∪ aS)) (a ∪ aS)
= (Sa ∪ S (Sa) ∪ S (aS)) (a ∪ aS)
= (Sa ∪ S (Sa) ∪ S (aS)) (a ∪ aS)
= (aS ∪ Sa) (a ∪ aS)
= (aS) a ∪ (aS) (aS) ∪ (Sa) a ∪ (Sa) (aS)
= (aS) a ∪ a2S ∪ a (aS) .

Hence S is regular.

Theorem 9 For an AG-groupoid S, with left identity, the following are equivalent.

(i) S is regular.

(ii) For (∈,∈ ∨qk)-fuzzy bi-ideal f , (∈,∈ ∨qk)-fuzzy ideal g, and (∈,∈ ∨qk)-fuzzy
quasi ideal h of S, (f ∧k g) ∧k h ≤ (f ◦k g) ◦k h.

(iii) For (∈,∈ ∨qk)-fuzzy generalized bi-ideal f , (∈,∈ ∨qk)-fuzzy ideal g, and
(∈,∈ ∨qk)-fuzzy quasi ideal h of S, (f ∧k g) ∧k h ≤ (f ◦k g) ◦k h.

Proof. (i) ⇒ (iii) Assume that f , g and h are (∈,∈ ∨qk)-fuzzy generalized
bi-ideal, (∈,∈ ∨qk)-fuzzy ideal and (∈,∈ ∨qk)-fuzzy quasi ideal of a regular AG-
groupoid S, respectively. Now, since S is regular so for a ∈ S there exist x ∈ S
such that using left invertive law and (1) , we have, a = (ax) a = (((ax) a)x) a =
((xa) (ax)) a = (a ((xa) x)) a. Thus,

((f ◦k g) ◦k h)(a) =
∨
a=pq

(f ◦k g)(p) ∧ h(q) ∧ 1−k
2

=
∨
a=pq

({ ∨
p=uv

f(u) ∧ g(v) ∧ 1−k
2

}
∧ h(q) ∧ 1−k

2

)
=

∨
a=(uv)q

(
{f(u) ∧ g(v)} ∧ h(q) ∧ 1−k

2

)
=

∨
a=(a((xa)x))a=(uv)q

(
{f(u) ∧ g(v)} ∧ h(q) ∧ 1−k

2

)
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≥ {f(a) ∧ g ((xa)x)} ∧ h(a) ∧ 1−k
2

≥
{
f(a) ∧

(
g(a) ∧ 1−k

2

)}
∧ h(a) ∧ 1−k

2

= {f (a) ∧ g (a) ∧ 1−k
2
} ∧ h (a) ∧ 1−k

2

= ((f ∧k g) ∧k h) (a) .

Therefore, (f ∧k g) ∧k h ≤ (f ◦k g) ◦k h.
(iii) ⇒ (ii) is obvious.
(ii) =⇒ (i) Assume that B, I and Q be bi-ideal, ideal and quasi-ideal of S

respectively. Then, by Lemma 1, (CB)k, (CI)k and (CQ)k are (∈,∈ ∨qk)-fuzzy
bi-ideal, (∈,∈ ∨qk)-fuzzy ideal and (∈,∈ ∨qk)-fuzzy quasi-ideal of S respectively.
Therefore, by Lemma 2, we have, (CB∩I∪Q)k = (CB ∧k CI)∧k CQ ≤ (CB ◦k CI) ◦k
CQ = (C(BI)Q)k = (C(BI)Q)k. Therefore B ∩ I ∩Q ⊆ (BI)Q. Hence, by Theorem
8, S is regular.

Theorem 10 For an AG-groupoid S, with left identity, the following are equiva-
lent.

(i) S is regular.

(ii) For an ideals I1, I2 and I3 of S, I1 ∩ I2 ∩ I3 ⊆ (I1I2) I3.

(iii) I [a] ∩ I [a] ∩ I [a] ⊆ (I [a] I [a]) I [a] , for some a in S.

Proof. (i) ⇒ (ii) Assume that I1, I2, and I2 are ideals of a regular AG-groupoid
S. Let a ∈ I1 ∩ I2 ∩ I3. This implies that a ∈ I1, a ∈ I2 and a ∈ I3. Now, since
S is regular so for a ∈ S there exist x ∈ S such that using left invertive law
and (1) , we have, a = (ax) a = (((ax) a) x) a = ((xa) (ax)) a = (a ((xa)x)) a ∈
(I1 ((SI2)S)) I3 ⊆ (I1I2) I3. Thus, I1 ∩ I2 ∩ I3 ⊆ (I1I2) I3.

(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i)
Since I [a] = a ∪ Sa ∪ aS is a principle ideal of S generated by a. Thus, by

(iii), Lemma 5, left invertive law, medial law and paramedial law we have,

(a ∪ Sa ∪ aS) ∩ (a ∪ Sa ∪ aS) ∩ (a ∪ Sa ∪ aS)

⊆ ((a ∪ Sa ∪ aS) (a ∪ Sa ∪ aS))

(a ∪ Sa ∪ aS)

⊆ {(a ∪ Sa ∪ aS)S} (a ∪ Sa ∪ aS)

= {aS ∪ (Sa)S ∪ (aS)S} (a ∪ Sa ∪ aS)

= {aS ∪ Sa} (a ∪ Sa ∪ aS)

= (aS) a ∪ (aS) (Sa) ∪ (aS) (aS) ∪ (Sa) a

∪ (Sa) (Sa) ∪ (Sa) (aS)

= (aS) a ∪ a2S.

Hence S is regular.
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Theorem 11 For an AG-groupoid S, with left identity, the following are equiva-
lent.

(i) S is regular.

(ii) For quasi-ideals Q1, Q2 and ideal I of S, Q1 ∩ I ∩Q2 ⊆ (Q1I)Q2.

(iii) Q [a] ∩ I [a] ∩Q [a] ⊆ (Q [a] I [a])Q [a] , for some a in S.

Proof. (i) ⇒ (ii) Assume that Q1 and Q are quasi-ideal and I is an ideal of a
regular AG-groupoid S. Let a ∈ Q1 ∩ I ∩ Q2. This implies that a ∈ Q1, a ∈ I
and a ∈ Q2. Now, since S is regular so for a ∈ S there exist x ∈ S such that using
left invertive law and (1) , we have, a = (ax) a = (((ax) a)x) a = ((xa) (ax)) a =
(a ((xa)x)) a ∈ (Q1 ((SI)S))Q2 ⊆ (Q1I)Q2. Thus, Q1 ∩ I ∩Q2 ⊆ (Q1I)Q2.

(ii) ⇒ (iii) is obvious.

(iii) ⇒ (i) Q [a] = a ∪ (Sa ∩ aS) and I [a] = a ∪ Sa ∪ aS are principle quasi-
ideal and principle ideal of S generated by a respectively. Thus by (iii), left
invertive law, medial law and Lemma 5, we have,

(a ∪ (Sa ∩ aS)) ∩ (a ∪ Sa ∪ aS) ∩ (a ∪ (Sa ∩ aS))

⊆ ((a ∪ (Sa ∩ aS)) (a ∪ Sa ∪ aS))

(a ∪ (Sa ∩ aS))

⊆ {(a ∪ aS)S} (a ∩ aS)

= {aS ∪ (aS)S} (a ∩ aS)

= (aS ∪ Sa) (a ∩ aS)

= {(aS) a ∪ (aS) (aS) ∪ (Sa) a ∪ (Sa) aSa

= (aS) a ∪ a2S ∪ a (aS) .

Hence, S is regular.

Theorem 12 For an AG-groupoid S, with left identity, the following are equiva-
lent.

(i) S is regular.

(ii) For (∈,∈ ∨qk)-fuzzy quasi-ideals f, h, and (∈,∈ ∨qk)-fuzzy ideal g, of S,
(f ∧k g) ∧k h ≤ (f ◦k g) ◦k h.

Proof. (i) ⇒ (ii) Assume that f , h are (∈,∈ ∨qk)-fuzzy quasi-ideal and g is
(∈,∈ ∨qk)-fuzzy ideal of a regular AG-groupoid S, respectively. Now since S is
regular so for a ∈ S there exist x ∈ S such that using left invertive law and (1) ,
we have, a = (ax) a = (((ax) a) x) a = ((xa) (ax)) a = (a ((xa)x)) a. Thus,
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((f ◦k g) ◦k h)(a) =
∨
a=pq

(f ◦k g)(p) ∧ h(q) ∧ 1− k

2

=
∨
a=pq

({ ∨
p=uv

f(u) ∧ g(v) ∧ 1− k

2

}
∧ h(q) ∧ 1− k

2

)

=
∨

a=(uv)q

(
{f(u) ∧ g(v)} ∧ h(q) ∧ 1− k

2

)

=
∨

a=(a((xa)x))a=(uv)q

(
{f(u) ∧ g(v)} ∧ h(q) ∧ 1− k

2

)
≥ {f(a) ∧ g ((xa) x)} ∧ h(a) ∧ 1− k

2

≥
{
f(a) ∧

(
g(a) ∧ 1− k

2

)}
∧ h(a) ∧ 1− k

2

= {f (a) ∧ g (a) ∧ 1− k

2
} ∧ h (a) ∧ 1− k

2
= ((f ∧k g) ∧k h) (a) .

Therefore, (f ∧k g) ∧k h ≤ (f ◦k g) ◦k h.
(ii) =⇒ (i) Assume that Q1 and Q2 are quasi-ideals and I is an ideal of

S respectively. Thus, by Lemma 1, (CQ1)k, (CI)k and (CQ2)k are (∈,∈ ∨qk)-
fuzzy quasi-ideal, (∈,∈ ∨qk)-fuzzy ideal and (∈,∈ ∨qk)-fuzzy quasi-ideal of S
respectively. Therefore, by Lemma 2, we have,

(CQ1∩I∪Q2)k = (CQ1∧kCI)∧kCQ2 ≤ (CQ1◦kCL)◦kCQ2 = (C(Q1I)Q2)k = (C(Q1I)Q2)k.

Therefore Q1 ∩ I ∩Q2 ⊆ (Q1I)Q2. Hence, by Theorem 11, S is regular.

Theorem 13 For an AG-groupoid S with left identity, the following are equiva-
lent.

(i) S is regular.

(ii) For bi-ideal B, B = (BS)B.

(iii) For generalized bi-ideal B, B = (BS)B.

Proof. The proof is straightforward.

Theorem 14 For an AG-groupoid S, with left identity, the following are equiva-
lent.

(i) S is regular.

(ii) For (∈,∈ ∨qk)-fuzzy bi-ideal f , of S, fk = (f ◦k S) ◦k f .

(iii) For (∈,∈ ∨qk)-fuzzy generalized bi-ideal f , of S, fk = (f ◦k S) ◦k f .
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Proof. (i) ⇒ (iii) Assume that f is (∈,∈ ∨qk)-fuzzy generalized bi-ideal of a
regular AG-groupoid S. Since S is regular so for b ∈ S there exist x ∈ S such
that b = (bx) b. Therefore, we have,

((f ◦k S) ◦k f)(b) =
∨
b=pq

(f ◦k S)(p) ∧ f(q) ∧ 1− k

2

=
∨
b=pq

({ ∨
p=uv

f(u) ∧ S(v) ∧ 1− k

2

}
∧ f(q) ∧ 1− k

2

)

=
∨

b=(uv)q

(
{f(u) ∧ S(v)} ∧ f(q) ∧ 1− k

2

)

=
∨

b=(bx)b=(uv)q

(
{f(u) ∧ S(v)} ∧ f(q) ∧ 1− k

2

)
≥ {f(b) ∧ S (x)} ∧ f(b) ∧ 1− k

2

≥ f(b) ∧ 1 ∧ f(b) ∧ 1− k

2

= f (b) ∧ 1− k

2
= fk (b) .

Thus (f ◦kS)◦k f ≥ fk. Since f is (∈,∈ ∨qk)-fuzzy generalized bi-ideal of a regular
AG-groupoid S. So we have,

((f ◦k S) ◦k f)(b) =
∨
b=pq

(f ◦k S)(p) ∧ f(q) ∧ 1− k

2

=
∨
b=pq

({ ∨
p=uv

f(u) ∧ S(v) ∧ 1− k

2

}
∧ f(q) ∧ 1− k

2

)

=
∨
b=pq

({ ∨
p=uv

f(u) ∧ 1

}
∧ f(q) ∧ 1− k

2

)

=
∨
b=pq

( ∨
p=uv

f(u) ∧ f(q) ∧ 1− k

2

)

=
∨

b==pq

{ ∨
p=uv

(
f(u) ∧ f(q) ∧ 1− k

2

)}

≤
∨

b==(uv)q

(
f ((uv)q) ∧ 1− k

2

)
= f (b) ∧ 1− k

2
= fk (b) .

This implies that (f ◦k S) ◦k f ≤ fk. Thus (f ◦k S) ◦k f = fk.
(iii) ⇒ (ii) is obvious.
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(ii) =⇒ (i) Assume that B is a bi-ideal of S. Then, by Lemma 1, (CB)k,
is an (∈,∈ ∨qk)-fuzzy bi-ideal of S. Therefore, by (ii) and Lemma 2, we have,
(CB)k = (CB◦kCS)◦kCB = (C(BS)B)k. Therefore B = (BS)B. Hence, by Theorem
13, S is regular.

Acknowledgements. This research is partially supported by a grant of National
Natural Science Foundation of China (61175055), Natural Science Foundation of
Hubei Province (2012FFB01101) and Natural Science Foundation of Education
Committee of Hubei Province (D20131903).

References

[1] Bhakat, S.K., Das, P., On the definition of a fuzzy subgroup, Fuzzy Sets
and Systems, 51 (1992), 235-241.

[2] Bhakat, S.K., Das, P., (∈,∈ ∨q)-fuzzy subgroups, Fuzzy Sets and Systems,
80 (1996), 359-368.

[3] Clifford, A.H., Preston, G.B., The algebraic theory of semigroups,
vol. II, Amer. Math. Soci., 1967.

[4] Davvaz, B., (∈,∈ ∨q)-fuzzy subnearrings and ideals, Soft Comput., 10
(2006), 206-211.

[5] Feng, F., Li, C.X., Davvaz, B., Ali, M.I., Soft sets combined with
fuzzy sets and rough sets: a tentative approach, Soft Computing, 14 (2010),
899–911.

[6] Feng, F., Liu, X.Y., Leoreanu-Fotea, V., Jun, Y.B., Soft sets and
soft rough sets, Inform. Sci., 181 (2011), 1125–1137.

[7] Goodman, I.R., Fuzzy sets as equivalence classes of random sets.
In: Recent Developments in Fuzzy Sets and Possibility Theory (R. Yager,
Ed.), Pergamon, New York (1982).

[8] Iseki, K., A characterization of regular semigroups, Proc. Japan Acad., 32
(1965), 676-677.

[9] Jun, Y.B., Generalizations of (∈,∈ ∨q)-fuzzy subalgebras in BCK/BCI-
algebra, Comput. Math. Appl., 58 (2009), 1383-1390.

[10] Jun, Y.B., Song, S.Z., Generalized fuzzy interior ideals in semigroups,
Inform. Sci., 176 (2006), 3079-3093.

[11] Kazancı, O., Yamak, S., Generalized fuzzy bi-ideals of semigroups, Soft
Comput., 12 (2008), 1119-1124.

[12] Kazim, M.A., Naseeruddin, M., On almost semigroups, The Alig. Bull.
Math., 2 (1972), 1-7.

[13] Kehayopulu, N., Tsingelis, M., Regular ordered semigroups in terms of
fuzzy subsets, Inform. Sci., 176 (2006), 3675-3693.



324 x. ma, j. zhan, m. khan, t. aziz

[14] Kuroki, N., Fuzzy semiprime quasi ideals in semigroups, Inform. Sci., 75
(3) (1993), 201-211.

[15] Lajos, S., A note on semilattice of groups, Acta Sci. Math. Szeged, 31
(1982), 179-180.

[16] Khan, M., Ahmad, N., Characterizations of left almost semigroups by their
ideals, Journal of Advanced Research in Pure Mathematics, 2 (2010), 61-73.

[17] Khan, M., Jun, Y.B., Ullah, K., Characterizations of right regular Abel-
Grassmann’s groupoids by their (∈,∈ ∨qk)-fuzzy ideals, submitted.

[18] Khan, M., Faisal, Amjid, V., On some classes of Abel-Grassmann’s
groupoids, Journal of Advanced Research in Pure Mathematics, 3, 4 (2011),
109-119.

[19] Molodtsov, D., Soft set theory–First results, Comput. Math. Appl., 37 (1999),
19–31.

[20] Mordeson, J.N., Malik, D.S., Kuroki, N., Fuzzy semigroups, Springer-
Verlag, Berlin, Germany, (2003).

[21] Murali, V., Fuzzy points of equivalent fuzzy subsets, Inform. Sci., 158
(2004), 277-288.

[22] Mushtaq, Q., Yusuf, S.M., On LA-semigroupss, The Alig. Bull. Math.,
8 (1978), 65-70.

[23] Pawlak, Z., Rough sets, Int. J. of Inform. Comput. Sci., 11 (1982), 341-356.

[24] Petrich, M., Introduction to Semigroups, Charles E. Merrill, Columbus,
1973.
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