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1. Introduction

Generalized open sets play a very important role in General Topology and they
are now the research topics of many topologists worldwide. Indeed a significant
theme in General Topology and Real analysis concerns the various modified forms
of continuity, separation axioms etc. by utilizing generalized open sets. Kasahara
[3] defined the concept of an operation on topological spaces and introduce the
concept of y-closed graphs of a function. Ogata [6] introduced the notion y-open
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sets in a topological space (X, 7). In this paper, we have introduce and study
the notion of y-regular open sets by using the operation v on a topological space
(X, 7). We also introduce the almost (7, 3)-continuous functions and investigate
some of its important properties.

2. Preliminaries

Definition 2.1 Let (X, 7) be a topological space. An operation ~ [3] on the
topology 7 is a function from 7 onto a power set P(X) of X such that V' C V7 for
each V' € 7, where V7 denotes the value of v at V. It is denoted by v : 7 — P(X).

Definition 2.2 A subset A of a topological space (X, 7) is called vy-open [6] set
if, for each € A, there exists an open set U such that x € U and U” C A. 7,
denotes the set of all y-open sets in (X, 7). The complement of a y-open set is
called v-closed.

Definition 2.3 Let A be subset of a topological space (X, 7) and v be an opera-
tion on 7. Then

(i) the 7,-closure of A is defined as the intersection of all y-closed sets containing

A. That is, 7,-cl (A) = {F : F is y-closed and A C F'}.

(ii) the 7,-interior of A is defined as the union of all y-open sets contained in A.
That is, 7,-Int(A) = (J{U : U is y-open and U C A}.

Definition 2.4 A subset A of a topological space (X, 7) is said to be
(i) ~-semiopen [5] if A C 7,-cl(7,-Int(A)).
(ii) y-preopen [4] if A C 7,-Int(7,-cl (A4)).
(iii) y-a-open [2] if A C 7,-Int(7,-cl (7,-Int(A))).
(iv) ~v-f-open [1] if A C 7-cl (7,-Int(7,-cl (A))).

The complement of a vy-semiopen (resp. 7-preopen, y-a-open, v-3-open) set is
called a y-semiclosed (resp. 7-preclosed, y-a-closed, v-(-closed) set. The family
of all v-semiopen (resp. y-preopen, y-a-open, --open) sets of (X, 7) is denoted
by 75O(X) (resp. yPO(X), ya(X), 78(X))

Definition 2.5 A function f: (X,7) — (Y, 0) is said to be:

(i) (v, B)-continuous [6] at a point « € X if, for each [-open subset V in Y
containing f(z), there exists a y-open subset U of X containing x such that
fu)cv;

(i) (v, B)-continuous [6] if it has this property at each point of X.
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3. 7-Regular open sets

Throughout this paper, the operator v is defined on (X, 7) and the operator [ is
defined on (Y, o).

Definition 3.1 A subset A of a topological space (X, 7) is said to be ~-regular
open set, if 7,-Int(7,-cl (4)) = A. We call a subset A of X is v-regular closed, if
its complement is y-regular open.

The family of all y-regular open (resp. y-regular closed) sets of (X, 7) is denoted
by YRO(X) (resp. YyRC(X)).

Lemma 3.2 For a topological space (X, 7), we have 7,-Int(7,-cl (,-Int(7,-cl (4))
= 7,-Int(7,-cl (A).

Proof. It is obvious that 7,-Int(7,-cl (7,-Int(7,-cl (A))))Cr,-Int(7,-cl (A)). Con-
versely, 7,-Int(7,-cl (A))=7,-Int(7,-Int(7,-cl (A))) C7,-Int (7, -cl (7,-Int(7,-cl (A)))).

Definition 3.3 An operation v on 7 is said to be regular, if for any open neigh-
borhoods U,V of x € X, there exists an open neighborhood W of z such that
WwryCcurnvr.

Lemma 3.4 If A and B are two y-open subsets and v is a reqular operator. then
AN B is ay-open set.

Remark 3.5 The condition in the above Lemma that ~y is a regular operator can
not be omitted as we see in the following example

Example 3.6 Let X = {a,b,c} and 7 = {0, X, {a},{b},{a, b}, {a,c}}. Let
v : 7 — P(X) be an operation defined as follows: for every A € T,

- A ifb e A,
| c(4) ifb¢ A,

Then the sets {a,b} and {a,c} are y-open sets but their intersection {a} is not a
y-open set.

Lemma 3.7 Let A and B be subsets of a topological space (X, 7). Then the
following properties hold:

(i) 7y-Int(7,-cl(A)) is y-regular open.

(ii) If A and B are y-regular open, then AN B is also vy-regular open.
Proof. (i). Follows from Lemma 3.2. (ii). Let A and B be 7-regular open sets
of X. Then using Lemma 3.4, we have AN B = 7,-Int(,-cl(A)) N 7,-Int(7,-
cl(B)) = 7y-Int(7,-cl (A) N 7y-cl (B)) D 7,-Int(7,-cl (AN B)) D 7,-Int(AN B) =

AN B. Therefore, we obtain AN B = 7,-Int(7,-cl (AN B)). This shows that AN B
is y-regular open. .
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Remark 3.8 The following example shows that the union of any two ~v-regular
open sets need not be y-regular open.

Example 3.9 [6] Let X = {a,b,c} and 7 = {0, X, {a}, {0}, {a,b}}. Let v:7 —
P(X) be an operation defined as follows: for every A € 7,

s A ifcé A,
T\ d(A) ifceA,

Then the sets {a} and {b} are y-regular open sets but their union {a,b} is not a
~v-regular open set.

Theorem 3.10 The following statements are true:
(i) A ~-open set A is y-regular open if and only if 7.,-Int(7,-cl (A4)) C A.
(ii) For every ~-closed set A, the set 7,-Int(A) is y-regular open.

Proof. (i). It suffices to prove that every y-open set A satisfying 7. -Int(r,-
cl(A)) C Ais vy-regular open. Since A C 7,-cl (A) holds, then A = 7,-Int(A) C 7,-
Int(7,-cl (A)) is true, so we have A = 7,-Int(7,-cl(A)). (ii). If A is y-closed,
then the following holds: 7,-Int(A) C 7,-cl(7,-Int(A)) C 7,-cl(A) = A. Hence
7,-Int(A) = 7,-Int(7,-cl (7,-Int(A))) C 7,-Int(A). So, 7,-Int(A) = 7,-Int(7,-cl (7,-
Int(A)) holds. That is, 7,-Int(A) is y-regular open. n

Theorem 3.11 For a subset A of X, the following properties are equivalent:
(i) A is y-preopen.

(ii) there exists a y-reqular open subset G C X such that A C G and
7y-cl (A) = 7,-cl (G).

(ili) A =GN D, where G is vy-reqular open and D is y-dense.
(iv) A= GnN D, where G is y-open and D is y-dense.

Proof. (i) = (ii): Let A be y-preopen. We have A C 7,-Int(7,-cl(A)) C 7,-
cl(A) which implies that 7,-cl(A) C 7,-cl (7,-Int(7,-cl (A))) C 7,-cl(A) and so
7,-cl (A) = 7,-cl (7,-Int(7,-cl (A))). Let G = 7,-Int(7,-cl (A)). Then A C G and
7-Int(7,-cl (G)) = 7,-Int(7-cl (7-Int(7,-cl (A)))) = 7,-Int(7,-cl (A)) = G which
implies that G is y-regular open. Also 7,-cl(G) = 7,-cl (7,-Int(7,-cl (G))) = 7,-
cl(A). (ii) = (iii): Let G be a ~-regular open set such that A C G and 7,-
cl(A) = 7,-cl(G). Let D = AU (X\G). Then A = G N D where G is 7-
regular open. Now, 7,-cl (D) = 7,-cl (AU(X\G)) = 7y-cl ((A) UTy-cl (X\G) = 7,-
cl(G) Uty-cl (X\G) = 7y-cl ((GU (X\G)) = 7y-cl (X) = X. Hence D is y-dense.
(iii) = (iv): The proof follows from the fact that every ~-regular open set is -
open. (iv) = (i): Suppose A = G N D where G is vy-open and D is y-dense. Now
G=GNX=GnNr-c(D) C 7,-c1(GN D) and so G = 7,-Int(G) C 7,-Int(7,-
c(GN D) = 7,-Int(7,-cl (A) which implies that A C 7,-Int(7,-cl(A)). Hence A is
y-preopen. .
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Theorem 3.12 For a subset A of X, the following are equivalent:
(i) A is y-regular closed.
(ii) A is y-preclosed and ~y-semiopen.

(i) A is y-a-closed and ~y-(-open.

Proof. (i) = (ii): Let A be v-regular closed. Then A = 7,-cl(7,-Int(A) and
A is vy-preclosed and 7-semiopen. (ii) = (iii): Let A be ~v-preclosed and ~-
semiopen. Then A C 7,-cl(7,-Int(A) and 7,-cl (7,-Int(A) C A. Therefore, we
have 7,-cl (A) = 7,-Int(7,-cl (A) and hence 7,-cl (7,-Int(7,-cl (7,-Int(A)))) = 7,-
cl(7,-Int(A)) C A. This shows that A is y-a-closed. Since every ~-semiopen set
is y-(-open set, it is obvious that A is v-f-open. (iii) = (i): Let A be y-a-closed
and y-#-open. Then A = 7.-cl (7,-Int(7,-cl (A))) and hence 7,-cl (7,-Int(A)) = 7,-
cl (7,-Int(7,-cl (7,-Int(A)))) = A. Therefore, A is y-regular closed.Proof.

Definition 3.13 A topological space (X, 7) is said to be 7,-extremally discon-
nected, if 7,-cl (A) € 7,, for every A € 7.

Theorem 3.14 For a topological space (X, 1), the following properties are equi-
valent:

(i) X is 7,-extremally disconnected.
(ii) Ewvery ~y-regular open subset of X is y-closed.
(i) Ewvery ~y-reqular closed subset of X is y-open.

Proof. (i) — (ii): Let X be 7,-extremally disconnected. Let A be a y-regular
open subset of X. Then A = 7,-Int(7,-cl (A)). Since A is a y-open set, then
7,-cl(A) € 7,. Thus, A = 7,-Int(7,-cl (4)) = 7,-cl(A); hence A is 7-closed.
(ii) — (iii): Suppose that every y-regular open subset of X is y-closed in X.
Let A € 7,. Since 7,-Int(7,-cl (A)) is y-regular open, then it is vy-closed in X.
This implies that 7,-cl (4) C 7,-cl (7,-Int(7,-cl (A))) = 7,-Int(7,-cl (4)) since A C
7,-Int(7,-cl (4)). Thus, 7,-c1(A) € 7,; hence X is 7,-extremally disconnected.
(i) < (iii): Obvious. .

Theorem 3.15 For a topological space (X, T), the following properties are equi-
valent:
(i) X is 7y-extremally disconnected.

(ii) ~y-regular open sets coincide with ~y-regular closed sets.

Proof. (i) = (ii): Suppose A is a 7-regular open subset of X. Since vy-regular
open sets are vy-open, by (i), A = 7,-cl(A) = 7,-cl(7,-Int(A)) and so A is 7-
regular closed. If A is y-regular closed, then A = 7,-cl(7,-Int(A)) = 7,-Int(7,-
cl(7y-Int(A))) = 7,-Int(A) so A is y-open. Also, A = 7,-cl(7,-Int(A4)) = 7,-
Int(7,-cl (1,-Int(A))) = 7,-Int(7,-cl (A)). Hence A is y-regular open. (ii) = (i):
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Let A be a y-open subset of X. Then 7.,-Int(7,-cl (A)) is y-regular open and so
it is y-regular closed, by (ii). Hence 7,-Int(7,-cl (7,-Int(7,-cl ((A))))) = 7,-Int(7,-
cl(A)) which implies that 7.,-cl (7,-Int(7,-cl (4))) = 7,-Int(7,-cl (4)). Therefore,
7,-cl(A) = 7,-cl (7y-Int(A)) C 7,-cl(7y-Int(7,-cl (A))) = 7,-Int(7,-cl (4)) and so
7,-cl (A) = 7,-cl(7,-Int(A)). Hence 7,-cl(A) is y-open. This shows that X is
Ty-extremally disconnected. ]

Theorem 3.16 For a topological space (X, T), the following properties are equi-
valent:

(i) X is 7,-extremally disconnected.

(ii) Ewvery ~y-regular closed set is y-preopen.

Proof. (i) = (ii): The proof follows from the fact that every 7-regular open
sets is y-preopen set. (ii) = (i): If A is y-open, then 7,-cl(7,-Int(A)) is 7-
regular closed and so it is y-preopen. Therefore, 7,-cl (A) = 7,-cl (7,-Int(A)) C 7,-
Int(7y-cl (7y-cl (7,-Int(A)))) = 7,-Int(7,-cl (75-Int(A))) = 7,-Int(7,-cl (A)). Thus,
7,-cl(A) = 7,-Int(7,-cl (A)) which implies that 7,-cl(A) is y-open. Hence X is
T,-extremally disconnected. n

Theorem 3.17 If (X, 1) is a 7,-extremally disconnected, then the following pro-
perties hold:

(i) AN B is y-regular closed for all vy-regular closed subsets of A and B of X.

(i) If v is regqular open. Then A N B is y-reqular open for all vy-reqular open
subsets A and B of X.

Proof. (i). Let X be 7,-extremally disconnected. Let A and B be y-regular
closed subsets of X. Since A and B are y-closed, 7,-Int(A) and 7,-Int(B) are
v-closed. This implies that A N B = 7,-cl (7,-Int(A)) N 7y-cl (7,-Int(B)) = 7,-
Int(A)N7y-Int(B) = 7,-Int(ANB) C 7,-cl (1,-Int(AN B)). On the other hand, we
have 7,-cl (7,-Int(A N B)) = 7,-cl (1,-Int(A) N 7,-Int(B)) C 7-cl (7,-Int(A)) N 7,-
cl(7,-Int(B))=AN B. Thus, AN B is y-regular closed. (ii). It follows from (i). =

Theorem 3.18 For a topological space (X, T), the following properties are equi-
valent:

(i) X is 7,-extremally disconnected.
(ii) 7y-cl(A) € 7, for every A € vSO(X).
(ili) 7-cl(A) € 7, for every A € yPO(X).

(iv) 7,-cl(A) € 7, for every A € yRO(X).



OPERATION VIA-REGULAR OPEN SETS 233

Proof. (i) = (ii) and (ii) = (iii): Let A be a vy-semiopen (vy-preopen) set. Then A
is y--open; hence 7,-cl (A) € 7,. (ii) = (iv) and (iii) = (iv): A € YRO(X). Then
A € ySO(X) and A € vPO(X) and hence 7,-cl(A) € 7,. (iv) = (i). Suppose
that the ~-closure of every y-semi open subset of X is v-open. Let A C X be
a y-open set. This implies that 7.,-Int(7,-cl(A)) is a y-open set. Then 7.,-cl(7,-
Int(7,-cl (A))) is y-open. We have 7,-cl(A) C (7y-cl(7y-Int(7,-cl (A4))))) = 75-
Int(7y-cl (A)). Thus, 7,-cl € 7,; hence X is y-extremally disconnected. n

Definition 3.19 Let (X, 7) be a topological space, S C X and z € X. Then

(i) @ is called v-0-cluster point of S, if SN7,-Int(7,-cl (U)) # 0, for each 7,-open
set U containing x.

(ii) The family of all y-d-cluster point of S is called the ~-d-closure of S and is
denoted by 7,-cl5(.5).

(iii) A subset S is said to be y-d-closed, if 7,-cl5(S) = S. The complement of an
~v-0-closed set is said to be an ~-d-open set.

Lemma 3.20 Let A and B be subsets of a topological space (X, 7). Then the
following properties hold:

(i) A C7-cls(A).

)
(i) If A C B, then 1,-cl5(A) C 7,-cl5(B).
)

)

(iii) 7y-cls(A) ={F C X : AC F and F is y-6-closed}.

(iv) If A is an y-0-closed set of X for each a € A, then N{A, : a € A} is
~v-0-closed.

(v) 7,-cl5(A) is y--closed.

Proof. (i). For any z € A and any v-open set V' containing x, we have () #
ANV Cc Anty,-Int(ry-cl (V)) and hence = € 7,-cl5(A). This shows that A C 7,-
cls(A). (ii). Suppose that z ¢ 7,-cls(B). Then there exists a y-open set V
containing x such that ) = 7.,-Int(7,-cl (V)) N B. Hence 7,-Int(7,-cl (V)) N A = 0.
Therefore, we have x ¢ 7,-cl5(A). (iii). Suppose that z € 7,-cl5(A). For any
~v-open set V' containing x and any ~-0- closed set F' containing A, we have
0 # ANz, -Int(r,-cl(V)) € FNr,-Int(r,-cl (V) and hence = € 7,-cls(F) = F.
This shows that x € N{F C X : A C F and F is y-d-closed}. Conversely, suppose
that = ¢ 7,-cl5(A). Then there exists a y-open set V' containing x such that 7,-
Int(7,-cl(V))NA = 0. Then X\7,-Int(7,-cl (V) is a y-d-closed set which contains
A and does not contain x. Therefore, we have z ¢ N{F' C X : A C F and F is -
d-closed}. (iv). For each a € A, 7'7—(315((19A A,) C 17y-cl5(Ay) = A, and hence 7,-

cls( R A,) C( R A,). By (i) we obtain 7.,-cl s( N Ay) = ( R A,). This shows
(S ae oc ac
that 0 A, is y-6-closed. (v). This follows immediately from (iii) and (iv). n
ae
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Proposition 3.21 Let A and B be subsets of a topological space (X,7). Then
the following properties hold:

(i) If A is y-regular open, then it is vy-§-open.
(ii) Every y-0-open set is the union of a family of ~y-regular open sets.

Proof. (i). Let A be any ~-regular open set. For each z € A, (X\A)NA =10
and A is vy-regular open. Hence = ¢ 7,-cl5(X\A) for each © € A. This shows
that © ¢ (X\A) = = ¢ 7,-cl5(X\A). Therefore we have 7,-cl5(X\A) C (X\A).
Since in general, for any subset S of X, S C 7,-cl5(S5), 7-cls(X\A) = (X\A4); A
is y-d-open. (ii). Let A be a v-6-open set. Then (X\A) is y-d-closed and hence
(X\A) = 7-cls(X\A). For each z € A, © ¢ 7,-cl5(X\A) and there exists a
y-open set V, such that 7.,-Int(7,-cl (V) N (X\A) = 0. Therefore, x € V,, C 7,-
Int(7,-cl (V;)) C A and hence A = U{7,-Int(7,-cl (V})) : € A}. By (i) 7,-Int(7,-
cl(V,)) is y-regular open for each = € A. .

Theorem 3.22 Let (X, 7) be topological space and 7,5 = {A C X : A is a vy-0-
open set of (X, 7)}.

Proof. (i). It is obvious that (), X € 7.5. (ii). Let V,, € 7,5 for each @ € A. Then
X\V, is y-d-closed, for each o € A. By Proposition 3.21, ﬂA(X\Va) is y-d-closed
ac
and ﬂA(X\Va) = X\ UA V... Hence UA V, is y-0-open. (iii) Let A, B € 7.4.
ac (¢S] ac
Then A= U A, and B= U B,, where A, and B,, are v-regular open sets

KwEA] wEA2
for each k € Ay and w € Ay. Thus, ANB =U{A,NB, : k € Aj,w € Ay}. Since
A, N B, is y-regular open, AN B is a y-d-open set. .

Remark 3.23 [t is clear that y-d-open sets in (X, 7) form a topology 7,5 on X
weaker than 7, for which the v-regular open sets of X form a base.

Lemma 3.24 If A is a y-3-open set in a topological space (X, T), then 7,-cl (A) =
T,Y-Clg(A).

Proof. Let A be a y-#-open set. Suppose that z ¢ 7,-cl (A). Then there exists an
y-open set U containing x such that UN A = @. We have U N7,-cl (A) = . This
implies that 7,-Int(7,-cl (U)) N 7,-cl (7,-Int(7,,-cl (4))) = (. Since A is a v-f-open
set, then 7,-Int(7,-cl(U)) N A = 0. Thus, ¢ 7,-cls(A) and 7,-cl(A) D 7,-
cls(A). On the other hand, we have 7,-cl(A) C 7,-cls(A). Hence, we obtain
7y-cl (A) = 7,-cl5(A). .

Lemma 3.25 If A is a y-semiopen set in a topological space (X, T), then -
cl(A) = 7,-cls(A).

Proof. Let A be a -semiopen set. We have 7,-cl (A) C 7,-cls(A). Suppose
that © ¢ 7,-c1(A). Then there exists a v-open set U containing z such that
UNA=10. We have U N 7,-Int(A) = 0. This implies that 7,-Int(7,-cl(U)) N 7,-
cl(7y-Int(A)) = 0. Since A is a y-semiopen set, then 7.,-Int(7,-cl (U)) N A = 0.
Thus, = ¢ 7,-cl 5(A) and 7,-cl (A) D 7,-cl5(A). Hence 7,-cl (A) = 7,-cl5(A). .
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Theorem 3.26 For a topological space (X, T), the following properties are equi-
valent:

(i) X is 7y-extremally disconnected.

(ii) 7y-cl(A) € 7, for every A € vSO(X).
(ili) 7-cl(A) € 7, for every A € yPO(X).
(iv) 7y-cl(A) € 7, for every A € YRO(X).

Theorem 3.27 For a topological space (X, T), the following properties are equi-
valent:

(i) X s 7y-extremally disconnected.

(ii) 7y-cl5(A) € 7, for every A € vSO(X).
(iii) 7,-cls(A) € 7, for every A € yPO(X).
(iv) 7y-cls(A) € 7y for every A € yYRO(X).

Proof. The proof follows from Theorems 3.22, 3.26 and Lemmas 3.24, 3.25. =

4. Almost (v, 3)-continuous functions

Definition 4.1 A function f: (X,7) — (Y, 0) is said to be:

(i) almost (v, 3)-continuous at a point x € X if, for each S-open subset V in
Y containing f(x), there exists a y-open set U of X containing x such that
f(U) C 1g-Int(5-c1 (V));

(ii) almost (v, #)-continuous, if it has this property at each point of X.

Remark 4.2 Almost (v, #)-continuity implies (y, 3)-continuity. But the converse
is not true in general as the following examples shows.

Example 4.3 Let X = {a,b,c}, 7 = {2, {a}, {b}, {a,b}, X}, 0 = {2, {a},
{a,b}, X}. Define a function f : (X,7) — (Y,0) by f(a) = b, f(b) = ¢ and
f(e) = a. Then f is almost (id, id)-continuous but not (id,id)-continuous, where
7id” denotes the identity operator.

Theorem 4.4 For a function f : (X,7) — (Y,0), the following statements are
equivalent:

(i) f is almost (v, B)-continuous at z € X;

(i) z € 7y-Int(f~ (7, -Int(7,-cl (V)))) for every B-open set V of Y containing
f(l‘)f
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(iil) = € 7-Int(f~1(V)) for every B-reqular open set V of Y containing f(x);

(iv) For any (B-regular open set V' containing f(x), there exists a y-open set U
containing x such that f(U) C V.

Proof. (i)=(ii): Let V be any (-open set V of Y containing f(z). By (i),
there exists a y-open set U of X containing x such that f(U) C 7g-Int(75-cl (V)).
Since x € U C f~Hrp-Int(75-c1(V))), we have z € 7,-Int(f ! (75-Int(75-cl (V)))).
(ii)=(iii): Let V' be any [-regular open set V' of Y containing f(x). Then since
V = 7g-Int(75-c1 (V)), by (ii), we have x € 7,-Int(f~1(V)). (iii)=(iv): Let V be
any [-regular open set of Y containing f(z). From (iii), there exists a y-open set
U containing z such that U C f~1(V). Hence we have (iv). (iv)=-(i): Let V be
any (-open set V of Y containing f(x). Then f(z) € V' C 15-Int(75-cl (V')). Since
Tg-Int(75-c1 (V')) is S-regular open, by (iv), there exists a y-open set U containing
x such that f(U) C 7g-Int(7s-cl(V)). Hence f is almost (7, 3)-continuous at
reX. u

Theorem 4.5 For a function f : (X,7) — (Y,0), the following statements are
equivalent:

(i) f is almost (v, B)-continuous;

J7YF) is v-open for every 3-6-open set F of Y ;

(vii) f~H(V

Proof. (i)=(ii): Clear. (ii)=-(iii): Let FF € SRC(Y). Then Y\F € SRO(Y).
Take z € f~H(Y'\F), then f(z) € Y\F and since f is almost (v, 3)-continuous,
there exists a § open set W, of X such that + € W, and f(W,) C Y\F. Then
x € W, C fTHY\F) so that f~'(Y\F) = U,c;-1y\;) Wa- Since any union of
y-open sets is y-open, f~}(Y'\F) is y-open in X and hence f~'(F) € BRC(X).
(ili)=-(iv): Let A be a subset of X. Since og-cls(f(A)) is f-0-closed in Y, it is
equal to ({F, : F, is f-regular closed in Y, & € A}, where A is an index set. From
(iil), we have A C f1(7-cls(f(A4))) = N{f*(F.) : « € A} € yRC(X) and hence
7,-cl (A) C f~ (os-cl5(f(A))). Therefore, we obtain f(7,-cl(A)) C og-cls(f(A)).
(iv)=(v): Set A= f~1(B) in (iv), then f(7,-cl (f~1(B))) C os-cls(f(f*(B))) C
og-cl5(B) and hence 7.-cl (f1(B)) C f~'(os-cls(B)). (v)=(vi): Let F be [-4-
closed set of Y, then 7,-cl f~1(F) C f~'(F) so f~}(F) € yRC(X). (vi)=(vii): Let
V be (-0-open set of Y, then Y'\V is 3-6-closed set in Y. This gives f~}H(Y\V) €
yRC(X) and hence f~1(V) € BO(X). (viii)=(i): Let V be any -regular open set
of Y. Since V is $-6-open in Y, then f~'(V) € 7, and hence from f(f~*(V)) Cc V
= op-Int(og-cl (V). Therefore, f is almost (v, 3)-continuous. .

)
)

is y-closed for every (-6-closed set V' of Y.



OPERATION VIA-REGULAR OPEN SETS 237

Theorem 4.6 For a function f : (X,7) — (Y,0), the following statements are
equivalent:

(i) f7YV) c TW—Int(f*I(TB—Int(T/g—Cl (V)))) for every 3-open set V inY;

)

)
(iii) 7,-cl(f~*(rg-cl (75-Int(F)))) C f71(F) for every B-closed set F inY;
(iv) 7l (f "} (mp-cl (r5-Int(rp-cL(B)))) C f~'(r5-cl(B)) for every subset B inY';
)

(v) [ (m5-Int(B)) C 7,-Int(f~* (75-Int(5-cl (75-Int(B)))) for every subset B inY .

Proof. (i)=(ii): Let V be any S-open set in Y and z € f~(V). Then there exists
a y-open set U containing x such that f(U) C 7s-Int(7s-cl (V')). This implies x €
7-Int(f ! (75-Int(75-c1 (V)))). Hence f~1(V) C 7-Int(f (75-Int(75-cl(V)))).
(ii)=-(iii): Let F' be any (-closed set in Y. Then f~(Y\F) C 7,-Int(f ' (75-
Int(75-cl (Y\F)))) = X\7y-cl (f(75-cl (75-Int(F)))). Hence 7,-cl (f~*(75-cl (75-
Int(F)))) C f~H(F). (iii)=(iv) and (iv)=-(v): It is obvious. (v)=-(i): Let V be
any [-regular open set in Y. Since 73-Int(73-cl (75-Int(V))) = V, from (v), it
follows f~1(V) C 75-Int(f~"(V)) and so f~1(V) = 75-Int(f~*(V)). Therefore,
f7Y(V) is y-open in X. By Theorem 4.5 (ii), f is almost (v, 3)-continuous. .

Theorem 4.7 For a function f : (X,7) — (Y,0), the following statements are
equivalent:

) (7, B)-continuous;

(ii) 7y-cl(f7HQ)) C f~Hrs-cl(Q)) for every B-3-open set G of Y;
) ) C [N 15-cl(G)) for every B-semiopen set G of Y;
) ) €

-l (f~HG “H15-cl(G)) for every B-preopen set G of Y.

Proof. (i):>(ii) Let G be any [-f-open set of Y. Since 73-cl(G) is §- regular
closed, 7.~ cl(f Y15-cl(G))) = f~Hrp-cl(GQ)). Thus, 7,-cl (f~HG)) C -l (f (75
c(@))) = fH(7s-cl(GQ)). (ii)=-(iii): Tt is obvious since every [-semiopen set is
(-p-open. (iii)=(i): Let F' be any (-regular closed set of Y; then since F is
[-semiopen, we have 7.-cl (f~1(G)) C f~(5-cl (G)) = f~1(F). Thus, from The-
orem 4.5 (iii), f is almost (v, B)-continuous. (i)=(iv): Let V be any S-preopen set
of Y; then V' C 75-Int(73-cl (V') and 75-Int(75-cl (V')) is B-regular open. By The-
orem 4.5 (ii), f~'(m5-Int(rs-cl (V))) = 7-Int(f ! (75-Int(75-c1 (V)))). Thus, we
have f~Y(V) C f~Yrg-Int(75-c1 (V))) = 7-Int(f = (75-Int(75-c1 (V)))). (iv)=(i):
Let V be any (-regular open set of Y'; then since F' is -preopen and f~1(V) C
7-cl (f 1 (75-Int(75-c1 (V)))) = 7-Int(f~(V)). Hence by Theorem 4.5 (ii), f is
almost (v, #)-continuous. .
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