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1. Introduction, definitions and notations

Let

P (z) = a0 + a1z + a2z
2 + a3z

3 + ........+ an−1z
n−1 + anz

n; |an| ̸= 0

be a polynomial of degree n. Datt and Govil [2], Govil and Rahaman [4], Marden
[8], Mohammad [9], Chattopadhyay, Das, Jain and Konwer [1], Joyal, Labelle and
Rahaman [5], Jain [6],[7], Sun and Hsieh [12], Zilovic, Roytman, Combettes and
Swamy [14], Das and Datta [3] etc. worked in the theory of the distribution of
the zeros of polynomials and obtained some newly developed results.
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In this paper we intend to establish some of sharper results concerning the
theory of distribution of zeros of entire functions in the light of slowly changing
functions.

The following definitions are well known :

Definition 1. The order ρ and lower order λ of an entire function f are defined as

ρ = lim sup
r→∞

log[2]M(r, f)

log r
and λ = lim inf

r→∞

log[2] M(r, f)

log r
,

where log[k] x = log(log[k−1] x) for k = 1, 2, 3, ... and log[0] x = x.

Let L ≡ L (r) be a positive continuous function increasing slowly, i.e.,
L (ar) ∼ L (r) as r −→ ∞ for every positive constant a. Singh and Barker[10]
defined it in the following way:

Definition 2. [10] A positive continuous function L(r) is called a slowly changing
function if, for ε (> 0),

1

kε
≤ L (kr)

L (r)
≤ kε for r > r (ε)

and uniformly for k(≥ 1).

If, further, L(r) is differentiable, the above condition is equivalent to

lim
r→∞

rL
′
(r)

L(r)
= 0.

Somasundaram and Thamizharasi [11] introduced the notions of L-order and L-
lower order for entire functions defined in the open complex plane C as follows:

Definition 3. [11] The L-order ρL and the L-lower order λL of an entire function
f are defined as

ρL = lim sup
r→∞

log[2] M(r, f)

log[rL(r)]
and λL = lim inf

r→∞

log[2] M(r, f)

log[rL(r)]
.

The more generalized concept for L-order and L-lower order are L∗-order and
L∗-lower order respectively. Their definitions are as follows:

Definition 4. The L∗-order ρL
∗
and the L∗-lower order λL∗

of an entire function
f are defined as

ρL
∗
= lim sup

r→∞

log[2] M(r, f)

log[reL(r)]
and λL∗

= lim inf
r→∞

log[2] M(r, f)

log[reL(r)]
.

2. Lemmas

In this section, we present some lemmas which will be needed in the sequel.
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Lemma 1. If f (z) is an entire function of L-order ρL, then for every ε > 0 the
inequality

N (r) ≤ [rL(r)]ρ
L+ε

holds for all sufficiently large r where N (r) is the number of zeros of f (z) in
|z| ≤ [rL(r)].

Proof. Let us suppose that f (0) = 1. This supposition can be made without
loss of generality because if f (z) has a zero of order ′m′ at the origin then we

may consider g (z) = c · f(z)
zm

where c is so chosen that g (0) = 1. Since the func-
tion g (z) and f (z) have the same order therefore it will be unimportant for our
investigations that the number of zeros of g (z) and f (z) differ by m.

We further assume that f (z) has no zeros on |z| = 2[rL(r)] and the zeros
zi’s of f (z) in |z| < [rL(r)] are in non decreasing order of their moduli so that
|zi| ≤ |zi+1|. Also let ρL suppose to be finite.

Now, we shall make use of Jenson’s formula as state below

log |f (0)| = −
n∑

i=1

log
R

|zi|
+

1

2π

∫ 2π

0

log
∣∣f (R eiϕ

)∣∣ dϕ.(1)

Let us replace R by 2r and n by N (2r) in (1)

log |f (0)| = −
N(2r)∑
i=1

log
2r

|zi|
+

1

2π

∫ 2π

0

log
∣∣f (2r eiϕ

)∣∣ dϕ.
Since f (0) = 1, log |f (0)| = log 1 = 0.

∴
N(2r)∑
i=1

log
2r

|zi|
=

1

2π

∫ 2π

0

log
∣∣f (2r eiϕ

)∣∣ dϕ.(2)

L.H.S. =

N(2r)∑
i=1

log
2r

|zi|
≥

N(r)∑
i=1

log
2r

|zi|
≥ N (r) log 2(3)

because for large values of r,

log
2r

|zi|
≥ log 2.

R.H.S =
1

2π

∫ 2π

0

log
∣∣f (2r eiϕ

)∣∣ dϕ
≤ 1

2π

∫ 2π

0

logM (2r) dϕ = logM (2r) .

(4)

Again, by definition of order ρL of f (z), we have for every ε > 0, and as
L (2r) ∼ L (r),

logM (2r) ≤ [2rL(2r)]ρ
L+ε/2

logM (2r) ≤ [2rL(r)]ρ
L+ε/2.

(5)
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Hence, from (2) by the help of (3) , (4) and (5), we have

N (r) log 2 ≤ [2rL(r)]ρ
L+ε/2

i.e., N (r) ≤ 2ρ
L+ε/2

log 2
· (rL(r))

ρL+ε

(rL(r))ε/2
≤ [rL(r)]ρ

L+ε.

This proves the lemma.

In the line of Lemma 1, we may state the following lemma:

Lemma 2. If f (z) is an entire function of L∗-order ρL
∗
, then for every ε > 0 the

inequality

N (r) ≤ [reL(r)]ρ
L∗

+ε

holds for all sufficiently large r where N (r) is the number of zeros of f (z) in
|z| ≤ [reL(r)].

Proof. With the initial assumptions as laid down in Lemma 1, let us suppose
that f (z) has no zeros on |z| = 2[reL(r)] and the zeros zi’s of f (z) in |z| < [reL(r)]
are in non decreasing order of their moduli so that |zi| ≤ |zi+1|. Also, let ρL

∗

supposed to be finite.
In view of (1), (2), (3) and (4), by definition of ρL

∗
and as L (2r) ∼ L (r) , we

get for every ε > 0 that

logM (2r) ≤ [2reL(2r)]ρ
L∗

+ε/2

i.e., logM(2r) ≤ [2reL(r)]ρ
L∗+ε/2

.
(6)

Hence, by the help of (3) , (4) and (6), we obtain from (2) that

N (r) log 2 ≤ [2reL(r)]ρ
L∗

+ε/2

N (r) ≤ 2ρ
L∗

+ε/2

log 2
· [reL(r)]ρ

L∗
+ε

[rL(r)]ε/2
≤ [reL(r)]ρ

L∗
+ε.

Thus, the lemma is established.

3. Theorems

In this section, we present the main results of the paper.

Theorem 1. Let P (z) be an entire function having L-order ρL in the disc
|z| ≤ [rL(r)] for sufficiently large r. Also, let the Taylor’s series expansion of
P (z) be given by

P (z) = a0 + ap1z
p1 + · · ·+ apmz

pm + aN(r)z
N(r), a0 ̸= 0, aN(r) ̸= 0

with 1 ≤ p1 < p2 < · · · < pm ≤ N(r)− 1, pi’s are integers such that for ρL > 0,

|a0| (ρL)N(r) ≥ |ap1 | (ρL)N(r)−p1 ≥ · · · ≥ |apm| (ρL)N(r)−pm ≥
∣∣aN(r)

∣∣ .
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Then, all the zeros of P (z) lie in the ring shaped region

1

ρL
(
1 +

|ap1 |
|a0|(ρL)p1

) < |z| < 1

ρL

(
1 +

|a0|∣∣aN(r)

∣∣(ρL)N(r)

)
.

Proof. Given that

P (z) = a0 + ap1z
p1 + · · ·+ apmz

pm + aN(r)z
N(r)

where pi’s are integers and 1 ≤ p1 < p2 < · · · < pm ≤ N(r)− 1. Then for ρL > 0 ,

|a0| (ρL)N(r) ≥ |ap1 | (ρL)N(r)−p1 ≥ · · · ≥ |apm| (ρL)N(r)−pm ≥
∣∣aN(r)

∣∣ .
Let us consider

Q(z) = (ρL)N(r)P

(
z

ρL

)
= (ρL)N(r)

{
a0 + ap1

zp1
(ρL)p1

+ · · ·+ apm
zpm

(ρL)pm
+ aN(r)

zN(r)

(ρL)N(r)

}
= a0(ρ

L)N(r) + ap1(ρ
L)N(r)−p1zp1 + · · ·+ apm(ρ

L)N(r)−pmzpm + aN(r)z
N(r).

Therefore,

|Q(z)| ≥
∣∣aN(r)z

N(r)
∣∣−∣∣a0(ρL)N(r) + ap1(ρ

L)N(r)−p1zp1 + · · ·+ apm(ρ
L)N(r)−pmzpm

∣∣ .(7)

Now, using the given condition of Theorem 1 we obtain that∣∣a0(ρL)N(r) + ap1(ρ
L)N(r)−p1zp1 + · · ·+ apm(ρ

L)N(r)−pmzpm
∣∣

≤ |a0| (ρL)N(r) + |ap1 | (ρL)N(r)−p1 |z|p1 + · · ·+ |apm | (ρL)N(r)−pm |z|pm

≤ |a0| (ρL)N(r) |z|N(r)

(
1

|z|N(r)−pm
+ · · ·+ 1

|z|N(r)

)
for |z| ̸= 0.

Using (7), we get for |z| ̸= 0 that

|Q(z)| ≥
∣∣aN(r)

∣∣ |z|N(r) − |a0| (ρL)N(r) |z|N(r)

(
1

|z|N(r)−pm
+ · · ·+ 1

|z|N(r)

)

>
∣∣aN(r)

∣∣ |z|N(r) − |a0| (ρL)N(r) |z|N(r)

(
1

|z|N(r)−pm
+ · · ·+ 1

|z|N(r)
+ · · ·

)

=
∣∣aN(r)

∣∣ |z|N(r) − |a0| (ρL)N(r) |z|N(r)

(
∞∑
k=1

1

|z|k

)
.

(8)
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The geometric series
∞∑
k=1

1

|z|k
is convergent for

1

|z|
< 1

i.e., for |z| > 1

and converges to
1

|z|
1

1− 1
|z|

=
1

|z| − 1
.

Therefore,
∞∑
k=1

1

|z|k
=

1

|z| − 1
for |z| > 1.

Using (8), we get from above that for |z| > 1

|Q(z)| >
∣∣aN(r)

∣∣ |z|N(r) − |a0| (ρL)N(r) |z|N(r)

(
1

|z| − 1

)
= |z|N(r)

(∣∣aN(r)

∣∣− |a0| (ρL)N(r)

|z| − 1

)
.

Now, for |z| > 1,

|Q(z)| > 0 if
∣∣aN(r)

∣∣− |a0| (ρL)N(r)

|z| − 1
≥ 0

i.e., if
∣∣aN(r)

∣∣ ≥ |a0| (ρL)N(r)

|z| − 1

i.e., if |z| − 1 ≥ |a0| (ρL)N(r)∣∣aN(r)

∣∣
i.e., if |z| ≥ 1 +

|a0| (ρL)N(r)∣∣aN(r)

∣∣ > 1.

Therefore, |Q(z)| > 0 if

|z| ≥ 1 +
|a0| (ρL)N(r)∣∣aN(r)

∣∣ .

Therefore, Q(z) does not vanish for

|z| ≥ 1 +
|a0| (ρL)N(r)∣∣aN(r)

∣∣ .

So, all the zeros of Q(z) lie in

|z| < 1 +
|a0| (ρL)N(r)∣∣aN(r)

∣∣ .
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Let z = z0 be any zero of P (z). Therefore, P (z0) = 0. Clearly, z0 ̸= 0 as a0 ̸= 0.
Putting z = ρLz0 in Q(z), we get that

Q(ρLz0) = (ρL)N(r).P (z0) = (ρL)N(r).0 = 0.

So z = ρLz0 is a zero of Q(z). Hence,∣∣ρLz0∣∣ < 1 +
|a0| (ρL)N(r)∣∣aN(r)

∣∣
i.e., |z0| <

1

ρL

(
1 +

|a0| (ρL)N(r)∣∣aN(r)

∣∣
)
.

Since z0 is an arbitrary zero of P (z), therefore, all the zeros of Q(z) lie in

|z| < 1

ρL

(
1 +

|a0| (ρL)N(r)∣∣aN(r)

∣∣
)
.(9)

Again, let us consider

R(z) = (ρL)N(r)zN(r)P

(
1

ρLz

)
.

Therefore,

R(z)=(ρL)N(r)zN(r)

{
a0+ap1

1

(ρL)p1zp1
+ · · ·+ apm

1

(ρL)pmzpm
+aN(r)

1

(ρL)N(r)zN(r)

}
=a0(ρ

L)N(r)zN(r)+ap1(ρ
L)N(r)−p1zN(r)−p1 + · · ·+ apm(ρ

L)N(r)−pmzN(r)−pm+aN(r).

Now,

|R(z)| ≥
∣∣a0(ρL)N(r)zN(r)

∣∣
−
∣∣ap1(ρL)N(r)−p1zN(r)−p1 + · · ·+ apm(ρ

L)N(r)−pmzN(r)−pm + aN(r)

∣∣ .(10)

Also∣∣ap1(ρL)N(r)−p1zN(r)−p1 + · · ·+ apm(ρ
L)N(r)−pmzN(r)−pm + aN(r)

∣∣
≤
∣∣ap1(ρL)N(r)−p1zN(r)−p1

∣∣+ · · ·+
∣∣apm(ρL)N(r)−pmzN(r)−pm

∣∣+ ∣∣aN(r)

∣∣
= |ap1 | (ρL)N(r)−p1 |z|N(r)−p1 + · · ·+ |apm | (ρL)N(r)−pm |z|N(r)−pm +

∣∣aN(r)

∣∣
≤ |ap1 | (ρL)N(r)−p1

(
|z|N(r)−p1 + · · ·+ |z|N(r)−pm + 1

)
.

(11)

Using (11), we get from (10) that for |z| ̸= 0

|R(z)| ≥ |a0| (ρL)N(r) |z|N(r) − |ap1 | (ρL)N(r)−p1
(
|z|N(r)−p1 + · · ·+ |z|N(r)−pm + 1

)
= |a0| (ρL)N(r) |z|N(r) − |ap1 | (ρL)N(r)−p1 |z|N(r)

(
1

|z|p1
+ · · ·+ 1

|z|pm
+

1

|z|N(r)

)
> |a0| (ρL)N(r) |z|N(r)

− |ap1 | (ρL)N(r)−p1 |z|N(r)
(

1
|z|p1 + · · ·+ 1

|z|pm + 1

|z|N(r) + · · ·
)
.
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Therefore, for |z| ̸= 0,

|R(z)| > |a0| (ρL)N(r) |z|N(r) − |ap1 | (ρL)N(r)−p1 |z|N(r)

(
∞∑
k=1

1

|z|k

)
.(12)

Now, the geometric series
∞∑
k=1

1

|z|k
is convergent for

1

|z|
< 1

i.e., for |z| > 1

and converges to
1

|z|
1

1− 1
|z|

=
1

|z| − 1
.

So
∞∑
k=1

1

|z|k
=

1

|z| − 1
for |z| > 1.

Therefore, for |z| > 1,

|R(z)| > |a0| (ρL)N(r) |z|N(r) − |ap1 | (ρL)N(r)−p1 |z|N(r)
(

1
|z|−1

)
= |z|N(r) (ρL)N(r)−p1

(
|a0| (ρL)p1 −

|ap1 |
|z|−1

)
.

i.e., for |z| > 1

|R(z)| > |z|N(r) (ρL)N(r)−p1

(
|a0| (ρL)p1 −

|ap1|
|z| − 1

)
.

Now,

|R(z)| > 0 if |a0| (ρL)p1 −
|ap1 |
|z| − 1

≥ 0

i.e., if |a0| (ρL)p1 ≥
|ap1 |
|z| − 1

i.e., if |z| − 1 ≥ |ap1 |
|a0| (ρL)p1

i.e., if |z| ≥ 1 +
|ap1 |

|a0| (ρL)p1
> 1.

Therefore,

|R(z)| > 0 if |z| ≥ 1 +
|ap1 |

|a0| (ρL)p1
.

Since R(z) does not vanish in

|z| ≥ 1 +
|ap1 |

|a0| (ρL)p1
,
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all the zeros of R(z) lie in

|z| < 1 +
|ap1 |

|a0| (ρL)p1
.

Let z = z0 be any zero of P (z). Therefore, P (z0) = 0. Clearly, z0 ̸= 0 as a0 ̸= 0.
Putting z = 1/ρLz0 in R(z), we obtain that

R

(
1

ρLz0

)
= (ρL)N(r)

(
1

ρLz0

)N(r)

· P (z0)

=

(
1

z0

)N(r)

· 0 = 0.

So ∣∣∣∣ 1

ρLz0

∣∣∣∣ < 1 +
|ap1 |

|a0| (ρL)p1

i.e.,

∣∣∣∣ 1z0
∣∣∣∣ < ρL

(
1 +

|ap1 |
|a0| (ρL)p1

)
i.e., |z0| >

1

ρL
(
1 +

|ap1 |
|a0|(ρL)p1

) .

As z0 is an arbitrary zero of P (z), all the zeros of P (z) lie in

|z| > 1

ρL
(
1 +

|ap1 |
|a0|(ρL)p1

) .(13)

So, from (9) and (13), we may conclude that all the zeros of P (z) lie in the proper
ring shaped region

1

ρL
(
1 +

|ap1 |
|a0|(ρL)p1

) < |z| < 1

ρL

(
1 +

|a0|∣∣aN(r)

∣∣(ρL)N(r)

)
.

This proves the theorem.

In the line of Theorem 1, we may state the following theorem in view of
Lemma 2:

Theorem 2. Let P (z) be an entire function having L∗-order ρL
∗
in the disc

|z| ≤ [reL(r)] for sufficiently large r. Also, let the Taylor’s series expansion of
P (z) be given by

P (z) = a0 + ap1z
p1 + · · ·+ apmz

pm + aN(r)z
N(r), a0 ̸= 0, aN(r) ̸= 0
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with 1 ≤ p1 < p2 < · · · < pm ≤ N(r)− 1, pi’s are integers such that for ρL
∗
> 0,

|a0| (ρL
∗
)N(r) ≥ |ap1 | (ρL

∗
)N(r)−p1 ≥ · · · ≥ |apm| (ρL

∗
)N(r)−pm ≥

∣∣aN(r)

∣∣ .
Then, all the zeros of P (z) lie in the ring shaped region

1

ρL∗

(
1 +

|ap1 |
|a0|(ρL∗)

p1

) < |z| < 1

ρL∗

(
1 +

|a0|∣∣aN(r)

∣∣(ρL∗
)N(r)

)
.

The proof is omitted.

Corollary 1. In view of Theorem 1, we may conclude that all the zeros of

P (z) = a0 + ap1z
p1 + · · ·+ apmz

pm + anz
n

of degree n with 1 ≤ p1 < p2 < · · · < pm ≤ n − 1, pi’s are integers such that for
ρL > 0,

|a0| ≥ |ap1 | ≥ · · · ≥ |an|
lie in the ring shaped region

1(
1 +

|ap1 |
|a0|

) < |z| <
(
1 +

|a0|
|an|

)

on putting ρL = 1 in Theorem 1.

Corollary 2. In view of Theorem 2, we may conclude that all the zeros of

P (z) = a0 + ap1z
p1 + · · ·+ apmz

pm + anz
n

of degree n with 1 ≤ p1 < p2 < · · · < pm ≤ n − 1, pi’s are integers such that for
ρL

∗
> 0,

|a0| ≥ |ap1 | ≥ ...... ≥ |an|
lie in the ring shaped region

1(
1 +

|ap1 |
|a0|

) < |z| <
(
1 +

|a0|
|an|

)

on putting ρL
∗
= 1 in Theorem 2.

Theorem 3. Let P (z) be an entire function having L-order ρL. For sufficiently
large r in the disc |z| ≤ [rL(r)], the Taylor’s series expansion of P (z) be given by
P (z) = a0 + a1z + · · ·+ aN(r)z

N(r), a0 ̸= 0. Further, for ρL > 0,

|a0| (ρL)N(r) ≥ |a1| (ρL)N(r)−1 ≥ · · · ≥
∣∣aN(r)

∣∣ .
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Then, all the zeros of P (z) lie in the ring shaped region.

1

ρLt′0
< |z| < 1

ρL
t0,

where t0 and t′0 are the greatest roots of

g(t) ≡
∣∣aN(r)

∣∣ tN(r)+1 −
(∣∣aN(r)

∣∣+ (ρL)N(r) |a0|
)
tN(r) + (ρL)N(r) |a0| = 0

and

f(t) ≡ |a0| ρLtN(r)+1 −
(
|a0| ρL + |a1|

)
tN(r) + |a1| = 0.

Proof. Let

P (z) = a0 + a1z + · · ·+ aN(r)z
N(r)

by applying Lemma 1 and in view of Taylor’s series expansion of P (z). Also

|a0| (ρL)N(r) ≥ |a1| (ρL)N(r)−1 ≥ · · · ≥
∣∣aN(r)

∣∣ .
Let us consider

Q(z) = (ρL)N(r)P

(
z

ρL

)
=
(
ρL
)N(r)

{
a0 + a1

z

ρL
+ a2

z2

(ρL)2
+ · · ·+ aN(r)

zN(r)

(ρL)N(r)

}
= a0(ρ

L)N(r) + a1(ρ
L)N(r)−1z + · · ·+ aN(r)z

N(r).

Now

|Q(z)| ≥
∣∣aN(r)

∣∣ |z|N(r) −
∣∣a0(ρL)N(r)+a1(ρ

L)N(r)−1z + · · ·+ aN(r)−1z
N(r)−1

∣∣ .
Also, applying the condition |a0| (ρL)N(r) ≥ |a1| (ρL)N(r)−1 ≥ · · · ≥

∣∣aN(r)

∣∣, we get
from above that∣∣a0(ρL)N(r) + a1(ρ

L)N(r)−1z + · · ·+ aN(r)−1z
N(r)−1

∣∣
≤ |a0| (ρL)N(r) + |a1| (ρL)N(r)−1 |z|+ · · ·+

∣∣aN(r)−1

∣∣ |z|N(r)−1

≤ |a0| (ρL)N(r)
(
1 + |z|+ · · ·+ |z|N(r)−1

)
= |a0| (ρL)N(r) |z|

N(r) − 1

|z| − 1
for |z| ̸= 1.

Therefore, it follows from above that

|Q(z)| ≥
∣∣aN(r)

∣∣ |z|N(r) − |a0| (ρL)N(r) · |z|
N(r) − 1

|z| − 1
.



294 s.k. datta, d.c. pramanik

Now

|Q(z)| > 0 if
∣∣aN(r)

∣∣ |z|N(r) − |a0| (ρL)N(r) · |z|
N(r) − 1

|z| − 1
> 0

i.e., if
∣∣aN(r)

∣∣ |z|N(r) > |a0| (ρL)N(r).
|z|N(r) − 1

|z| − 1

i.e., if
∣∣aN(r)

∣∣ |z|N(r) (|z| − 1) > |a0| (ρL)N(r)
(
|z|N(r) − 1

)
i.e., if

∣∣aN(r)

∣∣ |z|N(r)+1 −
(∣∣aN(r)

∣∣+ |a0| (ρL)N(r)
)
|z|N(r) + |a0| (ρL)N(r) > 0.

Let us consider

g(t) ≡
∣∣aN(r)

∣∣ tN(r)+1 −
(∣∣aN(r)

∣∣+ |a0| (ρL)N(r)
)
tN(r) + |a0| (ρL)N(r) = 0.(14)

The maximum number of positive roots of (14) is two because maximum number
of changes of sign in g(t) = 0 is two and if it is less, less by two. Clearly, t = 1
is a positive root of g(t) = 0. Therefore, g(t) = 0 must have exactly one positive
root other than 1. Let the positive root of g(t) be t1. Let us take t0 = max {1, t1} .
Clearly, for t > t0, g(t) > 0. If not for some t2 > t0, g(t2) < 0. Also g(∞) > 0.
Therefore g(t) = 0 has another positive root in (t2,∞) which gives a contradiction.
So, for t > t0, g(t) > 0. Also t0 ≥ 1. Therefore, |Q(z)| > 0 if |z| > t0. So, Q(z)
does not vanish in |z| > t0. Hence, all the zeros of Q(z) lie in |z| ≤ t0.

Let z = z0 be a zero of P (z). So, P (z0) = 0. Clearly, z0 ̸= 0 as a0 ̸= 0. Putting
z = ρLz0 in Q(z), we get that

Q(ρLz0) =
(
ρL
)N(r)

P (z0) =
(
ρL
)N(r)

.0 = 0.

Therefore, z = ρLz0 is a zero of Q(z). So,
∣∣ρLz0∣∣ ≤ t0 or |z0| ≤

1

ρL
t0. As z0 is an

arbitrary zero of P (z),

all the zeros of P (z) lie in the region |z| ≤ 1

ρL
t0.(15)

In order to prove the lower bound of Theorem 3, let us consider

R(z) = (ρL)N(r)zN(r)P

(
1

ρLz

)
.

Then

R(z) = (ρL)N(r)zN(r)

(
a0 +

a1
ρLz

+ · · ·+ aN(r)
1

(ρL)N(r)zN(r)

)
= a0(ρ

L)N(r)zN(r) + a1(ρ
L)N(r)−1zN(r)−1 + · · ·+ aN(r).

Now

|R(z)| ≥ |a0| (ρL)N(r) |z|N(r) −
∣∣a1(ρL)N(r)−1zN(r)−1 + · · ·+ aN(r)

∣∣ .
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Also∣∣a1(ρL)N(r)−1zN(r)−1 + · · ·+ aN(r)

∣∣ ≤ |a1| (ρL)N(r)−1 |z|N(r)−1 + · · ·+
∣∣aN(r)

∣∣ .
So, applying the condition |a0| (ρL)N(r) ≥ |a1| (ρL)N(r)−1 ≥ · · · ≥

∣∣aN(r)

∣∣, we get
from above that

−
∣∣a1(ρL)N(r)−1zN(r)−1 + · · ·+ aN(r)

∣∣
≥ − |a1| (ρL)N(r)−1 |z|N(r)−1 − · · · −

∣∣aN(r)

∣∣
≥ − |a1| (ρL)N(r)−1

(
|z|N(r)−1 + · · ·+ 1

)
= − |a1| (ρL)N(r)−1 |z|

N(r)−1 − 1

|z| − 1
for |z| ̸= 1.

Using (16), we get for |z| ̸= 1 that

|R(z)| ≥ (ρL)N(r)−1

(
|a0| ρL |z|N(r) − |a1|

|z|N(r)−1 − 1

|z| − 1

)
.(16)

Now

|R(z)| > 0 if (ρL)N(r)−1

(
|a0| ρL |z|N(r) − |a1|

|z|N(r)−1 − 1

|z| − 1

)
> 0

i.e., if |a0| ρL |z|N(r) − |a1|
|z|N(r)−1 − 1

|z| − 1
> 0

i.e., if |a0| ρL |z|N(r) > |a1|
|z|N(r)−1 − 1

|z| − 1

i.e., if |a0| ρL |z|N(r) (|z| − 1) > |a1|
(
|z|N(r)−1 − 1

)
i.e., if |a0| ρL |z|N(r)+1 −

(
|a0| ρL + |a1|

)
|z|N(r) + |a1| > 0.

Let us consider

f(t) ≡ |a0| ρLtN(r)+1 −
(
|a0| ρL + |a1|

)
tN(r) + |a1| = 0.

Clearly, f(t) = 0 has two positive roots, because the number of changes of sign
of f(t) is two. If it is less, less by two. Also, t = 1 is the one of the positive
roots of f(t) = 0. Let us suppose that t = t2 be the other positive root. Also, let
t′0 = max {1, t2} and so t′0 ≥ 1. Now t > t′0 implies f(t) > 0. If not, then there
exists some t3 > t′0 such that f(t3) < 0. Also, f(∞) > 0. Therefore, there exists
another positive root in (t3,∞) which is a contradiction. So, |R(z)| > 0 if |z| > t′0.
Thus R(z) does not vanish in |z| > t′0. In other words, all the zeros of R(z) lie in
|z| ≤ t′0.
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Let z = z0 be any zero of P (z). So, P (z0) = 0. Clearly, z0 ̸= 0 as a0 ̸= 0.

Putting z =
1

ρLz0
in R(z), we get that

R

(
1

ρLz0

)
= (ρL)N(r)

(
1

ρLz0

)N(r)

P (z0) =

(
1

z0

)N(r)

· 0 = 0

Therefore,
1

ρLz0
is a root of R(z). So,

∣∣∣∣ 1

ρLz0

∣∣∣∣ ≤ t′0 implies |z0| ≥
1

ρLt′0
. As z0 is

an arbitrary zero of P (z) = 0,

all the zeros of P (z) lie in |z| ≥ 1

ρLt′0
.(17)

From (15) and (18) we have all the zeros of P (z) lie in the ring shaped region
given by

1

ρLt′0
≤ |z| ≤ 1

ρL
t0

where t0 and t′0 are the greatest positive roots of g(t) = 0 and f(t) = 0 respectively.

This proves the theorem.

In the line of Theorem 3, we may state the following theorem in view of
Lemma 2:

Theorem 4. Let P (z) be an entire function having L∗-order ρL
∗
. For sufficiently

large r in the disc |z| ≤ [reL(r)], the Taylor’s series expansion of P (z) be given by

P (z) = a0 + a1z + · · ·+ aN(r)z
N(r), a0 ̸= 0.

Further, for ρL
∗
> 0,

|a0| (ρL
∗
)N(r) ≥ |a1| (ρL

∗
)N(r)−1 ≥ · · · ≥

∣∣aN(r)

∣∣ .
Then all the zeros of P (z) lie in the ring shaped region.

1

ρL∗t′0
< |z| < 1

ρL∗ t0

where t0 and t′0 are the greatest roots of

g(t) ≡
∣∣aN(r)

∣∣ tN(r)+1 −
(∣∣aN(r)

∣∣+ (ρL
∗
)N(r) |a0|

)
tN(r) + (ρL

∗
)N(r) |a0| = 0

and

f(t) ≡ |a0| ρL
∗
tN(r)+1 −

(
|a0| ρL

∗
+ |a1|

)
tN(r) + |a1| = 0.

The proof is omitted.
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Corollary 3. From Theorem 3, we can easily conclude that all the zeros of

P (z) = a0 + a1z + · · ·+ anz
n

of degree n with property |a0| ≥ |a1| ≥ · · · ≥ |an| lie in the ring shaped region

1

t′0
≤ |z| ≤ t0

where t0 and t′0 are the greatest positive roots of

g(t) ≡ |an| tn+1 − (|an|+ |a0|)tn + |a0| = 0

and
f(t) ≡ |a0| tn+1 − (|a0|+ |a1|)tn + |a1| = 0

respectively by putting ρL = 1.

Corollary 4. From Theorem 4, we can easily conclude that all the zeros of

P (z) = a0 + a1z + · · ·+ anz
n

of degree n with property |a0| ≥ |a1| ≥ · · · ≥ |an| lie in the ring shaped region

1

t′0
≤ |z| ≤ t0

where t0 and t′0 are the greatest positive roots of

g(t) ≡ |an| tn+1 − (|an|+ |a0|)tn + |a0| = 0

and
f(t) ≡ |a0| tn+1 − (|a0|+ |a1|)tn + |a1| = 0

respectively by putting ρL
∗
= 1.

Corollary 5. Under the conditions of Theorem 3 and

P (z) = a0 + ap1z
p1 + · · ·+ apmz

pm + aN(r)z
N(r)

with
1 ≤ p1 ≤ p2 ≤ · · · ≤ pm ≤ N(r)− 1,

where pi’s are integers and a0, ap1 , ..., aN(r) are non vanishing coefficients with

|a0| (ρL)N(r) ≥ |ap1 | (ρL)N(r)−p1 ≥ · · · ≥ |apm| (ρL)N(r)−pm ≥
∣∣aN(r)

∣∣
then we can show that all the zeros of P (z) lie in

1

ρLt′0
≤ |z| ≤ 1

ρL
t0

where t0 and t′0 are the greatest positive roots of

g(t) ≡
∣∣aN(r)

∣∣ tN(r)+1 −
(∣∣aN(r)

∣∣+ |a0| (ρL)N(r)
)
tN(r) + |a0| (ρL)N(r) = 0

and

f(t) ≡ |a0| (ρL)p1tN(r)+1 −
(
|a0| (ρL)p1 + |ap1 |

)
tN(r) − |ap1 | = 0 respectively.
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Corollary 6. Under the conditions of Theorem 4 and

P (z) = a0 + ap1z
p1 + .....+ apmz

pm + aN(r)z
N(r)

with
1 ≤ p1 ≤ p2 ≤ · · · ≤ pm ≤ N(r)− 1,

where pi’s are integers and a0, ap1 , ..., aN(r) are non vanishing coefficients with

|a0| (ρL
∗
)N(r) ≥ |ap1 | (ρL

∗
)N(r)−p1 ≥ · · · ≥ |apm| (ρL

∗
)N(r)−pm ≥

∣∣aN(r)

∣∣
then we can show that all the zeros of P (z) lie in

1

ρL∗t′0
≤ |z| ≤ 1

ρL∗ t0

where t0 and t′0 are the greatest positive roots of

g(t) ≡
∣∣aN(r)

∣∣ tN(r)+1 −
(∣∣aN(r)

∣∣+ |a0| (ρL
∗
)N(r)

)
tN(r) + |a0| (ρL

∗
)N(r) = 0

and

f(t) ≡ |a0| (ρL
∗
)p1tN(r)+1 −

(
|a0| (ρL

∗
)p1 + |ap1 |

)
tN(r) − |ap1 | = 0 respectively.

Corollary 7. If we put ρL = 1 in Corollary 5, then all the zeros of

P (z) = a0 + ap1z
p1 + · · ·+ apmz

pm + anz
n

lie in the ring shaped region
1

t′0
≤ |z| ≤ t0

where t0 and t′0 are the greatest positive roots of

g(t) ≡ |an| tn+1 − (|an|+ |a0|) tn + |a0| = 0

and
f(t) ≡ |a0| tn+1 − (|a0|+ |ap1 |) tn − |ap1 | = 0 respectively

provided
|a0| ≥ |ap1 | ≥ ..... ≥ |apm| ≥ |an| .

Corollary 8. If we put ρL
∗
= 1 in Corollary 6, then all the zeros of

P (z) = a0 + ap1z
p1 + · · ·+ apmz

pm + anz
n

lie in the ring shaped region
1

t′0
≤ |z| ≤ t0
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where t0 and t′0 are the greatest positive roots of

g(t) ≡ |an| tn+1 − (|an|+ |a0|) tn + |a0| = 0

and
f(t) ≡ |a0| tn+1 − (|a0|+ |ap1 |) tn − |ap1 | = 0 respectively

provided
|a0| ≥ |ap1 | ≥ ..... ≥ |apm| ≥ |an| .
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