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1. Introduction

Let A be a selfadjoint operator on the complex Hilbert space (H, (-, -)) with the
spectrum Sp (A) included in the interval [m, M| for some real numbers m < M and
let { E)}, beits spectral family. Then for any continuous function f : [m, M| — R,
it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral (see, for instance, [19, p. 257]):

() Gz = [ F0 (B,
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and

M
) I£ (el = [ 1F P A,
m—0
for any x,y € H.
The function g, , (A) := (E\x, y) is of bounded variation on the interval [m, M|
and

Gzy (m —0) = 0 while g, , (M) = (z,y)

for any z,y € H. It is also well known that g, (\) := (E\x,z) is monotonic
nondecreasing and right continuous on [m, M| for any x € H.

The following result that provides an operator version for the Jensen inequa-
lity is due to Mond & Pecari¢ [23] (see also [18, p. 5]):

Theorem 1 (Mond-Pecarié, 1993, [23]) Let A be a selfadjoint operator on
the Hilbert space H and assume that Sp(A) C [m, M] for some scalars m, M
with m < M. If h is a convex function on [m, M], then

(MP) h((Az,z)) < (h(A)z,z)
for each x € H with ||z|| = 1.

As a special case of Theorem 1 we have the following Holder-McCarthy
inequality:

Theorem 2 (Ho6lder-McCarthy, 1967, [21]) Let A be a selfadjoint positive
operator on a Hilbert space H. Then, for all x € H with ||z|| = 1,

(i) (A"z,x) > (Ax,x)" for all r > 1;
(ii) (A"x,x) < (Az,z)" for all 0 <r <1

(iii) If A is invertible, then (A"z,x) > (Ax,x)" for all r < 0.

The following reverse for the Mond-Pecari¢ inequality that generalizes the
scalar Lah-Ribari¢ inequality for convex functions is well known, see for instance

[18, p. 57]:

Theorem 3 Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp(A) C [m, M] for some scalars m, M with m < M. If h is a convex
function on [m, M], then

M — (Az, x)
M—m

(Az,x) —m

LR)  (h(A)z,a) < e

~h(m)+ ~h (M)

for each x € H with ||z| = 1.
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We recall that the bounded linear operator U : H — H on the Hilbert space
H is unitary iff U* = U™,

It is well known that (see for instance [19, p. 275-p. 276]), if U is a unitary
operator, then there exists a family of projections {FE\} Ae[0,24]> called the spectral
family of U with the following properties

a) By < E, for 0 <\ <p <2m;

b) Ey =0 and E,, = 1y (the identity operator on H);

¢) Exio= E) for 0 <\ < 27,

d) U= fO% e*dE, where the integral is of Riemann-Stieltjes type.

Moreover, if {F\} re[0,2n) 1S & family of projections satisfying the requirements
a)-d) above for the operator U, then F = E) for all X € [0, 27].

Also, for every continuous complex valued function f : C(0,1) — C on the
complex unit circle C (0, 1), we have

(3) f(U) = /0 " f () dE,

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(4) (f (U)2,y) = / (@ d(Bra, y)

and

5) W)l = / 17 () P d | B = / 1 (@) [Fd (B o).

for any x,y € H.

From the above properties it follows that the function g, (A\) := (E\x,z) is
monotonic nondecreasing and right continuous on [0, 27] for any = € H.

For z € C\ {0} we call the principal value of log (z) the complex number

Log (z) :=1n|z| + iArg (2)

where 0 < Arg (z) < 2.
We observe that for ¢ € [0,27) we have

Log (e“) =t.

If we extend this equality by continuity in the point ¢ = 27, then we can define
the operator Log(U) : H — H as

2T 2T
(6) Log(U)x = / Log (") dE\z = / (i\) dExx, x € H.
0 0
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Utilizing these spectral representations in terms of the Riemann-Stieltjes inte-
gral for the selfadjoint and unitary operators we establish here some weighted
inequalities of Jensen’s type for three classes of functions: convex, square-convex
and Arg-square-convex functions. Some applications for simple functions of ope-
rators that belong to those classes are also provided.

For classical and recent results concerning inequalities for continuos functions
of selfadjoint operators, see [23], [24], [25], [20], [18], [6], [9], [10], [12], [11], [16],
[15], [14], [13], [7], and [8].

2. Weighted inequalities for the Riemann-Stieltjes integral

We can state the following result concerning the weighted Riemann-Stieltjes inte-
gral of monotonic nondecreasing integrators:

Theorem 4 Let @ : [y,I] € R— R be a continuous convex function on the
interval [v,T], f :[a,b] C R — R be a continuous function on the interval |a, b
and with the property that

(7) Y<f@) ST for anyt € [a, ]

and w : [a,b] — [0,00) be continuous on [a,b]. Then for each monotonic non-
decreasing function u : [a,b] — R such that f (t)du(t) > 0, we have the
inequalities

(D(fazi(t)f(t)du())Sfaw@?)( Of)(t) u (t)
fa (t) du(t) a ) du (t

(8) Jow( w (t) f () du (1) )
) I — =2 cI> _

M( T >+ ( Fo®di)

- |

<

Proof. Utilizing the gradient inequality for the convex function ®, namely,
O () =@ (1) 2 60 (1) (s —7)

for any ¢, 7 € [y,T'] where 0¢ (7) € [CDL (1), 9, (7')] , (for 7 = v we take 0g (7) =
P’ (y) and for 7 =T" we take do (1) = @’ (I')), then we get

Jow(t) f <>du<>>
9 6} —d
(9) (<) ( f "

m(fb >>< f<>du<>>
J.w w () du (1)

for any ¢ € [v,T'], since obviously, by (7)
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Since f satisfies (7), then by (9) we get

(10) (@of)()_q)(f w(t) f (t) u())
w (t) du (t)

b
u () t)d
Z%(f <f (070 u())
Jiw w (¢) du (1)
for any s € [a,b].
Now, if we multiply (10) by w(s) > 0 and integrate the result over the
monotonic nondecreasing integrator u on the interval [a,b] we obtain the first

inequality in (8).
By the convexity of ® we also have the inequality

T—m)2()+F-—7)2(I)
['—~

O (1) <

for any 7 € [v,I'], which, by (9) implies that

(C=f(s)P(y) +(f(s) =)@ ()

)
(1) (@0 f)(s) < e

for any s € [a,b].

Now, if we multiply (11) by w(s) > 0 and integrate the result over the
monotonic nondecreasing integrator u on the interval [a, b] we obtain the second
inequality in (11).

The proof is complete. .

Remark 1 The above inequality provides a generalization for the unweighted
case, namely w (t) = 1, ¢ € [a,b], which can be stated as

o (ff /(1) du <t>> L@ ) () du)

u(b) —u(a) u(b) —u(a)
(12) I F () du(t) S £ () du(t)
3 *0) (F_ u(b) —u(a) ) Fem <u<b>—U(a) _7>

For inequalities related to the Jensen’s result, see [1], [2], [3], [17], [4], [26]
and [27].

Corollary 1 Let h : [a,b] C R — R be a continuous function on the interval [a, b]
and with the property that

(13) 0<~v<h(t) <T for anyt € [a,]

and w : [a,b] — [0,00) be continuous on [a,b]. Assume also that u : [a,b] — R is
a monotonic nondecreasing function such that f: w (t) du (t) > 0.
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(i) If p > 1, then

o | (F_ ffu;<t>h<t>du<t>> o (ffu;(t)h(t)du(t) _7>] |
Jo w () du?) S w () du(t)

(ii) Ifp € (0,1), then the inequalities reverse in (14).
(iii) If p < 0 and v > 0, then the inequality (14) also holds.

The proof follows by Theorem 4 applied for the convex (concave) function

f(t) =17, pe (-00,0)U[l,00) (p € (0,1)).
The following result is the well known version of the Holder inequality for the
Riemann-Stieltjes integral with monotonic nondecreasing integrators v : [a, b] — R:

15 [irosoaos|[1rora } [ w@ra }

where f, g : [a,b] C R — C are continuous and p,q > 1 with 1/p+1/¢ = 1.

Proposition 1 Let f,g : [a,b] C R — C~\ {0} be continuous on [a,b] and
w: [a, b =R monotonic nondecreasing on [a,b]. Let p,q € R~{0} with 1/p+1/q=1
and assume that

£ ()
16 0 _—
1o =TS e

<T foranyté€la,b.

(i) Ifp>1, then

(L Srme@laey  \1"
[’y<r f|gt|qdu>>+ <f|gt|qczu> ”)] |

(ii) Ifp € (0,1), then the inequalities in (17) reverse.
(ili) If p < 0 and v > 0 then the inequalities in (17) also reverse.
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Proof. Follows by Corollary 1, by choosing
L]

g™

and w = |g|?

and performing some simple calculation.
The details are omitted. n

Corollary 2 Let h: [a,b] C R — R be a continuous function on the interval |a, b]
and with the property that

(18) 0<~vy<h(t) <T foranyt € [a,]
and w : [a,b] — [0,00) be continuos on [a,b. Assume also that u : [a,b] — R is a
monotonic nondecreasing function such that f (t)du(t) > 0. Then

Jow®n@du)  fw (@) (noh) (1) du(t)
(19) Jow(t)du() S w (t) du (1)

L(F,M) L(M,V)
> AT Jew@du) )P S wt)du(t) .

The proof follows by Theorem 4 applied for the convex function ®(t) = — Int,
t>0.

3. Weighted inequalities for convex functions of selfadjoint operators

We can state the following result concerning the weighted Jensen’s inequality for
continuous functions of selfadjoint operators:

Theorem 5 Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M] for some scalars m, M withm < M. If ® : [y,T]C R — R
is a continuous convex function on the interval [v,T], f:[m,M] CR — R is a
continuous function on the interval [m, M| and with the property that

(20) < F () <T for any t € [m, M
and w : [m, M] — [0, 00) is continuous on [m, M], then

(w (A) f (A) . 2) <<A><1>of<> z)
‘b< (w(d)z,1 >< (w(A)z,2)

(i <w><<A n1) g (WD) )
I'—

w (
<

Y
for any x € H with ||z|| =1 and (w (A)x,z) # 0.
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Proof. Let {E)}, be the spectral family of the operator A. Let ¢ > 0 and
write the inequality (8) on the interval [a,b] = [m — ¢, M] and for the monotonic
nondecreasing function g (t) = (Eyr,z), * € H with ||z]| = 1, to get

o (ffgw(t)f(t)dwtx,x)) _ e @) 0d (B )
S (8) N M w(t)d(E, z)

d —&
(22) (_ S w (8) £(£)d (B, x>>@(7>+<fni”5w<t>f<t>d<Et9”’““> - )@(r)
f w(t)d (Ex, ) fM w (t) d (B, v)

m—e

<
< I~
Letting € — 0+ and utilizing the spectral representation (1), we deduce from (22)
the desired result (21). .

Remark 2 If we choose w (t) = 1 and f (t) =t with ¢ € [m, M] then we get from
(21) the inequalities (MP) and (LR).

We have the following generalization and reverse for the Holder-McCarthy
inequality:

Corollary 3 Let A be a selfadjoint positive operator on a Hilbert space H and
assume that Sp (A) C [m, M| for some scalars m, M with m < M. If the functions
fow : [m,M] — [0,00) are continuous and f satisfies the condition (20) with
v >0, then for any p > 1 we have

(23) (w(A) f(A)z,x)
< (w(A) f7 (A) z,z) (w (A) 2z, 2)""
1 -
F—,y<w (A)z, )

X [V ((w (A) [Py = £ (A)] 2, 2)) + 7 ((w (A) [f (A) = y1a] 2, 2))]
where x € H with ||z|| = 1.

If p € (0,1) then the inequalities reverse in (23).
If v > 0 and p < 0 the inequalities in (23) also hold.

IN

Remark 3 If we choose w(t) = 1 and f (t) = t with ¢t € [m, M] C [0,00) then
we get from (23)

(24)  (Az,z)’ < (APx,x)

1
< o [m" (Mg = A)z,2)) + M (((A —mlp)z, )]
M—m
for any p > 1, where x € H with ||z|| = 1.
If p € (0,1), then the inequalities reverse in (24).
If m > 0 and p < 0 then the inequalities in (24) also hold.
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Remark 4 If we choose w (t) = f(t) =t with ¢t € [m, M] C [0,00), then we get
from (23)

(A%, )" < (APx, x) (A, )"
(25) 1
<
- M-m
for any p > 1, where x € H with ||z|| = 1.
If p € (0,1), then the inequalities reverse in (25).
If m > 0 and p < 0 then the inequalities in (25) also hold.

(Az, z)P " [mP ((A(M1y—A)z,2)) + MP ((A(A—mly) z, z))]

Corollary 4 Let A be a selfadjoint positive operator on a Hilbert space H and
assume that Sp (A) C [m, M| for some scalars m, M with m < M. If the functions
fyw : [m, M] — [0,00) are continuous and f satisfies the condition (20) with ~y > 0
then

(w(A) f(A)w, >>6Xp (w(A)(nof) (A)z,z)
(26) (w(A)w,z) — (w(A)z,z)

(P— Lo ) y 1 (oA Ars) )
>fyl“v (w(@z,z) )T\ (w(@zz) 7

for any x € H with ||z|| = 1.

Remark 5 If we choose w (t) = 1 and f(t) = ¢ with t € [m, M| C (0,00) then
we get from (26)
(27) (Az,x) > exp [(In Az, z)]
> s (M1 =A)z.2) ) parts (A=1am)aa)
for any x € H with ||z| = 1.

Also, if we choose w (t) = f(t) = ¢ with ¢t € [m, M] C (0,00) then we get
from (26) that

) (Arra) [(A In Az, x>]

(Az,x) — (Az, x)
2z,z 2z,z
> mMim <M_ <(l:x,ac>> > leim <<<1:x,x)> _m>

for any z € H with ||z|| = 1.

Remark 6 If we choose w (t) = t" and f (t) =t with ¢ € [m, M] C (0, 00) where
r,q > 0, then we get from (21) that

o () =
e () e (G )
a 9 — ~a 5

for a continuous convex function ® : [m?, M7 — R and for any x € H with
o] = 1.



256 S.S. DRAGOMIR

We have the following Holder type inequality for continuous functions of
selfadjoint operators:

Proposition 2 Let A be a selfadjoint positive operator on a Hilbert space H
and assume that Sp(A) C [m,M] for some scalars m, M with m < M. If
fig : la,b) € R — C~ {0} are continuous on [a,b] and p,q € R~ {0} with
1/p+1/q=1 are such that

I/ @)

(30) O§’y§| <T foranyt € [a,bl,

gOI"

then we have the inequalities

(B (f (A)g(A)]z,2)
< [flg ()", [41f (A 2, ))'”
1
T~ 1/p Az, x
< Gy @)
o (r o WA g@e2)) | (1T (D g@)za) ]
{7 (F <|g(A)|qx,x> >+F ( <’g(A)|q$,$> 7>} ,

for p > 1 and for any v € H with ||z|| =1 and (Jg (A)|?x,x) # 0.
If p € (0,1), then the inequalities in (31) reverse;
If p <0 and v > 0 then the inequalities in (31) also reverse.

4. Weighted inequalities for square-convex functions
We introduce the following class of complex valued functions:

Definition 1 A function ¢ : [7,I'] € R — C is called square-convex on [y, I]
if the associated function ¢ : [y, '] — [0, 00), ¢ (t) = |® (t)|* is convex on [y, I7.

A simple example of such a function is the concave power function ® : [y, '] C
[0,00) — [0,00), @ () =t with r € [3,1]. Also, if h : [y,I'] = [0,00) is convex
then the complex valued function @ : [y,I'] C R — C given by ® () = hY/2 (t) "
is square-convex on [y, T].

Consider the function f(t) = In (¢ + 1). We observe that it is concave and

positive on (0,00) and if we define ¢ (t) = [In (t + 1)]*, then we have that

2
") = ——— 1 —-In(t+1)], t>—1,
¢ 0) = gy - 1)
showing that f is square-convex on the interval [0,e — 1] .
Another example for trigonometric functions is for instance f(t) = cost,
t € [2,Z] . The function ¢ (t) = cos? ¢ has the second derivative ¢” (t) = —2 cos (2t)

which is positive for ¢ € [E E] . Therefore, f is square-convex on the interval

472
T
5:5]-
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Theorem 6 Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M] for some scalars m, M withm < M. If ® : [y, T]C R — C
is a continuous square-convex function on the interval [y,T], f: [m,M] C R — R
is a continuous function on the interval [m, M| and with the property that

(32) v< f(t) T for any t € [m, M]

and w : [m, M] — [0, 00) is continuos on [m, M|, then

(st [ty

) ) o) (1 )+w¢ (s oy

—

for any x € H with ||z|| =1 and (w (A)x,z) # 0.

The proof follows from Theorem 4 applied for the function ¢ : [y, T'] — [0, 00),
¢ (t) = |® (¢)|* that is continuous convex on [y, T']. The details are omitted.

Remark 7 If w (t) = 1, then we get from (33) the following simpler result
[ ((f (A) z,2))] < [[(Pof)(A)z]]

B _ 12 )P (T — f (A) v, 2) + 1@ (D) (S (A) = 1u) 2, 2)
< e ,

1/2

for any x € H with ||z| = 1.
This is true since

M
(o o f) (Waa) = [ (@7 @) d(Bira)
-0
= [|®(f(A)) 2]’
for any = € H with ||z|| = 1 (for the second equality see for instance [19, p. 257]).

Corollary 5 With the assumptions of Theorem 6 for A, f,w and if v > 0, then
we have

<’w( w(Al',:L? ;
S ST Qw« sz
g

for any q € [3,1] and any x € H with ||z|| = 1 and (w (A) z,z) # 0.
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Remark 8 If we choose w (t) = 1 and f(t) = ¢ with ¢t € [m, M| C (0,00) then
we get from (35)
(36)  (Az,z)" < [|A%]

< m?? (M1yg — A)x,x) + M* (A —1gm)z, ) 12
- M—m ’

for any ¢ € [1,1] and any = € H with ||z|| = 1.
Also, if we choose w (t) = f(t) = ¢ with t € [m, M] C (0,00) then we get
from (35)

2 q M/ A2¢+1 1/2
(Az, x) | (Azx,x)
i (A22.0) (A22.0) v
m* <M - (Az,;:> ) + M < <Ax,;;> - m)
< )
- M—-—m

for any ¢ € [3,1] and any z € H with ||z|| = 1.

Remark 9 If we choose w (t) = t" and f (t) = ¢* with t € [m, M] C (0, 00) where
r,s > 0, then we get from (35) that

(A5, )\ [(AT+25g 7)7]?
(o) <[ |

(Arz, ) (Arz, )
(38) m2q3 Ms _ <A7"+5:C’ x) + M2qs <AT+S:C7 x> _ ms 2
< (Arz, x) (Arz, x)
— MS _ ms Y

for any ¢ € [,1] and any = € H with ||z|| = 1.

5. Weighted inequalities for Arg-square-convex functions

The function ® : C (0,1) — C will be called Arg-square-convez if the composite
function ¢ : [0, 27| — [0, c0),

@ (")), te[0,2m)
p(t) = o
lim |q) (e”)‘ , t=2m

S—2mT—

is continuous and convex on [0, 2] .
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To make the distinction between the value ¢ (0) = |® (¢?0)]> = |® (1)* and
the value ¢ (27) = lign ‘CI) (") ? we denote by ®.(1) := lim @ (). With
S—r2T—

s—2m—

this notation, we have ¢ (21) = |®, (1)|.
The function ®,, : C(0,1) — C, &, (2) = [Log (2)]", where n is a positive
integer, is Arg-square-convex. We have

@, (t) = |, (") ’2 = |[Log (eit)}n|2 = |it]" = >t € [0, 2n),
and
0, (21) = 1nn_\®n(e“)f::y®nﬁ(1ﬂ2::(zﬂf”

For ¢ > 1, define the function ®, : C (0,1) — [0,00) by ®,(z) = |Log (2)|".
We have

eu (8) = 12 () * = | Log () = it = 4.1 € [0,27)

and
p, (2m) = lim |@, (e%)]” = |y (1) = (27)™

S—2m—

The function ®, for ¢ > 1 5 is an Arg-square-convex function.
If g : [0,27] — [0, 00) is continuous and convex on [0, 27] , then the composite
function @ : C (0,1) — [0, 00) defined by

D (2) = g (ILog (2))]"*
is an Arg-square-convex function on C (0, 1).

Theorem 7 Let U € B(H) be a unitary operator on the Hilbert space H
and ® : C(0,1) — C a continuous and Arg-square-convex function on C(0,1).
Ifw:C(0,1) = [0,00) is a continuous function, then we have

‘(I)(eXp[<w(U)Log(U)>$7x>D‘S (w (U) | (V)] z, x>]

(w(U)z, (w(U), )

(39) @) Log 2.5 gy, @O LogO) 0] 1
- ) lop+ T e

8

<

21

for any x € H, ||z|| = 1, where ®. (1) := lim & ().

S—2m—

Proof. We apply Theorem 4 to the function ¢ : [0, 27] — [0, 00),

@ ()], t €10,2m)
(1) = o
Jim [@ ()7t =2r

that is continuous and convex on [0, 27] .
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If {E)\} Ae[0,27] is the spectral family of the operator U, then we can write
the inequality (8) on the interval [a, b] = [0, 27] for the monotonic nondecreasing

integrator u (t) = (E;x, x) and for the identity function f (t) = t,t € [0, 27] to get
(Etx,x)]>2 o w (@)@ () d (B, )

i 2w (e )
D[ ex
( g [ 7w (e fo%w (e) d(Ex, )

(40) 2 it 2 it
<2W_f0 Z(e td<Etx,x>>|®<1)|2+< ; u;(z ><b<t>d<Etx,x>>|¢c(l>|2

"w(t)d (B, )

2T

for any z € H, ||z| = 1.
Since, by the spectral representation of functions of unitary operators (3),
we have

i/o ’ w (") td (Eyx, z) = /0 ’ w (") Log (") d (B, z)
— (w (V) Log(U)z, 2)
/0 w (eit) d{Ex,z) = (w(U)z,z),

/0 ﬂw (e") | (eit)|2d<Etx,x> = (w (U)|® (U)|2:1:,:c> and

2T
/ w (") td (Byx,z) = (w (U) |Log(U)| z, x)
0
for any x € H,||z| = 1, then inequality (40) produces the desired result (39). =

Remark 10 If w () = 1, then we get from (39) the following simpler result

|© (exp [(Log(U)z, x)])| < [|@ (U) x|
1/2

4y [<<2w1H — |Log(U)]) &, z) |® (V)] + (|Log(U)]| &, z) |, (1)|?
- 2

for any z € H with ||z|| = 1.
This is true since

(@ (U)] z,2) = /0 ’ | (¢")|*d (B, z) = @ (U)

for any x € H with ||z|| = 1 (for the second equality see (5)).

The interested reader may apply the inequality (39) for different examples of
Arg-square-convex functions. We give here only one example, for instance if we
choose the function @, (z) = |Log (2)|*,¢q > 1/2 as introduced above, then we get
from (39)
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o [ ) Log(@)e, )\ |7 [ (w0 () [Log @),y ]
a2 Jeos (o0 [0 )] < | e
_ {w(U)|Log(U) :lv/;as)” " (omyrv?
(w(U), )
for any x € H with ||z =1 and w : C (0,1) — [0, 00) a continuous function.
In particular, we have
(43) | Log (exp [(Log(U)z, z)])|* < [[|[Log (U)|" =]

< (2m)" (| Log(U)| &, )"

for any x € H with ||z| = 1.
Finally, we notice that the following result providing Holder’s type inequalities
for continuous functions of unitary operators can be stated:

Proposition 3 Let U € B (H) be a unitary operator on the Hilbert space H and.
If f,g : C(0,1) — C~ {0} are continuous on C(0,1) and p,q € R~ {0} with
1/p+1/q =1 are such that

(44) 0<~< |/ ()]

—————— < T foranyte|0,2r
7= eyt =T oot e 2

then we have the inequalities

(45)  {|f (U)g(U)|x,x)
< g @), ) [(1f ©) 2, 2))"7”

< ﬁ (lg (), 2)
o @@z oy (@ gl ]
(- ) (M )]

for p > 1 and for any x € H with ||z|| = 1 and (|g (U)|* z,z) # 0.
If p € (0,1), then the inequalities in (45) reverse;
If p <0 and v > 0 then the inequalities in (45) also reverse.

The proof follows by Proposition 1 and the spectral representation for conti-
nuous functions of unitary operators.

If g : [0,27] — [0, 00) is continuous and convex on [0, 27|, then the composite
function f:C(0,1) — [0, 00) defined by

f () :=lg (|1Log (2)))]""*

is an Arg-square-convex function on C (0, 1).
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As examples of such functions we have

fa(2) == exp (a|Log (2)])

which are Arg-square-convex functions on C (0, 1) for any real number « # 0.
We also notice that the family of functions

Jmn :C(0,1) = C, frun (2) = 2™[Log (2)]",

where m # 0 is an integer and n is a positive integer, are Arg-square-convex
functions.

The reader may apply the above inequalities for these functions as well.
However, the details are omitted.
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