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1. Introduction

Let A be a selfadjoint operator on the complex Hilbert space (H, ⟨·, ·⟩) with the
spectrum Sp (A) included in the interval [m,M ] for some real numbersm < M and
let {Eλ}λ be its spectral family. Then for any continuous function f : [m,M ] → R,
it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral (see, for instance, [19, p. 257]):

(1) ⟨f (A) x, y⟩ =
∫ M

m−0

f (λ) d (⟨Eλx, y⟩) ,
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and

(2) ∥f (A)x∥2 =
∫ M

m−0

|f (λ)|2 d ∥Eλx∥2 ,

for any x, y ∈ H.
The function gx,y (λ) := ⟨Eλx, y⟩ is of bounded variation on the interval [m,M ]

and

gx,y (m− 0) = 0 while gx,y (M) = ⟨x, y⟩

for any x, y ∈ H. It is also well known that gx (λ) := ⟨Eλx, x⟩ is monotonic
nondecreasing and right continuous on [m,M ] for any x ∈ H.

The following result that provides an operator version for the Jensen inequa-
lity is due to Mond & Pečarić [23] (see also [18, p. 5]):

Theorem 1 (Mond-Pečarić, 1993, [23]) Let A be a selfadjoint operator on
the Hilbert space H and assume that Sp (A) ⊆ [m,M ] for some scalars m,M
with m < M. If h is a convex function on [m,M ] , then

(MP) h (⟨Ax, x⟩) ≤ ⟨h (A)x, x⟩

for each x ∈ H with ∥x∥ = 1.

As a special case of Theorem 1 we have the following Hölder-McCarthy
inequality:

Theorem 2 (Hölder-McCarthy, 1967, [21]) Let A be a selfadjoint positive
operator on a Hilbert space H. Then, for all x ∈ H with ∥x∥ = 1,

(i) ⟨Arx, x⟩ ≥ ⟨Ax, x⟩r for all r > 1;

(ii) ⟨Arx, x⟩ ≤ ⟨Ax, x⟩r for all 0 < r < 1;

(iii) If A is invertible, then ⟨Arx, x⟩ ≥ ⟨Ax, x⟩r for all r < 0.

The following reverse for the Mond-Pečarić inequality that generalizes the
scalar Lah-Ribarić inequality for convex functions is well known, see for instance
[18, p. 57]:

Theorem 3 Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) ⊆ [m,M ] for some scalars m,M with m < M. If h is a convex
function on [m,M ] , then

(LR) ⟨h (A) x, x⟩ ≤ M − ⟨Ax, x⟩
M −m

· h (m) +
⟨Ax, x⟩ −m

M −m
· h (M)

for each x ∈ H with ∥x∥ = 1.
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We recall that the bounded linear operator U : H → H on the Hilbert space
H is unitary iff U∗ = U−1.

It is well known that (see for instance [19, p. 275-p. 276]), if U is a unitary
operator, then there exists a family of projections {Eλ}λ∈[0,2π], called the spectral
family of U with the following properties

a) Eλ ≤ Eµ for 0 ≤ λ ≤ µ ≤ 2π;

b) E0 = 0 and E2π = 1H (the identity operator on H);

c) Eλ+0 = Eλ for 0 ≤ λ < 2π;

d) U =
∫ 2π

0
eiλdEλ where the integral is of Riemann-Stieltjes type.

Moreover, if {Fλ}λ∈[0,2π] is a family of projections satisfying the requirements
a)-d) above for the operator U, then Fλ = Eλ for all λ ∈ [0, 2π] .

Also, for every continuous complex valued function f : C (0, 1) → C on the
complex unit circle C (0, 1), we have

(3) f (U) =

∫ 2π

0

f
(
eiλ
)
dEλ

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(4) ⟨f (U)x, y⟩ =
∫ 2π

0

f
(
eiλ
)
d ⟨Eλx, y⟩

and

(5) ∥f (U)x∥2 =
∫ 2π

0

∣∣f (eiλ)∣∣2 d ∥Eλx∥2 =
∫ 2π

0

∣∣f (eiλ)∣∣2 d ⟨Eλx, x⟩ ,

for any x, y ∈ H.
From the above properties it follows that the function gx (λ) := ⟨Eλx, x⟩ is

monotonic nondecreasing and right continuous on [0, 2π] for any x ∈ H.
For z ∈ Cr {0} we call the principal value of log (z) the complex number

Log (z) := ln |z|+ iArg (z)

where 0 ≤ Arg (z) < 2π.
We observe that for t ∈ [0, 2π) we have

Log
(
eit
)
= it.

If we extend this equality by continuity in the point t = 2π, then we can define
the operator Log(U) : H → H as

(6) Log(U)x =

∫ 2π

0

Log
(
eiλ
)
dEλx =

∫ 2π

0

(iλ) dEλx, x ∈ H.
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Utilizing these spectral representations in terms of the Riemann-Stieltjes inte-
gral for the selfadjoint and unitary operators we establish here some weighted
inequalities of Jensen’s type for three classes of functions: convex, square-convex
and Arg-square-convex functions. Some applications for simple functions of ope-
rators that belong to those classes are also provided.

For classical and recent results concerning inequalities for continuos functions
of selfadjoint operators, see [23], [24], [25], [20], [18], [6], [9], [10], [12], [11], [16],
[15], [14], [13], [7], and [8].

2. Weighted inequalities for the Riemann-Stieltjes integral

We can state the following result concerning the weighted Riemann-Stieltjes inte-
gral of monotonic nondecreasing integrators:

Theorem 4 Let Φ : [γ,Γ] ⊂ R → R be a continuous convex function on the
interval [γ,Γ] , f : [a, b] ⊂ R → R be a continuous function on the interval [a, b]
and with the property that

(7) γ ≤ f (t) ≤ Γ for any t ∈ [a, b]

and w : [a, b] → [0,∞) be continuous on [a, b]. Then, for each monotonic non-

decreasing function u : [a, b] → R such that
∫ b

a
w (t) du (t) > 0, we have the

inequalities

(8)

Φ

(∫ b

a
w (t) f (t) du (t)∫ b

a
w (t) du (t)

)
≤
∫ b

a
w (t) (Φ ◦ f) (t) du (t)∫ b

a
w (t) du (t)

≤
Φ (γ)

(
Γ−

∫ b

a
w (t) f (t) du (t)∫ b

a
w (t) du (t)

)
+ Φ(Γ)

(∫ b

a
w (t) f (t) du (t)∫ b

a
w (t) du (t)

− γ

)
Γ− γ

.

Proof. Utilizing the gradient inequality for the convex function Φ, namely,

Φ (ς)− Φ (τ) ≥ δΦ (τ) (ς − τ)

for any ς, τ ∈ [γ,Γ] where δΦ (τ) ∈
[
Φ′

− (τ) ,Φ′
+ (τ)

]
, (for τ = γ we take δΦ (τ) =

Φ′
+ (γ) and for τ = Γ we take δΦ (τ) = Φ′

− (Γ)), then we get

Φ (ς)− Φ

(∫ b

a
w (t) f (t) du (t)∫ b

a
w (t) du (t)

)
(9)

≥ δΦ

(∫ b

a
w (t) f (t) du (t)∫ b

a
w (t) du (t)

)(
ς −

∫ b

a
w (t) f (t) du (t)∫ b

a
w (t) du (t)

)
for any ς ∈ [γ,Γ] , since obviously, by (7)∫ b

a
w (t) f (t) du (t)∫ b

a
w (t) du (t)

∈ [γ,Γ] .
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Since f satisfies (7), then by (9) we get

(Φ ◦ f) (s)− Φ

(∫ b

a
w (t) f (t) du (t)∫ b

a
w (t) du (t)

)
(10)

≥ δΦ

(∫ b

a
w (t) f (t) du (t)∫ b

a
w (t) du (t)

)(
f (s)−

∫ b

a
w (t) f (t) du (t)∫ b

a
w (t) du (t)

)
for any s ∈ [a, b] .

Now, if we multiply (10) by w (s) ≥ 0 and integrate the result over the
monotonic nondecreasing integrator u on the interval [a, b] we obtain the first
inequality in (8).

By the convexity of Φ we also have the inequality

Φ (τ) ≤ (Γ− τ) Φ (γ) + (τ − γ) Φ (Γ)

Γ− γ

for any τ ∈ [γ,Γ] , which, by (9) implies that

(11) (Φ ◦ f) (s) ≤ (Γ− f (s)) Φ (γ) + (f (s)− γ) Φ (Γ)

Γ− γ

for any s ∈ [a, b] .
Now, if we multiply (11) by w (s) ≥ 0 and integrate the result over the

monotonic nondecreasing integrator u on the interval [a, b] we obtain the second
inequality in (11).

The proof is complete.

Remark 1 The above inequality provides a generalization for the unweighted
case, namely w (t) = 1, t ∈ [a, b] , which can be stated as

(12)

Φ

(∫ b

a
f (t) du (t)

u (b)− u (a)

)
≤
∫ b

a
(Φ ◦ f) (t) du (t)
u (b)− u (a)

≤
Φ (γ)

(
Γ−

∫ b

a
f (t) du (t)

u (b)− u (a)

)
+ Φ(Γ)

(∫ b

a
f (t) du (t)

u (b)− u (a)
− γ

)
Γ− γ

.

For inequalities related to the Jensen’s result, see [1], [2], [3], [17], [4], [26]
and [27].

Corollary 1 Let h : [a, b] ⊂ R → R be a continuous function on the interval [a, b]
and with the property that

(13) 0 ≤ γ ≤ h (t) ≤ Γ for any t ∈ [a, b]

and w : [a, b] → [0,∞) be continuous on [a, b]. Assume also that u : [a, b] → R is

a monotonic nondecreasing function such that
∫ b

a
w (t) du (t) > 0.
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(i) If p ≥ 1, then(∫ b

a

w (t)h (t) du (t)

)p

(14)

≤
[∫ b

a

w (t) du (t)

]p−1 ∫ b

a

w (t)hp (t) du (t)

≤ 1

Γ− γ

[∫ b

a

w (t) du (t)

]p
×

[
γp

(
Γ−

∫ b

a
w (t)h (t) du (t)∫ b

a
w (t) du (t)

)
+ Φp

(∫ b

a
w (t)h (t) du (t)∫ b

a
w (t) du (t)

− γ

)]
.

(ii) If p ∈ (0, 1) , then the inequalities reverse in (14).

(iii) If p < 0 and γ > 0, then the inequality (14) also holds.

The proof follows by Theorem 4 applied for the convex (concave) function
f (t) = tp, p ∈ (−∞, 0) ∪ [1,∞) (p ∈ (0, 1)).

The following result is the well known version of the Hölder inequality for the
Riemann-Stieltjes integral with monotonic nondecreasing integrators u : [a, b] → R:

(15)

∫ b

a

|f (t) g (t)| du (t) ≤
[∫ b

a

|f (t)|p du (t)
]1/p [∫ b

a

|g (t)|q du (t)
]1/q

,

where f, g : [a, b] ⊂ R → C are continuous and p, q > 1 with 1/p+ 1/q = 1.

Proposition 1 Let f, g : [a, b] ⊂ R → Cr {0} be continuous on [a, b] and
u: [a, b]→R monotonic nondecreasing on [a, b]. Let p, q ∈ Rr{0} with 1/p+1/q=1
and assume that

(16) 0 ≤ γ ≤ |f (t)|
|g (t)|q−1 ≤ Γ for any t ∈ [a, b] .

(i) If p > 1, then∫ b

a

|f (t) g (t)| du (t)(17)

≤
[∫ b

a

|g (t)|q du (t)
]1/q [∫ b

a

|f (t)|p du (t)
]1/p

≤ 1

(Γ− γ)1/p

∫ b

a

|g (t)|q du (t)

×

[
γp

(
Γ−

∫ b

a
|f (t) g (t)| du (t)∫ b

a
|g (t)|q du (t)

)
+ Φp

(∫ b

a
|f (t) g (t)| du (t)∫ b

a
|g (t)|q du (t)

− γ

)]1/p
.

(ii) If p ∈ (0, 1) , then the inequalities in (17) reverse.

(iii) If p < 0 and γ > 0 then the inequalities in (17) also reverse.
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Proof. Follows by Corollary 1, by choosing

h =
|f |

|g|q−1 and w = |g|q

and performing some simple calculation.
The details are omitted.

Corollary 2 Let h : [a, b] ⊂ R → R be a continuous function on the interval [a, b]
and with the property that

(18) 0 < γ ≤ h (t) ≤ Γ for any t ∈ [a, b]

and w : [a, b] → [0,∞) be continuos on [a, b]. Assume also that u : [a, b] → R is a

monotonic nondecreasing function such that
∫ b

a
w (t) du (t) > 0. Then

(19)

∫ b

a
w (t)h (t) du (t)∫ b

a
w (t) du (t)

≥ exp

[∫ b

a
w (t) (ln ◦h) (t) du (t)∫ b

a
w (t) du (t)

]

≥ γ
1

Γ−γ

(
Γ−

∫ b
a w(t)h(t)du(t)∫ b

a w(t)du(t)

)
Γ

1
Γ−γ

( ∫ b
a w(t)h(t)du(t)∫ b

a w(t)du(t)
−γ

)
.

The proof follows by Theorem 4 applied for the convex function Φ(t) = − ln t,
t > 0.

3. Weighted inequalities for convex functions of selfadjoint operators

We can state the following result concerning the weighted Jensen’s inequality for
continuous functions of selfadjoint operators:

Theorem 5 Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) ⊆ [m,M ] for some scalars m,M with m < M. If Φ : [γ,Γ] ⊂ R → R
is a continuous convex function on the interval [γ,Γ] , f : [m,M ] ⊂ R → R is a
continuous function on the interval [m,M ] and with the property that

(20) γ ≤ f (t) ≤ Γ for any t ∈ [m,M ]

and w : [m,M ] → [0,∞) is continuous on [m,M ], then

(21)

Φ

(
⟨w (A) f (A)x, x⟩

⟨w (A) x, x⟩

)
≤ ⟨w (A) (Φ ◦ f) (A) x, x⟩

⟨w (A)x, x⟩

≤
Φ (γ)

(
Γ− ⟨w (A) f (A)x, x⟩

⟨w (A) x, x⟩

)
+ Φ(Γ)

(
⟨w (A) f (A)x, x⟩

⟨w (A) x, x⟩
− γ

)
Γ− γ

,

for any x ∈ H with ∥x∥ = 1 and ⟨w (A) x, x⟩ ̸= 0.
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Proof. Let {Eλ}λ be the spectral family of the operator A. Let ε > 0 and
write the inequality (8) on the interval [a, b] = [m− ε,M ] and for the monotonic
nondecreasing function g (t) = ⟨Etx, x⟩ , x ∈ H with ∥x∥ = 1, to get

(22)

Φ

(∫M

m−ε
w (t) f (t) d ⟨Etx, x⟩∫M

m−ε
w (t) d ⟨Etx, x⟩

)
≤
∫M

m−ε
w (t) (Φ ◦ f) (t) d ⟨Etx, x⟩∫M

m−ε
w (t) d ⟨Etx, x⟩

≤

(
Γ−

∫M

m−ε
w (t) f(t)d ⟨Etx, x⟩∫M

m−ε
w(t)d ⟨Etx, x⟩

)
Φ(γ)+

(∫M

m−ε
w(t)f(t)d ⟨Etx, x⟩∫M

m−ε
w (t) d ⟨Etx, x⟩

− γ

)
Φ(Γ)

Γ− γ
.

Letting ε → 0+ and utilizing the spectral representation (1), we deduce from (22)
the desired result (21).

Remark 2 If we choose w (t) = 1 and f (t) = t with t ∈ [m,M ] then we get from
(21) the inequalities (MP) and (LR).

We have the following generalization and reverse for the Hölder-McCarthy
inequality:

Corollary 3 Let A be a selfadjoint positive operator on a Hilbert space H and
assume that Sp (A) ⊆ [m,M ] for some scalars m,M with m < M . If the functions
f, w : [m,M ] → [0,∞) are continuous and f satisfies the condition (20) with
γ ≥ 0, then for any p ≥ 1 we have

⟨w (A) f (A) x, x⟩p(23)

≤ ⟨w (A) f p (A) x, x⟩ ⟨w (A)x, x⟩p−1

≤ 1

Γ− γ
⟨w (A) x, x⟩p−1

× [γp (⟨w (A) [Γ1H − f (A)] x, x⟩) + Γp (⟨w (A) [f (A)− γ1H ] x, x⟩)]

where x ∈ H with ∥x∥ = 1.
If p ∈ (0, 1) then the inequalities reverse in (23).
If γ > 0 and p < 0 the inequalities in (23) also hold.

Remark 3 If we choose w (t) = 1 and f (t) = t with t ∈ [m,M ] ⊂ [0,∞) then
we get from (23)

⟨Ax, x⟩p ≤ ⟨Apx, x⟩(24)

≤ 1

M −m
[mp (⟨(M1H − A) x, x⟩) +Mp (⟨(A−m1H) x, x⟩)]

for any p ≥ 1, where x ∈ H with ∥x∥ = 1.
If p ∈ (0, 1) , then the inequalities reverse in (24).
If m > 0 and p < 0 then the inequalities in (24) also hold.
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Remark 4 If we choose w (t) = f (t) = t with t ∈ [m,M ] ⊂ [0,∞), then we get
from (23)

(25)

⟨A2x, x⟩p ≤ ⟨Apx, x⟩ ⟨Ax, x⟩p−1

≤ 1

M−m
⟨Ax, x⟩p−1 [mp (⟨A (M1H−A) x, x⟩) +Mp (⟨A (A−m1H)x, x⟩)]

for any p ≥ 1, where x ∈ H with ∥x∥ = 1.
If p ∈ (0, 1) , then the inequalities reverse in (25).
If m > 0 and p < 0 then the inequalities in (25) also hold.

Corollary 4 Let A be a selfadjoint positive operator on a Hilbert space H and
assume that Sp (A) ⊆ [m,M ] for some scalars m,M with m < M . If the functions
f, w : [m,M ] → [0,∞) are continuous and f satisfies the condition (20) with γ > 0
then

(26)

⟨w (A) f (A) x, x⟩
⟨w (A)x, x⟩

≥ exp

[
⟨w (A) (ln ◦f) (A) x, x⟩

⟨w (A) x, x⟩

]
≥ γ

1
Γ−γ (Γ−

⟨w(A)f(A)x,x⟩
⟨w(A)x,x⟩ )Γ

1
Γ−γ (

⟨w(A)f(A)x,x⟩
⟨w(A)x,x⟩ −γ)

for any x ∈ H with ∥x∥ = 1.

Remark 5 If we choose w (t) = 1 and f (t) = t with t ∈ [m,M ] ⊂ (0,∞) then
we get from (26)

⟨Ax, x⟩ ≥ exp [⟨lnAx, x⟩](27)

≥ m
1

M−m
⟨(M1H−A)x,x⟩M

1
M−m

⟨(A−1Hm)x,x⟩

for any x ∈ H with ∥x∥ = 1.
Also, if we choose w (t) = f (t) = t with t ∈ [m,M ] ⊂ (0,∞) then we get

from (26) that

⟨A2x, x⟩
⟨Ax, x⟩

≥ exp

[
⟨A lnAx, x⟩
⟨Ax, x⟩

]
(28)

≥ m
1

M−m

(
M−

⟨A2x,x⟩
⟨Ax,x⟩

)
M

1
M−m

(⟨A2x,x⟩
⟨Ax,x⟩ −m

)

for any x ∈ H with ∥x∥ = 1.

Remark 6 If we choose w (t) = tr and f (t) = tq with t ∈ [m,M ] ⊂ (0,∞) where
r, q > 0, then we get from (21) that

Φ

(
⟨Ar+qx, x⟩
⟨Arx, x⟩

)
≤ ⟨ArΦ (Aq) x, x⟩

⟨Arx, x⟩
(29)

≤
Φ (γq)

(
Γq − ⟨Ar+qx,x⟩

⟨Arx,x⟩

)
+ Φ(Γq)

(
⟨Ar+qx,x⟩
⟨Arx,x⟩ − γq

)
Γq − γq

,

for a continuous convex function Φ : [mq,M q] → R and for any x ∈ H with
∥x∥ = 1.
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We have the following Hölder type inequality for continuous functions of
selfadjoint operators:

Proposition 2 Let A be a selfadjoint positive operator on a Hilbert space H
and assume that Sp (A) ⊆ [m,M ] for some scalars m,M with m < M . If
f, g : [a, b] ⊂ R → Cr {0} are continuous on [a, b] and p, q ∈ Rr {0} with
1/p+ 1/q = 1 are such that

(30) 0 ≤ γ ≤ |f (t)|
|g (t)|q−1 ≤ Γ for any t ∈ [a, b] ,

then we have the inequalities

⟨|f (A) g (A)|x, x⟩(31)

≤ [⟨|g (A)|q x, x⟩]1/q [⟨|f (A)|p x, x⟩]1/p

≤ 1

(Γ− γ)1/p
⟨|g (A)|q x, x⟩

×
[
γp

(
Γ− ⟨|f (A) g (A)| x, x⟩

⟨|g (A)|q x, x⟩

)
+ Γp

(
⟨|f (A) g (A)|x, x⟩

⟨|g (A)|q x, x⟩
− γ

)]1/p
,

for p > 1 and for any x ∈ H with ∥x∥ = 1 and ⟨|g (A)|q x, x⟩ ̸= 0.
If p ∈ (0, 1) , then the inequalities in (31) reverse;
If p < 0 and γ > 0 then the inequalities in (31) also reverse.

4. Weighted inequalities for square-convex functions

We introduce the following class of complex valued functions:

Definition 1 A function Φ : [γ,Γ] ⊂ R → C is called square-convex on [γ,Γ]
if the associated function φ : [γ,Γ] → [0,∞), φ (t) = |Φ (t)|2 is convex on [γ,Γ] .

A simple example of such a function is the concave power function Φ : [γ,Γ] ⊂
[0,∞) → [0,∞), Φ (t) = tr with r ∈

[
1
2
, 1
]
. Also, if h : [γ,Γ] → [0,∞) is convex

then the complex valued function Φ : [γ,Γ] ⊂ R → C given by Φ (t) = h1/2 (t) eit

is square-convex on [γ,Γ] .
Consider the function f (t) = ln (t+ 1) . We observe that it is concave and

positive on (0,∞) and if we define φ (t) = [ln (t+ 1)]2 , then we have that

φ′′ (t) =
2

(t+ 1)2
[1− ln (t+ 1)] , t > −1,

showing that f is square-convex on the interval [0, e− 1] .
Another example for trigonometric functions is for instance f (t) = cos t,

t ∈
[
π
4
, π
2

]
. The function φ (t) = cos2 t has the second derivative φ′′ (t) = −2 cos (2t)

which is positive for t ∈
[
π
4
, π
2

]
. Therefore, f is square-convex on the interval[

π
4
, π
2

]
.
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Theorem 6 Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) ⊆ [m,M ] for some scalars m,M with m < M. If Φ : [γ,Γ] ⊂ R → C
is a continuous square-convex function on the interval [γ,Γ] , f : [m,M ] ⊂ R → R
is a continuous function on the interval [m,M ] and with the property that

(32) γ ≤ f (t) ≤ Γ for any t ∈ [m,M ]

and w : [m,M ] → [0,∞) is continuos on [m,M ], then

(33)

∣∣∣∣Φ(⟨w (A) f (A) x, x⟩
⟨w (A)x, x⟩

)∣∣∣∣ ≤
[⟨

w (A)
(
|Φ|2 ◦ f

)
(A)x, x

⟩
⟨w (A) x, x⟩

]1/2

≤

 |Φ (γ)|2
(
Γ−⟨w (A) f (A)x, x⟩

⟨w (A) x, x⟩

)
+ |Φ (Γ)|2

(
⟨w (A) f (A) x, x⟩

⟨w (A)x, x⟩
− γ

)
Γ− γ


1/2

for any x ∈ H with ∥x∥ = 1 and ⟨w (A) x, x⟩ ̸= 0.

The proof follows from Theorem 4 applied for the function φ : [γ,Γ] → [0,∞),
φ (t) = |Φ (t)|2 that is continuous convex on [γ,Γ]. The details are omitted.

Remark 7 If w (t) = 1, then we get from (33) the following simpler result

(34)

|Φ (⟨f (A) x, x⟩)| ≤ ∥(Φ ◦ f) (A) x∥

≤

[
|Φ (γ)|2 ⟨(Γ1H − f (A))x, x⟩+ |Φ (Γ)|2 ⟨(f (A)− 1Hγ) x, x⟩

Γ− γ

]1/2
,

for any x ∈ H with ∥x∥ = 1.
This is true since⟨(

|Φ|2 ◦ f
)
(A) x, x

⟩
=

∫ M

m−0

|Φ (f (t))|2 d ⟨Etx, x⟩

= ∥Φ (f (A))x∥2

for any x ∈ H with ∥x∥ = 1 (for the second equality see for instance [19, p. 257]).

Corollary 5 With the assumptions of Theorem 6 for A, f, w and if γ > 0, then
we have

(35)

(
⟨w (A) f (A) x, x⟩

⟨w (A)x, x⟩

)q

≤
[
⟨w (A) f 2q (A) x, x⟩

⟨w (A)x, x⟩

] 1
2

≤

γ
2q

(
Γ− ⟨w (A) f (A)x, x⟩

⟨w (A) x, x⟩

)
+ Γ2q

(
⟨w (A) f (A)x, x⟩

⟨w (A) x, x⟩
− γ

)
Γ− γ


1
2

,

for any q ∈
[
1
2
, 1
]
and any x ∈ H with ∥x∥ = 1 and ⟨w (A) x, x⟩ ̸= 0.
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Remark 8 If we choose w (t) = 1 and f (t) = t with t ∈ [m,M ] ⊂ (0,∞) then
we get from (35)

⟨Ax, x⟩q ≤ ∥Aqx∥(36)

≤
[
m2q ⟨(M1H − A) x, x⟩+M2q ⟨(A− 1Hm)x, x⟩

M −m

]1/2
,

for any q ∈
[
1
2
, 1
]
and any x ∈ H with ∥x∥ = 1.

Also, if we choose w (t) = f (t) = t with t ∈ [m,M ] ⊂ (0,∞) then we get
from (35)(

⟨A2x, x⟩
⟨Ax, x⟩

)q

≤
[
⟨A2q+1x, x⟩
⟨Ax, x⟩

]1/2
(37)

≤

m
2q

(
M − ⟨A2x,x⟩

⟨Ax,x⟩

)
+M2q

(
⟨A2x,x⟩
⟨Ax,x⟩ −m

)
M −m


1/2

,

for any q ∈
[
1
2
, 1
]
and any x ∈ H with ∥x∥ = 1.

Remark 9 If we choose w (t) = tr and f (t) = ts with t ∈ [m,M ] ⊂ (0,∞) where
r, s > 0, then we get from (35) that

(38)

(
⟨Ar+sx, x⟩
⟨Arx, x⟩

)q

≤
[
⟨Ar+2qsx, x⟩
⟨Arx, x⟩

] 1
2

≤

m
2qs

(
M s − ⟨Ar+sx, x⟩

⟨Arx, x⟩

)
+M2qs

(
⟨Ar+sx, x⟩
⟨Arx, x⟩

−ms

)
M s −ms


1
2

,

for any q ∈
[
1
2
, 1
]
and any x ∈ H with ∥x∥ = 1.

5. Weighted inequalities for Arg-square-convex functions

The function Φ : C (0, 1) → C will be called Arg-square-convex if the composite
function φ : [0, 2π] → [0,∞),

φ (t) :=


|Φ (eit)|2 , t ∈ [0, 2π)

lim
s→2π−

∣∣Φ (eis)∣∣2 , t = 2π

is continuous and convex on [0, 2π] .
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To make the distinction between the value φ (0) = |Φ (ei0)|2 = |Φ (1)|2 and

the value φ (2π) = lim
s→2π−

∣∣Φ (eis)∣∣2, we denote by Φc (1) := lim
s→2π−

Φ
(
eis
)
. With

this notation, we have φ (2π) = |Φc (1)|2 .
The function Φn : C (0, 1) → C, Φn (z) = [Log (z)]n , where n is a positive

integer, is Arg-square-convex. We have

φn (t) =
∣∣Φn

(
eit
)∣∣2 = ∣∣[Log (eit)]n∣∣2 = |it|2n = t2n, t ∈ [0, 2π),

and
φn (2π) = lim

s→2π−

∣∣Φn

(
eis
)∣∣2 = |Φn,c (1)|2 = (2π)2n .

For q ≥ 1
2
, define the function Φq : C (0, 1) → [0,∞) by Φq (z) = |Log (z)|q .

We have

φq (t) =
∣∣Φq

(
eit
)∣∣2 = ∣∣Log (eit)∣∣2q = |it|2q = t2q, t ∈ [0, 2π)

and
φq (2π) = lim

s→2π−

∣∣Φq

(
eis
)∣∣2 = |Φq,c (1)|2 = (2π)2q .

The function Φq for q ≥ 1
2
is an Arg-square-convex function.

If g : [0, 2π] → [0,∞) is continuous and convex on [0, 2π] , then the composite
function Φ : C (0, 1) → [0,∞) defined by

Φ (z) := [g (|Log (z)|)]1/2

is an Arg-square-convex function on C (0, 1) .

Theorem 7 Let U ∈ B (H) be a unitary operator on the Hilbert space H
and Φ : C (0, 1) → C a continuous and Arg-square-convex function on C (0, 1) .
If w : C (0, 1) → [0,∞) is a continuous function, then we have

(39)

∣∣∣∣Φ(exp [⟨w (U)Log(U)x, x⟩
⟨w (U) x, x⟩

])∣∣∣∣ ≤
[⟨

w (U) |Φ (U)|2 x, x
⟩

⟨w (U)x, x⟩

]1/2

≤


(
2π − ⟨w (U) |Log(U)| x, x⟩

⟨w (U)x, x⟩

)
|Φ(1)|2 + ⟨w (U) |Log(U)|x, x⟩

⟨w (U) x, x⟩
|Φc(1)|2

2π


1/2

for any x ∈ H, ∥x∥ = 1, where Φc (1) := lim
s→2π−

Φ
(
eis
)
.

Proof. We apply Theorem 4 to the function φ : [0, 2π] → [0,∞),

φ (t) =


|Φ (eit)|2 , t ∈ [0, 2π)

lim
s→2π−

∣∣Φ (eis)∣∣2 , t = 2π

that is continuous and convex on [0, 2π] .



260 s.s. dragomir

If {Eλ}λ∈[0,2π] is the spectral family of the operator U, then we can write
the inequality (8) on the interval [a, b] = [0, 2π] for the monotonic nondecreasing
integrator u (t) = ⟨Etx, x⟩ and for the identity function f (t) = t, t ∈ [0, 2π] to get

(40)

∣∣∣∣∣Φ
(
exp

[
i
∫ 2π

0
w (eit) td ⟨Etx, x⟩∫ 2π

0
w (eit) d ⟨Etx, x⟩

])∣∣∣∣∣
2

≤
∫ 2π

0
w (eit) |Φ (eit)|2 d ⟨Etx, x⟩∫ 2π

0
w (eit) d ⟨Etx, x⟩

≤

(
2π −

∫ 2π

0
w (eit) td ⟨Etx, x⟩∫ 2π

0
w (eit) d ⟨Etx, x⟩

)
|Φ(1)|2+

(∫ 2π

0
w (eit) Φ (t) d ⟨Etx, x⟩∫ 2π

0
w (t) d ⟨Etx, x⟩

)
|Φc(1)|2

2π

for any x ∈ H, ∥x∥ = 1.
Since, by the spectral representation of functions of unitary operators (3),

we have

i

∫ 2π

0

w
(
eit
)
td ⟨Etx, x⟩ =

∫ 2π

0

w
(
eit
)
Log

(
eit
)
d ⟨Etx, x⟩

= ⟨w (U)Log(U)x, x⟩∫ 2π

0

w
(
eit
)
d ⟨Etx, x⟩ = ⟨w (U)x, x⟩ ,∫ 2π

0

w
(
eit
) ∣∣Φ (eit)∣∣2 d ⟨Etx, x⟩ =

⟨
w (U) |Φ (U)|2 x, x

⟩
and∫ 2π

0

w
(
eit
)
td ⟨Etx, x⟩ = ⟨w (U) |Log(U)|x, x⟩

for any x ∈ H, ∥x∥ = 1, then inequality (40) produces the desired result (39).

Remark 10 If w (t) = 1, then we get from (39) the following simpler result

(41)

|Φ (exp [⟨Log(U)x, x⟩])| ≤ ∥Φ (U) x∥

≤

[
⟨(2π1H − |Log(U)|) x, x⟩ |Φ (1)|2 + ⟨|Log(U)|x, x⟩ |Φc (1)|2

2π

]1/2
for any x ∈ H with ∥x∥ = 1.

This is true since⟨
|Φ (U)|2 x, x

⟩
=

∫ 2π

0

∣∣Φ (eit)∣∣2 d ⟨Etx, x⟩ = ∥Φ (U) x∥2

for any x ∈ H with ∥x∥ = 1 (for the second equality see (5)).

The interested reader may apply the inequality (39) for different examples of
Arg-square-convex functions. We give here only one example, for instance if we
choose the function Φq (z) = |Log (z)|q , q ≥ 1/2 as introduced above, then we get
from (39)
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∣∣∣∣Log(exp [⟨w (U)Log(U)x, x⟩
⟨w (U)x, x⟩

])∣∣∣∣q ≤
[⟨

w (U) |Log (U)|2q x, x
⟩

⟨w (U)x, x⟩

]1/2
(42)

≤ ⟨w (U) |Log(U)|x, x⟩1/2

⟨w (U) x, x⟩1/2
(2π)q−1/2

for any x ∈ H with ∥x∥ = 1 and w : C (0, 1) → [0,∞) a continuous function.
In particular, we have

|Log (exp [⟨Log(U)x, x⟩])|q ≤ ∥|Log (U)|q x∥(43)

≤ (2π)q−1/2 ⟨|Log(U)|x, x⟩1/2

for any x ∈ H with ∥x∥ = 1.
Finally, we notice that the following result providing Hölder’s type inequalities

for continuous functions of unitary operators can be stated:

Proposition 3 Let U ∈ B (H) be a unitary operator on the Hilbert space H and.
If f, g : C (0, 1) → Cr {0} are continuous on C (0, 1) and p, q ∈ Rr {0} with
1/p+ 1/q = 1 are such that

(44) 0 ≤ γ ≤ |f (eit)|
|g (eit)|q−1 ≤ Γ for any t ∈ [0, 2π]

then we have the inequalities

⟨|f (U) g (U)|x, x⟩(45)

≤ [⟨|g (U)|q x, x⟩]1/q [⟨|f (U)|p x, x⟩]1/p

≤ 1

(Γ− γ)1/p
⟨|g (U)|q x, x⟩

×
[
γp

(
Γ− ⟨|f (U) g (U)| x, x⟩

⟨|g (U)|q x, x⟩

)
+ Γp

(
⟨|f (U) g (U)|x, x⟩

⟨|g (U)|q x, x⟩
− γ

)]1/p
,

for p > 1 and for any x ∈ H with ∥x∥ = 1 and ⟨|g (U)|q x, x⟩ ≠ 0.
If p ∈ (0, 1) , then the inequalities in (45) reverse;
If p < 0 and γ > 0 then the inequalities in (45) also reverse.

The proof follows by Proposition 1 and the spectral representation for conti-
nuous functions of unitary operators.

If g : [0, 2π] → [0,∞) is continuous and convex on [0, 2π] , then the composite
function f : C (0, 1) → [0,∞) defined by

f (z) := [g (|Log (z)|)]1/2

is an Arg-square-convex function on C (0, 1) .



262 s.s. dragomir

As examples of such functions we have

fα (z) := exp (α |Log (z)|)

which are Arg-square-convex functions on C (0, 1) for any real number α ̸= 0.
We also notice that the family of functions

fm,n : C (0, 1) → C, fm,n (z) = zm [Log (z)]n ,

where m ̸= 0 is an integer and n is a positive integer, are Arg-square-convex
functions.

The reader may apply the above inequalities for these functions as well.
However, the details are omitted.
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