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Abstract. In this paper, we intend to study an algebraic approach on rough sets. We
introduce the concept of rough semigroup, rough monoid and rough ideals on the set of
all rough sets for the given information system together with the operation Praba ∆.
We illustrate these concepts through examples.
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1. Introduction

The concept of rough set theory was introduced by Z. Pawalak [12] in 1982.
This formal tool was implemented to process incomplete information in the
information systems. Rough set theory is an extention of set theory and it is
defined by a pair of sets called lower and upper approximations. In the content
of data analysis, this concept will be used to discover fundamental patterns in
data, remove redundancies and generate decision rules. Also rough set theory
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will be applied in several field like computational intelligence such as machine
learning, intelligent systems, pattern recognition, knowledge discovery, expert
systems and others [14], [10], [6], [2], [4]. Zadeh[15] introduced the concept of
fuzzy sets in his paper. B. Praba and R. Mohan [13] discussed the concept of
rough lattice. In this paper the authors considered an information system
I = (U,A). A partial ordering relation was defined on T = {RS(X) | X ⊆ U}.
The least upper bound and greatest lower bound were established. They have
also defined the operation Praba ∆. N. Kuroki and P.P. Wang [9] discussed
some properties of lower and upper approximations with respect to the normal
subgroup. R. Biswas and S. Nanda [1] introduced the notion of rough groups
and rough subgroups. Also the authors T.B. Iwinski [8] Z. Bonikowaski [3] have
studied algebraic properties of rough sets. Then the concept of rough fuzzysets
and fuzzy rough sets was introduced by D. Dubois, H. Parade [5] and Nick C.
Fiala [11] discussed about semigroup, monoid and group models of groupoid
identities in his paper. In the recent and past, rough set theory has triggered
many researchers all around the world. The concept of rough set theory is the
approximation space such as lower and upper approximations of a set
determined by attributes. The pair of lower and upper approximation is called
rough set also in rough set theory data can be represented in the form of an
information system. An information system is a pair I = (U,A) where U is a
non empty finite set of objects, called universal set and A is a nonempty set of
fuzzy attributes defined by µa : U → [0, 1], a ∈ A, is a fuzzy set.

Indiscernibility is a core concept of rough set theory and it is defined as an
equivalence between objects. Objects in the information system about which we
have the same knowledge forms an equivalence relation.

Formally, any set P ⊆ A, there is an associated equivalence relation called
P -Indiscernibility relation defined as follows,

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, µa(x) = µa(y)}.

The partition induced by IND(P ) consists of equivalence classes defined by

[x]p = {y ∈ U |(x, y) ∈ IND(P )}.

For any X ⊆ U , define the lower approximation space

P (x) = {x ∈ U |[x]p ⊆ X}.

Also, define the upper approximation space P (x) = {x ∈ U |[x]p ∩X 6= φ}.
For every subset X ∈ U , there is an associated rough set

RS(X) = (P (x), P (x)).

In this paper, we consider an information system I = (U,A) where U is a
non empty finite set of objects, called universal set and A is a nonempty set of
fuzzy attributes and let T = {RS(X) | X ⊆ U} be the set of all rough sets on
U . A binary relation Praba ∆ [13] is defined onT then we prove that (T, ∆) is a
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commutative regular monoid of idempotents. Also we characterize the principal
ideals generated by these idempotents. The paper is organized as follows.

In Section 2, we give the necessary definitions pertaining to rough set theory
and semigroup theory.

In Section 3, we define the binary operation Praba ∆ [13] on T and prove
that (T, ∆) is a commutative regular monoid of idempotents called as the rough
monoid.

In Section 4, a characterization for the lower and upper approximation of the
principal ideal generated by the elements of T is discussed in detail and section 5
illustrates these concepts with example.

Section 6 gives the conclusion.

2. Preliminaries

In this section, we present some preliminaries on rough sets and algebraic
structures.

2.1. Rough sets

Let I = (U,A) be an information system and for any subset X of U and
(P (x), P (x)) are the lower and upper approximations respectively as defined in
previous section.

Definition 2.1. [rough set] A rough set corresponding to X, where X is an
arbitrary subset of U in the approximation space P , we mean the ordered pair
RS(X) = (P (x), P (x)).

Remarks 2.1. [13] If X ⊆ U , then X ⊆ ⋃r
i=1 Xαi

where none, one or more of the
equivalence classes are contained in X. Here Xαi

, i = 1, 2, ..., r are the equivalence
classes induced by Ind(P ).

Definition 2.2. [13] If X ⊆ U , then the number of equivalence classes (Induced
by Ind(P)) contained in X is called as the Ind. weight of X. It is denoted by
IW (X).

Example 2.1. [13] Let U = {x1, x2, x3, x4, x5, x6} and A = {a1, a2, a3, a4} where
each ai (i = 1 to 4) is a fuzzy set whose membership values are shown in Table 1.

Table 1:
A/U a1 a2 a3 a4

x1 0 0.1 0.3 0.2
x2 1 0.6 0.7 0.3
x3 0 0.1 0.3 0.2
x4 1 0.6 0.7 0.3
x5 0.8 0.5 0.2 0.4
x6 1 0.6 0.7 0.3
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Let X = {x1, x3, x5, x6} and P = A. Then the equivalence classes induced by
IND(P ) are given below.

[x1]p = {x1, x3}(1)

[x2]p = {x2, x4, x6}(2)

[x5]p = {x5}(3)

Hence,
P (x) = {x1, x3, x5} and

P (x) = {x1, x2, x3, x4, x5, x6}.
Therefore

RS(X) = ({x1, x3, x5}, {x1, x2, x3, x4, x5, x6}).
Note that the upper approximation space consists of those objects that are
possibly members of the target set X. The set U − P (x) represents the negative
region containing the set of objects that can be definitely ruled out to be the
members of the target set X. The boundary region given by the set difference
P (x) − P (x) consists of those objects that can neither be ruled in nor ruled out
as the members of the target set X. In the previous example the negative region
is an empty set and the boundary is P (x) − P (x) = {x2, x4, x6}. Throughout
this paper, we use this same Example 2.1 to illustrate our concepts.

Example 2.2. Let U = {x1, x2, . . . , x6} as in Table 1. The equivalence classes
induced by Ind(P ) are

[x1]p = {x1, x3}
[x2]p = {x2, x4, x6}
[x5]p = {x5}

Let X = {x1, x4, x5} ⊆ U then by definition, Ind. weight of X = IW (X) = 1
(since there is only one equivalence class [x5]p = {x5} present in X).

Definition 2.3. [13] Let X,Y ⊆ U . The Praba ∆ is defined as X∆Y = X ∪ Y ,
if IW (X ∪ Y ) = IW (X) + IW (Y )− IW (X ∩ Y ).
If IW (X ∪ Y ) > IW (X) + IW (Y )− IW (X ∩ Y ),
then identify the equivalence class obtained by the union of X and Y . Then delete
the elements of that class belonging to Y . Call the new set as Y . Now, obtain
X∆Y . Repeat this process until

IW (X ∪ Y ) = IW (X) + IW (Y )− IW (X ∩ Y ).

Example 2.3. [13] Let U = {x1, x2, . . . , x6} as in Table 1.
Let X = {x2, x4, x5}, Y = {x1, x6} ⊆ U then by definition,

IW (X) = 1; IW (Y ) = 0; IW (X ∪ Y ) = 2; IW (X ∩ Y ) = 0.
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Here,
IW (X ∪ Y ) > IW (X) + IW (Y )− IW (X ∩ Y ).

The new equivalence class formed in X∪Y is [x2]p. As x6 ∈ Y and x6 is an element
of [x2]p, delete x6 from Y . Now the new Y is {x1}. Now for X = {x2, x5, x6} and
Y = {x1}. Finding IW (X ∪ Y ),

IW (X ∪ Y ) = IW (X) + IW (Y )− IW (X ∩ Y ).

Therefore, X∆Y = X ∪ Y = {x1, x2, x4, x5}.

2.2. Algebraic structures

Definition 2.4. [Groupoid] [11], [7] A groupoid consists of a non-empty set
equipped with a binary operation ∗, and it is denoted by (S, ∗).
Definition 2.5. [Semigroup] [11], [7] A semigroup (S, ∗) is a groupoid that is
associative (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ S).

Definition 2.6. [Monoid] [11], [7] A semigroup (S, ∗) is said to be a monoid if it
contains an identity element e ∈ S such that e ∗ x = x ∗ e = x for all x ∈ S.

Definition 2.7. [Commutative monoid] [11], [7] A monoid (S, ∗) which satisfies
commutative axiom namely x∗y = y∗x for all x, y ∈ S, is known as Commutative
monoid

Definition 2.8. [Idempotent] [11], [7] An element x in a groupoid (S, ∗) is said
to be idempotent, if x ∗ x = x.

Definition 2.9. [Regular semigroup] [11], [7] A semigroup (S, ∗) is said to be
regular, if there exists an element y ∈ S such that x = x ∗ y ∗ x for all x ∈ S.

Definition 2.10. [Right (Left) ideal] [7] A nonempty subset I of a semigroup
(S, ∗) is a right (left) ideal, if it satisfies I ∗ S ⊆ I (S ∗ I ⊆ I).

Definition 2.11. [Ideal] A nonempty subset I of a semigroup (S, ∗) is said to be
an ideal, if it is both right and left ideal.

Definition 2.12. [Principal ideal] [7] Let (S, ∗) be a semigroup and for any
element a ∈ S such that a ∗ S (S ∗ a) is called as principal right (left) ideal
generated by a and S ∗ a ∗ S is called as principal ideal of S

Example 2.4. Ideals nZ of the semigroup Z are all principal and in fact all ideals
of Z are principal.

In the following section, a binary operation Praba ∆ [13] is defined on the set
of all rough sets and its algebraic structure is studied.
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3. Monoids on Rough sets

Throughout this section, we consider an information system I = (U,A). Now, for
any X ⊆ U , RS(X) = (P (X), P (X)), and let T = {RS(X)|X ⊆ U} be the set
of all rough sets on I

Definition 3.1. [Binary operation] Let T be the collection of rough sets and let
∆ : T × T → T such that ∆(RS(X), RS(Y )) = RS(X∆Y )

Theorem 3.1. Let I = (U,A) be an information system where U be the universal
(finite) set and A be the set of attributes and T be the set of all rough sets then
(T, ∆) is a Monoid.

Proof.

(a) Closure axiom: For X,Y ⊆ U , and letting X∆Y = Z ⊆ U ,

=⇒ RS(X∆Y ) = RS(Z) ∈ T

(b) Associative axiom: For all X,Y, Z ⊆ U and RS(X), RS(Y ), RS(Z) ∈ T
such that

RS(X∆(Y ∆Z)) = RS((X∆Y )∆Z)),

i.e., to prove RS(X)∆(RS(Y )∆RS(Z)) = (RS(X)∆RS(Y ))∆RS(Z),

(4) =⇒ RS(X∆(Y ∆Z)) = RS((X∆Y )∆Z).

Claim:

(i) P (X∆(Y ∆Z)) = P ((X∆Y )∆Z))

(ii) P (X∆(Y ∆Z)) = P ((X∆Y )∆Z))

Proof for Claim (i): For x ∈ P (X∆(Y ∆Z)), we have

{x ∈ U |[x]p ⊆ X∆(Y ∆Z)}
=⇒ i.e., [x]p ⊆ X or [x]p ⊆ Y ∆Z

=⇒ [x]p ⊆ X or [x]p ⊆ Y or [x]p ⊆ Z

=⇒ [x]p ⊆ X∆Y or [x]p ⊆ Z

=⇒ [x]p ⊆ (X∆Y )∆Z

=⇒ x ∈ P ((X∆Y )∆Z)

=⇒ P (X∆(Y ∆Z)) ⊆ P ((X∆Y )∆Z).

Similarly, we prove that

P ((X∆Y )∆Z) ⊆ P (X∆(Y ∆Z))

∴ P ((X∆Y )∆Z) = P (X∆(Y ∆Z)).
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Proof for claim (ii): For x ∈ P (X∆(Y ∆Z)), we have

{x ∈ U |[x]p ∩ (X∆(Y ∆Z)) 6= φ}
=⇒ i.e., [x]p ∩X 6= φ or [x]p ∩ (Y ∆Z) 6= φ

=⇒ [x]p ∩X 6= φ or [x]p ∩ Y 6= φ or [x]p ∩ Z 6= φ

=⇒ [x]p ∩ (X∆Y ) 6= φ or [x]p ∩ Z 6= φ

=⇒ [x]p ∩ ((X∆Y )∆Z) 6= φ

=⇒ x ∈ P ((X∆Y )∆Z)

=⇒ P (X∆(Y ∆Z)) ⊆ P ((X∆Y )∆Z).

Similarly, we prove that

P ((X∆Y )∆Z) ⊆ P (X∆(Y ∆Z))

∴ P ((X∆Y )∆Z) = P (X∆(Y ∆Z)).

Thus RS(X∆(Y ∆Z)) = RS((X∆Y )∆Z)). Hence (T, ∆) is a semigroup. This
Semigroup is called as rough semigroup.

(c) Identity axiom: For RS(X) ∈ T there exists RS(φ) ∈ T such that

RS(X)∆RS(φ) = RS(X∆φ) = RS(X)

∴ RS(X∆φ) = RS(φ∆X) = RS(X).

Thus (T, ∆) is a monoid. This monoid is called as the rough monoid.

Theorem 3.2. (T, ∆) is a commutative rough monoid.

Proof. From Theorem 3.1, we have (T, ∆) is a rough monoid. Now, it is enough
to prove ∆ is commutative, i.e., for any X, Y ⊆ U and RS(X), RS(Y ) ∈ T , such
that RS(X∆Y ) = RS(Y ∆X), i.e.,

Claim:

(i) P (X∆Y ) = P (Y ∆X),

(ii) P (X∆Y ) = P (Y ∆X).

Proof of Claim (i): For x ∈ P (X∆Y ), i.e., [x]P ⊆ (X∆Y )

=⇒ [x]P ⊆ X or [x]P ⊆ Y

=⇒ [x]P ⊆ Y or [x]P ⊆ X

=⇒ [x]P ⊆ (Y ∆X)

=⇒ P (X∆Y ) ⊆ P (Y ∆X).

Similarly, we prove that

P (Y ∆X) ⊆ P (X∆Y )

∴ P (X∆Y ) = P (Y ∆X)
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Proof of claim (ii): For x ∈ P (X∆Y ), i.e., [x]P ∩ (X∆Y ) 6= φ

=⇒ [x]P ∩X 6= φ or [x]P ∩ Y 6= φ

=⇒ [x]P ∩ Y 6= φ or [x]P ∩X 6= φ

=⇒ [x]P ∩ (Y ∆X) 6= φ

=⇒ P (X∆Y ) ⊆ P (Y ∆X).

Similarly, we prove that

P (Y ∆X) ⊆ P (X∆Y )

∴ P (X∆Y ) = P (Y ∆X).

Hence, RS(X∆Y ) = RS(Y ∆X). Thus (T, ∆) is a commutative monoid. This
commutative monoid is called as commutative rough monoid.

Theorem 3.3. (T, ∆) is a regular rough monoid of idempotents.

Proof. To prove: (T, ∆) is a regular monoid. We need to prove that, for any
RS(X) ∈ T , there exist RS(Y ) ∈ T such that

RS(X)∆RS(Y )∆RS(X) = RS(X).

For RS(X) ∈ T , take Y = EX = {x ∈ U | [x]P ⊆ X}.
Then Y ∆X = X and hence X∆Y ∆X = X.

∴ RS(X)∆RS(Y )∆RS(X) = RS(X∆Y ∆X) = RS(X).

Hence
(T, ∆) is a regular monoid .

Now, for RS(X) ∈ T,

RS(X)∆RS(X) = RS(X∆X) = RS(X).

This implies that RS(X) is an idempotent in T , i.e., all elements of T are
idempotent. Hence (T, ∆) is a regular monoid of idempotents called as regular
rough monoid of idempotents on T .

4. Rough Ideals

In this section, we discuss about the principal ideals of commutative regular
monoid of idempotents (T, ∆).

Definition 4.2. [Rough ideal] Consider the commutative regular monoid of
idempotents (T, ∆). For any RS(X) ∈ T , RS(X)T is the principal ideal
generated by RS(X). This ideal is called as the principal rough ideal on T .

Remarks 4.1. The Rough ideal is RS(X)T = {RS(X)∆RS(Y ) | RS(Y ) ∈ T}.
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Next, we prove a representation theorem for these principal ideals and for
any information system I = (U,A), T = {RS(X) : X ⊆ U} and X = EX ∪ PX

where EX be the union of equivalence classes which is completely contained in X,

i.e., EX = {x ∈ U | [x]P ⊆ X} and PX =
r⋃

i=1

Xαi
where Xαi

are the proper subset

of all indiscernable classes also PX be the union of equivalence classes containing
the elements of PX .

For example, let X = {x1, x2, x3} as in Table 1. Then, X = EX ∪ PX , where
EX = {x1, x3}, PX = {x2} and PX = {x2, x4, x6}.

Using this characterization for any subset X of U , we have the following
theorem representing the lower and upper approximation of the elements of the
rough ideals.

Theorem 4.1. If I=(U,A) be an information system and T={RS(X) : X ⊆ U},
for any RS(Y ) ∈ T , then RS(X∆Y ) = (EX ∪ EY , EX ∪ PX ∪ EY ∪ PY )

Proof. For X ⊆ U, X = EX ∪ PX and for Y ⊆ U, Y = EY ∪ PY

RS(X∆Y ) = (P (X∆Y ), P (X∆Y ))(5)

P (X∆Y ) = [x]P ⊆ X∆Y

= EX ∪ EY(6)

P (X∆Y ) = [x]P ∩X∆Y 6= φ

= EX ∪ PX ∪ EY ∪ PY(7)

From (5), (6) and (7) we have,

(8) RS(X∆Y ) = (EX ∪ EY , EX ∪ PX ∪ EY ∪ PY )

This completes the proof.

In the following section the described concepts are illustrated through
examples.

5. Examples

Example 5.1. Let us consider The following information system I = (U,A),
where U = {x1, x2, . . . , x6} as in table 1, then (T, ∆) is a Commutative Monoid.

As we have, from table 1, |T | = 18 [13], also the Cayley’s table of (T, ∆) will
be very large. So, we have illustrated through one simple example.

(Closure axiom) Let X = {x1, x2, x3, x4} ⊆ U, Y = {x5, x6} ⊆ U from equations
(1), (2) and (3). We have, X∆Y = X ∪ Y if IW (X ∪ Y ) = IW (X) + IW (Y )−
IW (X ∩ Y ) but from X ∪ Y we have IW (X ∪ Y ) > IW (X) + IW (Y ) −
IW (X ∩ Y ). so by definition of Ind.weight deleting the elements from the new
class, we get X∆Y = X ∪ Y = {x1, x2, x3, x4, x5}.
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Therefore, RS(X∆Y ) = {[x1]p ∪ [x5]p, [x1]p ∪ [x2]p ∪ [x5]p}.
Hence, RS(X∆Y ) ∈ T .

(Associative axiom) Let us consider from closure X∆Y = {x1, x2, x3, x4, x5} and
let Z = {x2, x3} then from the definition of Ind.weight we have (X∆Y )∆Z =
{x1, x2, x3, x4, x5}

(9) Therefore, RS((X∆Y )∆Z) = {[x1]p ∪ [x5]p, [x1]p ∪ [x2]p ∪ [x5]p}.

Also, Y ∆Z = Y ∪ Z if IW (X ∪ Y ) = IW (X) + IW (Y ) − IW (X ∩ Y ) so,
Y ∆Z = {x2, x3, x5, x6} and X∆(Y ∆Z) = {x1, x2, x3, x4, x5}

(10) Therefore, RS(X∆(Y ∆Z)) = {[x1]p ∪ [x5]p, [x1]p ∪ [x2]p ∪ [x5]p}.

From (9) and (10), we have RS((X∆Y )∆Z) = RS(X∆(Y ∆Z)).

(Identity axiom) For U={x1, x2, ..., x6} as in Table 1 and X={x1, x2, x3, x4} ⊆ U ,
there exist an empty set φ such that

(11) RS(X∆φ) = RS(φ∆X) = RS(X) = {[x1]p, [x1]p ∪ [x2]p}.

Thus, we have (T, ∆) is a Rough monoid.

(Commutative axiom) Let us consider, U = {x1, x2, ..., x6} as in Table 1 and let
X = {x1, x2, x3, x4} ⊆ U, Y = {x5, x6} ⊆ U also from equations (1), (2) and
(3). We have, X∆Y = X ∪ Y if IW (X ∪ Y ) = IW (X) + IW (Y )− IW (X ∩ Y )
but from X ∪ Y we have IW (X ∪ Y ) > IW (X) + IW (Y ) − IW (X ∩ Y ).
so by definition of Ind.weight deleting the elements from the new class, we get
X∆Y = X ∪ Y = {x1, x2, x3, x4, x5} = Y ∪X = Y ∆X.

Therefore, RS(X∆Y ) = {[x1]p ∪ [x5]p, [x1]p ∪ [x2]p ∪ [x5]p} = RS(Y ∆X).

(T, ∆) is a Commutative rough monoid.

Example 5.2. (Regular Monoid) Let us consider, U = {x1, x2, . . . , x6} as in Table
1 and let X = {x1, x2, x3} ⊆ U , Y = {x4, x6} ⊆ U also from equations (1), (2)
and (3). We have, X∆Y = X ∪ Y = {x1, x2, x3} then

RS(X∆Y ) = RS(X) = {[x1]p, [x1]p ∪ [x2]p} = RS(X∆Y ∆X).

5.1. Examples for Ideals

• The ideals for RS(X1)∆T are RS(U), RS(X1), RS(X1∪X2), RS(X1∪X3),
RS(X1 ∪ {x2}), RS(X1 ∪ {x2} ∪X3).

• The ideals for RS(X3)∆T are RS(X1 ∪X3), RS(X2 ∪X3), RS(X3), RS(U),
RS({x1} ∪X3), RS({x2} ∪X3), RS({x1} ∪X2 ∪X3), RS(X1 ∪ {x2} ∪X3),
RS({x1} ∪ {x2} ∪X3).
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• The ideals for RS({x1})∆T are RS(U), RS(X1), RS(X1∪X2), RS(X1∪X3),
RS(X1 ∪ {x2}), RS({x1} ∪ X2), RS({x1} ∪ X3), RS({x1} ∪ X2 ∪ X3),
RS(X1 ∪ {x2} ∪ X3), RS({x1} ∪ X2 ∪ X3), RS({x1}), RS({x1} ∪ {x2}),
RS({x1} ∪ {x2} ∪X3).

6. Conclusion

In this paper, we have introduced a new operation Praba ∆ on the set of all rough
sets T for a given information system I = (U,A). Also we have proved (T, ∆) is
a commutative regular monoid of idempotents. We also gave a characterization
for the principal rough ideal in T . The future study is to investigate and explore
this regular monoid.
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