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Abstract. Modelling quantum systems by orthomodular posets P = (P,≤,′ , 0, 1) gives

rise to the question, when a finite subset A of P lies within a Boolean subalgebra of P,

in which case A is called Boolean. Boolean subsets A specify the physical subsystem

represented by A to be classical. We give a characterization of a subset of P to be

Boolean by only taking into account terms of elements of this subset and in such a way

that an inductive algorithm can be derived.
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1. Introduction

Orthomodular lattices, and more general, orthomodular posets P = (P,≤,′ , 0, 1)
have been intensively studied as models for quantum logics (cf., e.g., [2], [5], [6], [7]
and [8]). It is well known that these algebraic structures correspond to classical
mechanical systems if and only if they are Boolean algebras. However, if one
deals with only a finite subset A of P the question arises whether the physical
subsystem represented by A is classical, which then means that A lies within a
Boolean subalgebra of P . If this is the case, then A will be called Boolean. For
this definition, cf. the pioneering paper [1], in which the question of Boolean
subsets was settled for the special case of so-called algebras of numerical events.
For the general case of arbitrary orthomodular posets, Boolean subsets have been
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identified by means of a generalization of the compatibility relation of two elements
(cf. [3], [4] and [8]).

In this paper, we will stick to the classical commutativity relation of only two
elements and will only take into account terms of elements of the given finite
set of elements of P to answer the question, whether this set is Boolean. The
characterization we derive will be inductive and hence will give rise to a step by
step procedure.

We begin by recollecting the definition of an orthomodular poset and some of
its properties.

An orthomodular poset is a ordered quintuple P = (P,≤,′ , 0, 1) such that
(P,≤, 0, 1) is a bounded poset and ′ is a unary operation on P satisfying the
following conditions for all x, y ∈ P :

(i) x ≤ y implies x′ ≥ y′.

(ii) (x′)′ = x

(iii) x ∨ x′ = 1

(iv) If x ⊥ y, i. e. if x ≤ y′, in which case x and y are said to be orthogonal
(to each other), then x ∨ y, the supremum of x and y, exists.

(v) If x ≤ y then the orthomodular law y = x ∨ (y ∧ x′) holds.

y∧x′ denotes the infimum of y and x′. It is easy to see that within an orthomodular
poset the existence of x∨y implies the existence of x′∧y′ and that the de Morgan
laws (x ∨ y)′ = x′ ∧ y′ and (x ∧ y)′ = x′ ∨ y′ hold, in the sense that if one side is
defined then so is the other and they are equal. Moreover, if x ≤ y then x ⊥ y′

and hence x∨ y′ exists which in turn shows the existence of x′∧ y = (x∨ y′)′. The
existence of the term on the right-hand side of the orthomodular law is secured
by the fact that x ⊥ (y ∧ x′).

Two elements a and b of an orthomodular poset P = (P,≤,′ , 0, 1) are said
to commute (with each other) – in short, a C b – if there exist three mutually
orthogonal elements c, d, e of P such that a = c∨d and b = d∨ e. It is well known
(cf. e. g. [8]) that the elements c, d, e are unique if they exist, namely c = a ∧ b′,
d = a ∧ b and e = a′ ∧ b.

There are numerous characterizations and implications concerning the pro-
perty a C b (cf. e. g. [2] and [8]). We list the very conditions we need for our
further considerations, and when this seems essential, we will refer to them.

Properties of C

For an orthomodular poset P = (P,≤,′ , 0, 1) the following conditions for a, b ∈ P
are equivalent:

(i) a C b

(ii) The subset {a, b} of P is Boolean, i. e. there exists a Boolean subalgebra of
P containing a and b.
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(iii) (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) for three arbitrary but fixed elements of the
four elements a, a′, b, b′

(iv) (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z) for three arbitrary but fixed elements of the
four elements a, a′, b, b′

Moreover, the following holds:

(v) If a C b then x C y for all x, y ∈ {0, a, a′, b, b′, 1}.

(vi) If a ≤ b then a C b.

(vii) If a ⊥ b then a C b.

(viii) If a C b then a ∨ b and a ∧ b exist.

2. Characterizing Boolean subsets

As usual, we will write
∨
i∈I

si and
∧
i∈I

si for the supremum and infimum, respec-

tively, of the elements si, i ∈ I, and we will use the notation
∨

S and
∧

S if
S = {si | i ∈ I}. Assume that S is a finite subset of pairwise orthogonal elements
of an orthomodular poset P = (P,≤,′ , 0, 1). Then it can immediately be seen
that

∨
S exists.

The following result is well-known (cf. [3], [4] and [8]):

Lemma 2.1. Let A be a finite subset of mutually orthogonal elements of an ortho-
modular poset P = (P,≤,′ , 0, 1). Then the subset {

∨
D |D ⊆ A} of P is Boolean.

Now, we can prove our main theorem:

Theorem 2.2. Let P = (P,≤,′ , 0, 1) be an orthomodular poset, 1 ≤ k < n and
A an n-element subset of P . If any k-element subset of A is Boolean and (

∧
B)

C (
∧

D) for all k-element subsets B and D of A then also any (k + 1)-element
subset of A is Boolean.

Proof. With regard to the properties of C the case k = 1 is obvious. Now assume
k > 1 and let A be the set {a1, ..., an}.
First, we show by induction on s that for all s = k, k − 1, ..., 1 we have

a1 ∧ ... ∧ as ∧ a′s+1 ∧ ... ∧ a′k C ak+1.

Since (a1 ∧ ... ∧ ak) C (a2 ∧ ... ∧ ak+1) the infimum

(a1 ∧ ... ∧ ak) ∧ (a2 ∧ ... ∧ ak+1) = a1 ∧ ... ∧ ak+1

exists, and due to property (iii) of C we obtain
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a1 ∧ ... ∧ ak = (a1 ∧ ... ∧ ak) ∧ ((a2 ∧ ... ∧ ak+1) ∨ (a2 ∧ ... ∧ ak+1)
′)

= ((a1 ∧ ... ∧ ak) ∧ (a2 ∧ ... ∧ ak+1)) ∨ ((a1 ∧ ... ∧ ak) ∧ (a′2 ∨ ... ∨ a′k+1))

= (a1 ∧ ... ∧ ak+1) ∨ (a1 ∧ ... ∧ ak ∧ (a′2 ∨ ... ∨ a′k+1))

= (a1 ∧ ... ∧ ak+1) ∨ (a1 ∧ ((a2 ∧ ... ∧ ak) ∧ ((a2 ∧ ... ∧ ak)
′ ∨ a′k+1)))

= (a1 ∧ ... ∧ ak+1) ∨ (a1 ∧ ((a2 ∧ ... ∧ ak) ∧ a′k+1))

= (a1 ∧ ... ∧ ak+1) ∨ (a1 ∧ ... ∧ ak ∧ a′k+1)

= ((a1 ∧ ... ∧ ak) ∧ ak+1) ∨ ((a1 ∧ ... ∧ ak) ∧ a′k+1).

Hence, again by property (iii) of C, a1∧ ...∧ak C ak+1, which proves our assertion
for s = k.

Now, assume 1 < s ≤ k and

a1 ∧ ... ∧ ai ∧ a′i+1 ∧ ... ∧ a′k C ak+1

for all i = s, ..., k. Our goal is to show that

a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k C ak+1.

According to the properties of C,

a1 ∧ ... ∧ as ∧ a′s+1 ∧ ... ∧ a′k C a′k+1

and hence

a1 ∧ ... ∧ as ∧ a′s+1 ∧ ... ∧ a′k ∧ a′k+1 = (a1 ∧ ... ∧ as ∧ a′s+1 ∧ ... ∧ a′k) ∧ a′k+1

exist. In the following, let us denote a by a1 and a′ by a−1. For reasons of
symmetry also ai11 ∧ ... ∧ a

ik+1

k+1 exists whenever

|{j ∈ {1, ..., k + 1} | ij = 1}| ≥ s.

Now, we compute by relying on the properties of C

(a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k) ∧ (a′k+1 ∨ (a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k)
′)

= (a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k) ∧ (a′k+1 ∨ a′1 ∨ ... ∨ a′s−1 ∨ as ∨ ... ∨ ak)

= (a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k−1) ∧
∧(a′k ∧ (ak ∨ (a′1 ∨ ... ∨ a′s−1 ∨ as ∨ ... ∨ ak−1 ∨ a′k+1)))

= (a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k−1) ∧
∧(a′k ∧ (a′1 ∨ ... ∨ a′s−1 ∨ as ∨ ... ∨ ak−1 ∨ a′k+1))

= a′k ∧ ((a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k−1) ∧
∧((a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k−1)

′ ∨ a′k+1))

= a′k ∧ ((a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k−1) ∧ a′k+1)

= a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k−1 ∧ a′k ∧ a′k+1

= (a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k−1 ∧ a′k) ∧ a′k+1
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showing
a1 ∧ ... ∧ as−1 ∧ a′s ∧ ... ∧ a′k C ak+1

which completes the proof by induction.
We have shown that

a1 ∧ ai22 ∧ ... ∧ aikk C ak+1.

for all i2, ..., ik ∈ {−1, 1} and we point out that the elements

ai11 ∧ ... ∧ a
ik+1

k+1 = (ai11 ∧ ... ∧ aikk ) ∧ (ai22 ∧ ... ∧ a
ik+1

k+1 )

(i1, ...ik+1 ∈ {−1, 1}) exist and are mutually orthogonal. Further, we obtain

a1 =
∨

i2,...,ik∈{−1,1}

(a1 ∧ ai22 ∧ ... ∧ aikk )

=
∨

i2,...,ik∈{−1,1}

(((a1 ∧ ai22 ∧ ... ∧ aikk ) ∧ ak+1) ∨ ((a1 ∧ ai22 ∧ ... ∧ aikk ) ∧ a′k+1))

=
∨

i2,...,ik∈{−1,1}

((a1 ∧ ai22 ∧ ... ∧ aikk ∧ ak+1) ∨ (a1 ∧ ai22 ∧ ... ∧ aikk ∧ a′k+1))

=
∨

i2,...,ik+1∈{−1,1}

(a1 ∧ ai22 ∧ ... ∧ a
ik+1

k+1 ).

For reasons of symmetry, we also have

aj =
∨

i1,...,ij−1,ij+1,...,ik+1∈{−1,1}

(ai11 ∧ ... ∧ a
ij−1

j−1 ∧ aj ∧ a
ij+1

j+1 ∧ ... ∧ a
ik+1

k+1 )

for all j = 1, ..., k + 1 which, according to Lemma 2.1, shows that {a1, ..., ak+1}
is Boolean. By symmetry, it follows that every (k + 1)-element subset of A is
Boolean.

Corollary 2.3. Let P = (P,≤,′ , 0, 1) be an orthomodular poset, n > 1 and A an
n-element subset of P . Then A is Boolean if and only if (

∧
B) C (

∧
D) for every

k ∈ {1, ..., n− 1} and every k-element subsets B and D of A.

Remark 2.4. According to Theorem 2.2,
∧

B exists for all k-element subsets of
A, k ∈ {1, 2, ..., n− 1}.

3. Remarks about algorithmic aspects

If one wants to check whether a subset A = {a1, ..., an} of an orthomodular poset
P is Boolean, one can proceed as follows:

(1) Check whether ai C aj for i, j ∈ {1, 2, ..., n}, i ̸= j, e. g. by looking for the
existence of ai ∧ aj, ai ∧ a′j and whether (ai ∧ aj) ∨ (ai ∧ a′j) = ai. If these
elements exist and the equation holds (which is equivalent to ai C aj) and if
P will be a lattice (as in the case of a Hilbert space logic) then one is done;
A is Boolean. If these elements exist and the equation holds and P is not a
lattice then
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(2) for r ∈ {1, ...,
(
n
2

)
}, denote the elements ai ∧ aj, i, j ∈ {1, ..., n}, i ̸= j, by br

and check, whether br C bs for r, s ∈ {1, ...,
(
n
2

)
}, r ̸= s. Assuming, this is

the case then

(3) replenish the elements br to triples ai ∧ aj ∧ ak, i, j, k ∈ {1, ...,
(
n
3

)
}, i ̸= j ̸=

k ̸= i, and so on,

until one comes across a pair (
∧

B,
∧
D) of infima of subsets B and D of A with

|B| = |D| ≤ n − 1 which do not commute, in which case A is not Boolean;
otherwise, the subset A is Boolean.
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(1979), 149–153.

[4] Brabec, J., Pták, P., On compatibility in quantum logics, Found. Phys.,
12 (1982), 207–212.
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