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functional with real and complex parameter λ for the class of concave univalent functions
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1. Introduction

Let S denote the class of all analytic and univalent functions

f(z) = z +
∞∑
n=2

anz
n(1.1)

defined on the open unit disk U = {z ∈ C : |z| < 1}.
Denote by S∗ (β), C (β) and K (α, β), the classes of starlike functions of order

β, convex functions of order β and close-to-convex functions of order α type β
respectively, which are analytically defined as follows:

(i) S∗ (β) =

{
f ∈ A : Re

(
zf ′ (z)

f (z)

)
> β, z ∈ U, 0 ≤ β < 1

}
,

(ii) C(β) =

{
f ∈ A : Re

(
1 +

zf ′′ (z)

f ′ (z)

)
> β, z ∈ U , 0 ≤ β < 1

}
,

(iii) K (α, β) =

{
f ∈ A : Re

(
f ′ (z)

g′ (z)

)
> α, g (z) ∈ C (β) ,

z ∈ U, 0 ≤ α < 1, 0 ≤ β < 1

}
.

In 1933, Fekete and Szegö [19] obtained the maximum value of |a3 − λa22| as
a function of the real parameter λ, namely∣∣a3 − λa22

∣∣ ≤ 1 + 2 exp

(
−2λ

1− λ

)
,

for the class S of analytic and univalent functions given by (1.1). This inequality
is sharp for each λ ∈ [0, 1]. In the literature, there exists a large number of results
of the Fekete-Szegö functional |a3 − λa22| for various subclasses of S, such as the
class of S∗ (β) , C (β) and K (α, β). For instance, Keogh and Merkers [10], Kaplan
[26], Koepf [27] solved the Fekete-Szegö problem for close-to-convex functions.
Nasr and Gawad [20], Gawad and Thomas [12], Darus and Thomas [18], Ibrahim
and Darus [4] and others generalized this result for the class of functions that are
close-to-convex functions of order α and type β. Later, Avkhadiev et al. [8], [9]
and Bhowmik et al. [5], [6], they gave another treatment of Fekete-Szegö problem
by considering the class of concave univalent functions given by (1.1).

Also, there are several authors that proved this type of result for the Fekete-
Szegö functional for the class of function defined by differential operator, see [16],
[3], for example, by using the Sălăgean differential operator Dk [11], for f ∈ S
which is defined by

(i) D0f(z) = f(z),

(ii) D1f(z) = Df(z) = z +
∞∑
n=2

nanz
n,
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(iii) Dkf(z) = D
(
Dk−1f (z)

)
= z +

∞∑
n=2

nkanz
n; k = 1, 2, ... .

Denote by S∗
k , the class of k-starlike functions which is analytically defined as

follows:

S∗
k =

{
f(z) ∈ S : Re

(
Dk+1f(z)

Dkf(z)

)
> 0, k = 0, 1, 2, ... , z ∈ U

}
.(1.2)

In this paper, we investigated the sharp upper bounds of Fekete-Szegö func-
tional |a3 − λa22| for the class of concave univalent functions with real and complex
parameter λ, where the function of f is defined by Sălăgean differential opera-
tor (1.2).

2. Preliminary results

A function f : U → C is said to belong to the family C0 (α) if f satisfies the
following conditions:

(a) f is analytic in U with the standard normalization f (0) = f ′ (0) − 1 = 0.
In addition it satisfies f (1) = ∞.

(b) f maps conformally onto a set whose complement with respect to C is con-
vex.

(c) The opening angle of f (U) at ∞ is less than or equal to πα, α ∈ (1, 2].

The class C0 (α) is referred to concave univalent functions and for a detailed
discussion about concave functions we refer to [8], [9], [17] and the references
therein. Recently, the class C0 (α) of concave function was considered by Bhowmik
et al. [5], [6].

We recall the analytic characterization for the functions in C0 (α), α ∈ (1, 2]:
f ∈ C0 (α) if and only if RePf (z) > 0, z ∈ U, where

Pf (z) =
2

α− 1

[
(α + 1)

2

1 + z

1− z
− 1− z

f ′′ (z)

f ′ (z)

]
.

In [5], [6] they used this characterization and proved the following theorem.

Theorem 1 Let α ∈ (1, 2]. A function f ∈ C0 (α) if, and only if, there exist a
starlike function ϕ ∈ S∗ such that f (z) = Λϕ (z) where

Λϕ (z) =

z∫
0

1

(1− t)α+1

(
t

ϕ (t)

)(α−1)/2

dt

and S∗ denote the family of starlike functions g defined by g ∈ S∗ if and only if

Re

(
zg′ (z)

g (z)

)
> 0.
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The objective of the present paper is to give some generalizations of the result
of Fekete-Szegö problem given by Bhowmik et al. [5] for the starlike function
defined by Sălăgean differential operator Dkf, k = 0, 1, 2, ..., which is f ∈ S∗

k is
characterized by the condition (1.2).

In order to prove our main results, we need to recall the following lemma.

Lemma 1 [27] Let g(z) = z+
∞∑
n=2

bnz
n ∈ S∗. Then |b3 − λb22| ≤ max {1, |3− 4λ|},

which is sharp for the Koebe function k if |λ− 3/4| ≥ 1/4 and for (k (z))1/2 =
z

1− z2
if |λ− 3/4| ≤ 1/4.

3. Main result and its proof

We consider the Fekete-Szegö functional |a3 − λa22| for real and complex parameter
λ. Our results are contained in the following theorems.

Theorem 1 Let f ∈ C0 (α) have the expansion given by (1.1), α ∈ (1, 2],
k = 0, 1, 2, ... . If λ is real, then we have

12 |a3 − λa22|

≤



(
3 + 22k

)
(2− 3λ)α2

+3
(
1− 22k

)
(1− 2α)λ

+6
(
1− 3k

)
α + 2

(
3k+1 − 22k

)
,

if λ ≤ λ0;

4 [(2− 3λ)α2 + 1] , if λ0 ≤ λ ≤ 2 (α− 1)

3α
;

4 [(10− 9λ)α + (2− 3λ)]

3 (2− λ)− (2− 3λ)α
, if

2 (α− 1)

3α
≤ λ ≤ 2

3
;

12 (1− λ)α
√

12(1−λ)

(4−3λ)2−(3λ−2)2α2 , if 2
3
≤ λ ≤ λ2;

4 [(3λ− 2)α2 − 1] , if λ2 ≤ λ ≤ 2 (α + 2)

3 (α + 1)
;

(
3 + 22k

)
(3λ− 2)α2

+3
(
22k − 1

)
(1− 2α)λ

+6
(
3k − 1

)
α + 2

(
22k − 3k+1

)
,

if λ ≥ 2 (α + 2)

3 (α + 1)
;

where

λ0 =
22k−2 (α + 1)− 3k

3 (22k−3) (α− 1)
and λ2 =

2

3
+

1

6α2

(√
8α2 + 1− 1

)
.

The inequalities are sharp.
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Theorem 2 Let f ∈ C0 (α) have the expansion given by (1.1), α ∈ (1, 2],
k = 0, 1, 2, ... . If λ are complex numbers, then we have∣∣a3 − λa22

∣∣ ≤ max

{
1,

1

12
(α + 1) ν (α, λ)

}
,

where
ν (α, λ) = |(2− 3λ) (α + 1) + 2|+ 2 (α− 1) |3λ− 2|

+

(
α− 1

α + 1

)
|6 + [2− 3 (α− 1)λ]| .

Proof. We recall from Theorem 1 that for f ∈ C0 (α) if and only if there exist a

function ϕ (z) = z +
∞∑
n=2

ϕnz
n ∈ S∗

k , k = 0, 1, 2, ... such that

f ′ (z) =
1

(1− z)α+1

(
z

Dnϕ (z)

)(α−1)/2

,(3.1)

where f has the form given by (1.1) and Dn is the Sălăgean operator. Comparing
the coefficients of z and z2 on the both sides of the series expansion (3.1), we
obtain that

a2 =
(α + 1)

2
− 2k−2 (α− 1)ϕ2

and

a3 =
1

6
(α+ 1) (α + 2)− 2k−1

3

(
α2 − 1

)
ϕ2

−3k−1

2
(α− 1)ϕ3 +

22k−3

3
(α− 1)ϕ2

2,

respectively.
A computation yields that

a3 − λa22 =
(α + 1)2

4

[
2 (α+ 2)

3 (α+ 1)
− λ

]
+2k−2

(
α2 − 1

)(
λ− 2

3

)
ϕ2 −

3k−1

2
(α− 1)

×

[
ϕ3 −

(
22k−2 (α + 1)− 3λ

(
22k−3

)
(α− 1)

3k

)
ϕ2
2

](3.2)

Now, we need to investigate the maximum values of the function |a3 − λa22| by
considering several cases of λ.

Case 1: Consider the first case for all λ ≤ 22k−2 (α + 1)− 3k

3 (22k−3) (α− 1)
.

We observe that the assumption on λ is seen to be equivalent to

1

3k
[
22k−2 (α + 1)− 3λ

(
22k−3

)
(α− 1)

]
≥ 1
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and the first term in equation (3.2) is nonnegative. Hence, using the Lemma 1 for
the last term in (3.2), we have∣∣∣∣∣ϕ3 −

(
22k−2 (α + 1)− 3λ

(
22k−3

)
(α− 1)

3k

)
ϕ2
2

∣∣∣∣∣
≤

22k (α + 1)− 3λ
(
22k−1

)
(α− 1)

3k
− 3

and noticing that for ϕ ∈ S∗
k , |ϕn| ≤ n1−k, k = 2, 3, ... , we have from the equality

(3.2) that

∣∣a3 − λa22
∣∣ ≤ (α + 1)2

4

[
2 (α + 2)

3 (α + 1)
− λ

]
+ 2k−2

(
α2 − 1

)(2

3
− λ

)
|ϕ2|

+
3k−1

2
(α− 1)

∣∣∣∣∣ϕ3 −

(
22k−2 (α+ 1)− 3λ

(
22k−3

)
(α− 1)

3k

)
ϕ2
2

∣∣∣∣∣
=

(α + 1) (α + 2)

6
− λ

4
(α + 1)2 +

(α2 − 1)

2

(
2

3
− λ

)
+
3k−1

2
(α− 1)

(
22k (α + 1)− 3λ

(
22k−1

)
(α− 1)

3k
− 3

)
.

It can be simplified to

|a3 − λa22| ≤ 1

12

[(
3 + 22k

)
(2− 3λ)α2 + 3

(
1− 22k

)
(1− 2α)λ

+6
(
1− 3k

)
α + 2

(
3k+1 − 22k

)]
,

for λ ∈
(
∞,

22k−2 (α + 1)− 3k

3 (22k−3) (α− 1)

)
.

Case 2: Let λ ≥ 2 (α + 2)

3 (α + 1)
.

For this case, the first term in (3.2) is nonnegative. The condition on λ in

particular gives λ ≥ 2

3
and therefore our assumption on λ implies that

22k−2 (α + 1)− 3λ
(
22k−3

)
(α− 1)

3k
≤ 22k

3k

(
1

2

)
.

Again, it follows from Lemma 1, that∣∣∣∣∣ϕ3 −
22k−2 (α + 1)− 3λ

(
22k−3

)
(α− 1)

3k

∣∣∣∣∣ϕ2
2 ≤ 3−

22k (α + 1)− 3λ
(
22k−1

)
(α− 1)

3k
.
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In view of these observation and an use of the inequality that |ϕ2| ≤ 21−k, equality
(3.2) gives∣∣a3 − λa22

∣∣ ≤ (α + 1)2

4

[
λ− 2 (α + 2)

3 (α + 1)

]
+ 2k−2

(
α2 − 1

)(
λ− 2

3

)(
21−k

)
+
3k−1

2
(α− 1)

(
3−

22k (α+ 1)− 3λ
(
22k−1

)
(α− 1)

3k

)
.

(3.3)

Thus, simplifying the right hand side expression (3.3), we obtain that

|a3 − λa22| ≤ 1

12

[(
3 + 22k

)
(3λ− 2)α2 + 3

(
22k − 1

)
(1− 2α)λ

+6
(
3k − 1

)
α− 2

(
3k+1 − 22k

)]
,

for λ ∈
[
2 (α + 2)

3 (α + 1)
,∞
)
.

Case 3: Consider λ, where

λ ∈
(
22k−2 (α+ 1)− 3k

3 (22k−3) (α− 1)
,
2 (α + 2)

3 (α + 1)

)
.

Now we deal with the case by using the formulas (3.1) and (3.2) together with
the representation formula for ϕ (z) ∈ S∗

k . Let us define w (z) by

Dk+1ϕ (z)

Dkϕ (z)
=

1 + zw (z)

1− zw (z)
; (w(z) ̸= 1)(3.4)

where w : U → U is a function analytic in U with the Taylor series

w (z) =
∞∑
n=0

cnz
n.

Comparing the coefficients of z and z2 in (3.4), we get that

ϕ2 = 21−kc0 and ϕ3 =
1

3k
(
c1 + 3c20

)
.(3.5)

Inserting these resulting formulas (3.5) into (3.2) yields

a3 − λa22 ≤ (α + 1)2

4

[
2 (α + 2)

3 (α + 1)
− λ

]
+2k−2

(
α2 − 1

)(
λ− 2

3

)(
21−kc0

)
+
3k−1

2
(α− 1)

[
1

3k
(
c1 + 3c20

)
−

(
22k−2 (α + 1)− 3λ

(
22k−3

)
(α− 1)

3k

)(
22−2k

)
c20

]
= A+Bc0 + Cc20 +Dc1,

(3.6)
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where

A =
1

6
(α + 2) (α + 1)− λ

4
(α + 1)2 ,

B =
1

6

(
α2 − 1

)
(3λ− 2) ,

C = − 1

12
(α− 1) [4− 2α+ 3λ (α− 1)] ,

D = −1

6
(α− 1) .

Hence, by using the well known inequalities that |c0| ≤ 1 and |c1| ≤ 1−|c0|2, from
(3.6) we obtain that∣∣a3 − λa22

∣∣ ≤ ∣∣A+Bc0 + Cc20
∣∣+ 1

6
(α− 1)

(
1− |c0|2

)
.(3.7)

Now, in order to determine the maximum value of (3.7), let c0 = reiθ, then we
consider the quadratic expression

f (r, θ) = |A+Bc0 + Cc20|
2

= (A− Cr2)
2
+B2r2 + 2Br (A+ Cr2) cos θ + 4ACr2 cos2 θ,

(3.8)

where cos θ ∈ [−1, 1] , r ∈ (0, 1]. For getting the upper bounds of |a3 − λa22|, we
have to find the biggest value of (3.8) for r in the interval (0, 1]. So, let x = cos θ,
then from (3.8) we have

h(x) =
(
A− Cr2

)2
+B2r2 + 2Br

(
A+ Cr2

)
x+ 4ACr2x2.(3.9)

We have to determine the maximum value of (3.9) for x ∈ [−1, 1]. So, for this,
we need to consider the several subclasses of λ, where

λ ∈
(
22k−2 (α+ 1)− 3k

3 (22k−3) (α− 1)
,
2 (α + 2)

3 (α + 1)

)
.

Case 3A: First, consider

λ ∈
(
22k−2 (α + 1)− 3k

3 (22k−3) (α− 1)
,
2 (α− 2)

3 (α− 1)

)
.

We observe that for λ in this interval, we have A > 0, B < 0, C > 0 and
A + Cr2 > 0 for r ∈ (0, 1], and (3.9) attains its maximum value at x = −1.
Therefore, it gives that∣∣a3 − λa22

∣∣ ≤ g(r) = A−Br + Cr2 +
1

3
(α− 1)

(
1− r2

)
.(3.10)

By a simple calculation, we show that the maximum value of (3.10) attains at the
boundary of r, i.e. r = 1. Therefore

g(r) ≤ g(1) = A−B + C =
1

3

[
(2− 3λ)α2 + 1

]
.



fekete-szegö problem for concave univalent functions ... 81

Case 3B: Let λ =
2 (α− 2)

3 (α− 1)
.

In this case, we get C = 0, therefore h(x) becomes a linear function,

h(x) = A2 +B2r2 + 2BrAx.(3.11)

It is easy to show that the maximum value of (3.11) occurs at x = −1 and r = 1.
Again we get the maximum value of |a3 − λa22| as the previous case.

Case 3C: Let λ ∈
(
2 (α− 2)

3 (α− 1)
,
2 (α− 1)

3α

)
.

In this interval, the quadratic function (3.9) has maximum value at

x (r) = −B

4

(
1

Cr
+

r

A

)
,

where x (r) is monotonic increasing in r ∈ (0, 1] and x (1) < −1. Hence we get
the upper bound as in Cases 3A and 3B. As conclusion, from the Cases 3A, 3B
and 3C give us that ∣∣a3 − λa22

∣∣ ≤ 1

3

[
(2− 3λ)α2 + 1

]
for

λ ∈
(
22k−2 (α + 1)− 3k

3 (22k−3) (α− 1)
,
2 (α− 1)

3α

)
.

Case 3D: Let λ ∈
[
2 (α− 1)

3α
,
2

3

)
.

From the Case 3C, the inequality x (1) < −1 gives that

2 (3λ+ 4α2 − 12α2λ+ 9α2λ2 − 4)

[(3λ− 4) + α (3λ− 2)] [α (3λ− 2)− (3λ− 4)]
< 0,

hence it shows that

p(λ) = 9α2λ2 +
(
3− 12α2)λ+ 4(α2 − 1

)
< 0

where λ < 2
3
. Factorizing p (λ), we have

λ1 =
2

3
− 1

6α2

(
1 +

√
8α2 + 1

)
(3.12)

and

λ2 =
2

3
− 1

6α2

(
1−

√
8α2 + 1

)
.(3.13)

It is clear that λ1 < λ2. Therefore, for λ ∈
[
2 (α− 1)

3α
, λ1

)
, functions (3.9) and

(3.10) have their maximum value at

x = −1 and rm =
−3B

−6C + α− 1
∈ (0, 1]
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respectively. Hence the upper bound of Fekete-Szegö functional is given by

|a3 − λa22| ≤ g(rm) = A−Brm + Cr2m +
1

3
(α− 1)

(
1− r2m

)
=

4 [(10− 9λ)α + (2− 3λ)]

3 (2− λ)− (2− 3λ)α
.

(3.14)

Next, we consider for λ ∈
[
λ1,

2

3

)
. In this interval, the quadratic equation (3.9)

attains its maximum value at

x (r) =
−B (A+ Cr2)

4ACr

with

h (x (r)) = − 1

4AC

(
B2 − 4AC

)
(A− Cr)2 .

Hence, the Fekete-Szegö functional satisfies the following inequality

|a3 − λa22| ≤
√

h (x (r)) +
(α− 1)

6

(
1− r2

)
= (A− Cr)

√
1− B2

4AC
+

(α− 1)

6

(
1− r2

)
= k (r) .

(3.15)

The maximum value of g(r),

g(r) = A−Br + Cr2 +
(α− 1)

6

(
1− r2

)
and (3.15) occurs at

rm =
−B

−2C + (α−1)
3

and r0 =
B

2C +
√

1− B2

4AC

respectively. It is easy to show that (3.15) is monotonic decreasing for r ≥ r0.
Hence, the maximum value of |a3 − λa22| is given by (3.14).

For λ =
2

3
, we get B = 0 and C = 1

6
(1− α) . Thus, the maximum value

∣∣a3 − λa22
∣∣ = α

3
,(3.16)

occurs at x = cos θ = 0 and r ∈ (0, 1].
From (3.14), (3.15) and (3.16) we concluded that∣∣a3 − λa22

∣∣ ≤ 4 [(10− 9λ)α + (2− 3λ)]

3 (2− λ)− (2− 3λ)α

for λ ∈
[
2 (α− 1)

3α
,
2

3

]
.
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Case 3E: Let λ ∈
(
2

3
, λ2

]
, where λ2 is given by (3.13).

In this interval, we have B > 0. So that (3.9) attains its maximum value at
x = 1. Then, we consider the function

l (r) = h (1) = A+Br + Cr2 +
(α− 1)

6

(
1− r2

)
.

Again, by a simple calculation shows that the maximum value of l (r) to be
occured at

rn =
B

−2C + (α−1)
3

,

hence the maximum of the function (3.15) to be attained at

r1 =
B

−2C

(
1 +

√
1− B2

4AC

) ∈ (0, 1] .

It is easily to prove that r1 < rn ≤ 1. Since k(r) is monotonic increasing function,
then

k (r) ≤ k (1) = (A− C)

√
1− B2

4AC
,

which gives that

∣∣a3 − λa22
∣∣ ≤ k(1) = (1− λ)α

√
12 (1− λ)

(4− 3λ)2 − (3λ− 2)2 α2

for λ ∈
(
2

3
, λ2

]
.

Case 3F: Finally, we consider the case for λ ∈
(
λ2,

2 (α+ 2)

3 (α+ 1)

)
.

For these λ, we see that A < 0, B > 0, C < 0, A+Cr2 < 0 and the maximum
value of function (3.7) is attained for x = −1, i.e.

η (x) = −A+Br − Cr2 +
(α− 1)

6

(
1− r2

)
.

We get η (r) ≤ η (1) for all λ in these interval and hence∣∣a3 − λa22
∣∣ ≤ −A+B − C =

1

3

[
(3λ− 2)α2 − 1

]
.

Thus, the proof of Theorem 1 is complete.
Further, substitute (3.5) into (3.2) yields

12 (a3 − λa22) = (α + 1) [(2− 3λ) (α + 1) + 2] + 2
(
α2 − 1

)
(3λ− 2) c0

+(α− 1) (6 + [2− 3 (α− 1)λ]) c20 + 2 (1− α) c1.
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Hence for λ complex numbers, we have

12 |a3 − λa22| ≤ (α + 1) |(2− 3λ) (α + 1) + 2|
+2 (1− α) |c1|+ 2

(
α2 − 1

)
|3λ− 2| |c0|

+(α− 1) |6 + [2− 3 (α− 1)λ]| |c0|2 .
(3.17)

Using the well known inequality that |c0| ≤ 1 and |c1| ≤ 1−|c0|2, then from (3.17)
we get

12
∣∣a3 − λa22

∣∣ ≤ 1

12
(α + 1) ν (α, λ)

for Re {ν (α, λ)} > 0, where

ν (α, λ) = |(2− 3λ) (α+ 1) + 2|+ 2 (1− α) |3λ− 2|

+
(α− 1)

α + 1
|6 + [2− 3 (α− 1)λ]| .

Thus, the proof of Theorem 2 is complete.

Remark 1 Taking k = 0 and λ real numbers, we deduce a result of Bhowmik
et al. [5].

Other problems related to Fekete-Szegö functional for further reading can be found
in ([1], [2], [7], [13], [14], [15], [21], [22], [23], [24], [25]).
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