OPERATION VIA-REGULAR OPEN SETS

C. Carpintero

Universidad De Oriente Nucleo De Sucre Cumana Venezuela e-mail: carpintero.carlos@gmail.com

N. Rajesh

Department of Mathematics Rajah Serfoji Govt. College Thanjavur-613005 Tamilnadu India e-mail: nrajesh_topology@yahoo.co.in

E. Rosas

Universidad De Oriente Nucleo De Sucre Cumana Venezuela e-mail: ennisrafael@gmail.com

Abstract. The aim of this paper is to introduce and study the concepts of γ -regular open sets and their related notions in topological spaces.

Keywords: γ -open set, γ -regular open set, γ - δ -open set.

2000 Mathematics Subject Classification: 54D10.

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Kasahara [3] defined the concept of an operation on topological spaces and introduce the concept of γ -closed graphs of a function. Ogata [6] introduced the notion γ -open sets in a topological space (X, τ) . In this paper, we have introduce and study the notion of γ -regular open sets by using the operation γ on a topological space (X, τ) . We also introduce the almost (γ, β) -continuous functions and investigate some of its important properties.

2. Preliminaries

Definition 2.1 Let (X, τ) be a topological space. An operation γ [3] on the topology τ is a function from τ onto a power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. It is denoted by $\gamma : \tau \to \mathcal{P}(X)$.

Definition 2.2 A subset A of a topological space (X, τ) is called γ -open [6] set if, for each $x \in A$, there exists an open set U such that $x \in U$ and $U^{\gamma} \subset A$. τ_{γ} denotes the set of all γ -open sets in (X, τ) . The complement of a γ -open set is called γ -closed.

Definition 2.3 Let A be subset of a topological space (X, τ) and γ be an operation on τ . Then

- (i) the τ_{γ} -closure of A is defined as the intersection of all γ -closed sets containing A. That is, τ_{γ} -cl $(A) = \bigcap \{F : F \text{ is } \gamma\text{-closed and } A \subset F\}.$
- (ii) the τ_{γ} -interior of A is defined as the union of all γ -open sets contained in A. That is, τ_{γ} -Int $(A) = \bigcup \{ U : U \text{ is } \gamma\text{-open and } U \subset A \}.$

Definition 2.4 A subset A of a topological space (X, τ) is said to be

- (i) γ -semiopen [5] if $A \subset \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int(A)).
- (ii) γ -preopen [4] if $A \subset \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl(A)).
- (iii) γ - α -open [2] if $A \subset \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int(A))).
- (iv) γ - β -open [1] if $A \subset \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A))).

The complement of a γ -semiopen (resp. γ -preopen, γ - α -open, γ - β -open) set is called a γ -semiclosed (resp. γ -preclosed, γ - α -closed, γ - β -closed) set. The family of all γ -semiopen (resp. γ -preopen, γ - α -open, γ - β -open) sets of (X, τ) is denoted by $\gamma SO(X)$ (resp. $\gamma PO(X), \gamma \alpha(X), \gamma \beta(X)$)

Definition 2.5 A function $f: (X, \tau) \to (Y, \sigma)$ is said to be:

- (i) (γ, β) -continuous [6] at a point $x \in X$ if, for each β -open subset V in Y containing f(x), there exists a γ -open subset U of X containing x such that $f(U) \subset V$;
- (ii) (γ, β) -continuous [6] if it has this property at each point of X.

3. γ -Regular open sets

Throughout this paper, the operator γ is defined on (X, τ) and the operator β is defined on (Y, σ) .

Definition 3.1 A subset A of a topological space (X, τ) is said to be γ -regular open set, if τ_{γ} -Int $(\tau_{\gamma}$ -cl(A)) = A. We call a subset A of X is γ -regular closed, if its complement is γ -regular open.

The family of all γ -regular open (resp. γ -regular closed) sets of (X, τ) is denoted by $\gamma RO(X)$ (resp. $\gamma RC(X)$).

Lemma 3.2 For a topological space (X, τ) , we have τ_{γ} -Int $(\tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl(A))= τ_{γ} -Int $(\tau_{\gamma}$ -cl(A).

Proof. It is obvious that τ_{γ} -Int $(\tau_{\gamma}$ -cl $(\pi_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(A)))) \subseteq \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl(A)). Conversely, τ_{γ} -Int $(\tau_{\gamma}$ -cl $(A)) = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(A))) \subseteq \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(\tau_{\gamma}$ -cl(A))).

Definition 3.3 An operation γ on τ is said to be regular, if for any open neighborhoods U, V of $x \in X$, there exists an open neighborhood W of x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$.

Lemma 3.4 If A and B are two γ -open subsets and γ is a regular operator. then $A \cap B$ is a γ -open set.

Remark 3.5 The condition in the above Lemma that γ is a regular operator can not be omitted as we see in the following example

Example 3.6 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ be an operation defined as follows: for every $A \in \tau$,

$$A^{\gamma} = \begin{cases} A & \text{if } \mathbf{b} \in \mathbf{A}, \\ \mathbf{cl}(A) & \text{if } \mathbf{b} \notin \mathbf{A}, \end{cases}$$

Then the sets $\{a, b\}$ and $\{a, c\}$ are γ -open sets but their intersection $\{a\}$ is not a γ -open set.

Lemma 3.7 Let A and B be subsets of a topological space (X, τ) . Then the following properties hold:

- (i) τ_{γ} -Int $(\tau_{\gamma}$ -cl(A)) is γ -regular open.
- (ii) If A and B are γ -regular open, then $A \cap B$ is also γ -regular open.

Proof. (i). Follows from Lemma 3.2. (ii). Let A and B be γ -regular open sets of X. Then using Lemma 3.4, we have $A \cap B = \tau_{\gamma} \operatorname{-Int}(\tau_{\gamma} \operatorname{-cl}(A)) \cap \tau_{\gamma} \operatorname{-Int}(\tau_{\gamma} \operatorname{-cl}(B)) = \tau_{\gamma} \operatorname{-Int}(\tau_{\gamma} \operatorname{-cl}(A) \cap \tau_{\gamma} \operatorname{-cl}(B)) \supset \tau_{\gamma} \operatorname{-Int}(\tau_{\gamma} \operatorname{-cl}(A \cap B)) \supset \tau_{\gamma} \operatorname{-Int}(A \cap B) = A \cap B$. Therefore, we obtain $A \cap B = \tau_{\gamma} \operatorname{-Int}(\tau_{\gamma} \operatorname{-cl}(A \cap B))$. This shows that $A \cap B$ is γ -regular open.

Remark 3.8 The following example shows that the union of any two γ -regular open sets need not be γ -regular open.

Example 3.9 [6] Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ be an operation defined as follows: for every $A \in \tau$,

$$A^{\gamma} = \begin{cases} A & \text{if } c \notin A, \\ cl(A) & \text{if } c \in A, \end{cases}$$

Then the sets $\{a\}$ and $\{b\}$ are γ -regular open sets but their union $\{a, b\}$ is not a γ -regular open set.

Theorem 3.10 The following statements are true:

- (i) A γ -open set A is γ -regular open if and only if τ_{γ} -Int $(\tau_{\gamma}$ -cl $(A)) \subseteq A$.
- (ii) For every γ -closed set A, the set τ_{γ} -Int(A) is γ -regular open.

Proof. (i). It suffices to prove that every γ -open set A satisfying τ_{γ} -Int(τ_{γ} -cl(A)) $\subset A$ is γ -regular open. Since $A \subset \tau_{\gamma}$ -cl(A) holds, then $A = \tau_{\gamma}$ -Int(A) $\subset \tau_{\gamma}$ -Int(τ_{γ} -cl(A)) is true, so we have $A = \tau_{\gamma}$ -Int(τ_{γ} -cl(A)). (ii). If A is γ -closed, then the following holds: τ_{γ} -Int(A) $\subset \tau_{\gamma}$ -cl(τ_{γ} -Int(A)) $\subset \tau_{\gamma}$ -cl(A) = A. Hence τ_{γ} -Int(A) = τ_{γ} -Int(τ_{γ} -cl(τ_{γ} -Int(A))) $\subset \tau_{\gamma}$ -Int(A). So, τ_{γ} -Int(A) = τ_{γ} -Int(τ_{γ} -cl(τ_{γ} -Int(A))) holds. That is, τ_{γ} -Int(A) is γ -regular open.

Theorem 3.11 For a subset A of X, the following properties are equivalent:

- (i) A is γ -preopen.
- (ii) there exists a γ -regular open subset $G \subset X$ such that $A \subset G$ and τ_{γ} -cl $(A) = \tau_{\gamma}$ -cl (G).
- (iii) $A = G \cap D$, where G is γ -regular open and D is γ -dense.
- (iv) $A = G \cap D$, where G is γ -open and D is γ -dense.

Proof. (i) \Rightarrow (ii): Let A be γ -preopen. We have $A \subset \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(A)) \subset \tau_{\gamma}$ cl (A) which implies that τ_{γ} -cl $(A) \subset \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(A))) \subset \tau_{\gamma}$ -cl (A) and so τ_{γ} -cl $(A) = \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A))). Let $G = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A)). Then $A \subset G$ and τ_{γ} -Int $(\tau_{\gamma}$ -cl $(G)) = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(A)))) = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A)) = G which implies that G is γ -regular open. Also τ_{γ} -cl $(G) = \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(G))) = \tau_{\gamma}$ cl (A). (ii) \Rightarrow (iii): Let G be a γ -regular open set such that $A \subset G$ and τ_{γ} cl $(A) = \tau_{\gamma}$ -cl (G). Let $D = A \cup (X \setminus G)$. Then $A = G \cap D$ where G is γ regular open. Now, τ_{γ} -cl $(D) = \tau_{\gamma}$ -cl $(A \cup (X \setminus G)) = \tau_{\gamma}$ -cl $(A) \cup \tau_{\gamma}$ -cl $(X \setminus G) = \tau_{\gamma}$ cl $(G) \cup \tau_{\gamma}$ -cl $(X \setminus G) = \tau_{\gamma}$ -cl $((G \cup (X \setminus G)) = \tau_{\gamma}$ -cl (X) = X. Hence D is γ -dense. (iii) \Rightarrow (iv): The proof follows from the fact that every γ -regular open set is γ open. (iv) \Rightarrow (i): Suppose $A = G \cap D$ where G is γ -open and D is γ -dense. Now $G = G \cap X = G \cap \tau_{\gamma}$ -cl $(D) \subset \tau_{\gamma}$ -cl $(G \cap D)$ and so $G = \tau_{\gamma}$ -Int $(G) \subset \tau_{\gamma}$ -Int $(\tau_{\gamma}$ cl $(G \cap D) = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A) which implies that $A \subset \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A)). Hence A is γ -preopen. **Theorem 3.12** For a subset A of X, the following are equivalent:

- (i) A is γ -regular closed.
- (ii) A is γ -preclosed and γ -semiopen.
- (iii) A is γ - α -closed and γ - β -open.

Proof. (i) \Rightarrow (ii): Let A be γ -regular closed. Then $A = \tau_{\gamma}\text{-cl}(\tau_{\gamma}\text{-Int}(A) \text{ and } A \text{ is } \gamma\text{-preclosed and } \gamma\text{-semiopen.}$ (ii) \Rightarrow (iii): Let A be $\gamma\text{-preclosed and } \gamma\text{-semiopen.}$ Then $A \subset \tau_{\gamma}\text{-cl}(\tau_{\gamma}\text{-Int}(A) \text{ and } \tau_{\gamma}\text{-cl}(\tau_{\gamma}\text{-Int}(A) \subset A)$. Therefore, we have $\tau_{\gamma}\text{-cl}(A) = \tau_{\gamma}\text{-Int}(\tau_{\gamma}\text{-cl}(A) \text{ and hence } \tau_{\gamma}\text{-cl}(\tau_{\gamma}\text{-Int}(\tau_{\gamma}\text{-Int}(A)))) = \tau_{\gamma}\text{-cl}(\tau_{\gamma}\text{-Int}(A)) \subset A$. This shows that A is $\gamma\text{-}\alpha\text{-closed.}$ Since every $\gamma\text{-semiopen set}$ is $\gamma\text{-}\beta\text{-open set}$, it is obvious that A is $\gamma\text{-}\beta\text{-open.}$ (iii) \Rightarrow (i): Let A be $\gamma\text{-}\alpha\text{-closed}$ and $\gamma\text{-}\beta\text{-open.}$ Then $A = \tau_{\gamma}\text{-cl}(\tau_{\gamma}\text{-Int}(\tau_{\gamma}\text{-cl}(A)))$ and hence $\tau_{\gamma}\text{-cl}(\tau_{\gamma}\text{-Int}(A)) = \tau_{\gamma}\text{-cl}(\tau_{\gamma}\text{-Int}(\tau_{\gamma}\text{-cl}(A))) = A$. Therefore, A is $\gamma\text{-regular closed.}$ Proof.

Definition 3.13 A topological space (X, τ) is said to be τ_{γ} -extremally disconnected, if τ_{γ} -cl $(A) \in \tau_{\gamma}$, for every $A \in \tau_{\gamma}$.

Theorem 3.14 For a topological space (X, τ) , the following properties are equivalent:

- (i) X is τ_{γ} -extremally disconnected.
- (ii) Every γ -regular open subset of X is γ -closed.
- (iii) Every γ -regular closed subset of X is γ -open.

Proof. (i) \rightarrow (ii): Let X be τ_{γ} -extremally disconnected. Let A be a γ -regular open subset of X. Then $A = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A)). Since A is a γ -open set, then τ_{γ} -cl (A) $\in \tau_{\gamma}$. Thus, $A = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A)) = τ_{γ} -cl (A); hence A is γ -closed. (ii) \rightarrow (iii): Suppose that every γ -regular open subset of X is γ -closed in X. Let $A \in \tau_{\gamma}$. Since τ_{γ} -Int $(\tau_{\gamma}$ -cl (A)) is γ -regular open, then it is γ -closed in X. This implies that τ_{γ} -cl (A) $\subset \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A))) = τ_{γ} -Int $(\tau_{\gamma}$ -cl (A)) since $A \subset \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A)). Thus, τ_{γ} -cl (A) $\in \tau_{\gamma}$; hence X is τ_{γ} -extremally disconnected. (ii) \Leftrightarrow (iii): Obvious.

Theorem 3.15 For a topological space (X, τ) , the following properties are equivalent:

- (i) X is τ_{γ} -extremally disconnected.
- (ii) γ -regular open sets coincide with γ -regular closed sets.

Proof. (i) \Rightarrow (ii): Suppose A is a γ -regular open subset of X. Since γ -regular open sets are γ -open, by (i), $A = \tau_{\gamma}$ -cl $(A) = \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int(A)) and so A is γ -regular closed. If A is γ -regular closed, then $A = \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(A)) = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(A)) = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(A)) = \tau_{\gamma}$ -Int $(\pi_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(A)) = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -Int (τ_{γ}) -Int $(\tau_{\gamma}$ -Int (τ_{γ}) -Int (τ_{γ}) -Int $(\tau_{\gamma}$ -Int (τ_{γ}) -Int $(\tau$

Let A be a γ -open subset of X. Then τ_{γ} -Int $(\tau_{\gamma}$ -cl(A)) is γ -regular open and so it is γ -regular closed, by (ii). Hence τ_{γ} -Int $(\tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $((A))))) = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ cl(A)) which implies that τ_{γ} -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(A))) = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl(A)). Therefore, τ_{γ} -cl $(A) = \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(A)) \subset \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(A))) = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl(A)) and so τ_{γ} -cl $(A) = \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int(A)). Hence τ_{γ} -cl(A) is γ -open. This shows that X is τ_{γ} -extremally disconnected.

Theorem 3.16 For a topological space (X, τ) , the following properties are equivalent:

- (i) X is τ_{γ} -extremally disconnected.
- (ii) Every γ -regular closed set is γ -preopen.

Proof. (i) \Rightarrow (ii): The proof follows from the fact that every γ -regular open sets is γ -preopen set. (ii) \Rightarrow (i): If A is γ -open, then τ_{γ} -cl (τ_{γ} -Int(A)) is γ regular closed and so it is γ -preopen. Therefore, τ_{γ} -cl (A) = τ_{γ} -cl (τ_{γ} -Int(A)) $\subset \tau_{\gamma}$ -Int(τ_{γ} -cl (τ_{γ} -cl (τ_{γ} -Int(A)))) = τ_{γ} -Int(τ_{γ} -cl (τ_{γ} -Int(A))) = τ_{γ} -Int(τ_{γ} -cl (A)). Thus, τ_{γ} -cl (A) = τ_{γ} -Int(τ_{γ} -cl (A)) which implies that τ_{γ} -cl (A) is γ -open. Hence X is τ_{γ} -extremally disconnected.

Theorem 3.17 If (X, τ) is a τ_{γ} -extremally disconnected, then the following properties hold:

- (i) $A \cap B$ is γ -regular closed for all γ -regular closed subsets of A and B of X.
- (ii) If γ is regular open. Then $A \cap B$ is γ -regular open for all γ -regular open subsets A and B of X.

Proof. (i). Let X be τ_{γ} -extremally disconnected. Let A and B be γ -regular closed subsets of X. Since A and B are γ -closed, τ_{γ} -Int(A) and τ_{γ} -Int(B) are γ -closed. This implies that $A \cap B = \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int(A)) $\cap \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int(B)) = τ_{γ} -Int(A) $\cap \tau_{\gamma}$ -Int(B) = τ_{γ} -Int(A $\cap B$) $\subset \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int(A $\cap B$)). On the other hand, we have τ_{γ} -cl $(\tau_{\gamma}$ -Int(A $\cap B$)) = τ_{γ} -cl $(\tau_{\gamma}$ -Int(A) $\cap \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int(A)) $\cap \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int(A)) $\cap \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int(A)) $\cap \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int(B)) = A $\cap B$. Thus, $A \cap B$ is γ -regular closed. (ii). It follows from (i).

Theorem 3.18 For a topological space (X, τ) , the following properties are equivalent:

- (i) X is τ_{γ} -extremally disconnected.
- (ii) τ_{γ} -cl $(A) \in \tau_{\gamma}$ for every $A \in \gamma SO(X)$.
- (iii) τ_{γ} -cl $(A) \in \tau_{\gamma}$ for every $A \in \gamma PO(X)$.
- (iv) τ_{γ} -cl $(A) \in \tau_{\gamma}$ for every $A \in \gamma RO(X)$.

Proof. (i) \Rightarrow (ii) and (ii) \Rightarrow (iii): Let A be a γ -semiopen (γ -preopen) set. Then A is γ - β -open; hence τ_{γ} -cl $(A) \in \tau_{\gamma}$. (ii) \Rightarrow (iv) and (iii) \Rightarrow (iv): $A \in \gamma RO(X)$. Then $A \in \gamma SO(X)$ and $A \in \gamma PO(X)$ and hence τ_{γ} -cl $(A) \in \tau_{\gamma}$. (iv) \Rightarrow (i). Suppose that the γ -closure of every γ -semi open subset of X is γ -open. Let $A \subset X$ be a γ -open set. This implies that τ_{γ} -Int $(\tau_{\gamma}$ -cl (A)) is a γ -open set. Then τ_{γ} -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A))) is γ -open. We have τ_{γ} -cl $(A) \subset (\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(A)))) = \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl (A)). Thus, τ_{γ} -cl $\in \tau_{\gamma}$; hence X is γ -extremally disconnected.

Definition 3.19 Let (X, τ) be a topological space, $S \subset X$ and $x \in X$. Then

- (i) x is called γ - δ -cluster point of S, if $S \cap \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(U)) \neq \emptyset$, for each τ_{γ} -open set U containing x.
- (ii) The family of all γ - δ -cluster point of S is called the γ - δ -closure of S and is denoted by τ_{γ} -cl $_{\delta}(S)$.
- (iii) A subset S is said to be γ - δ -closed, if τ_{γ} -cl $_{\delta}(S) = S$. The complement of an γ - δ -closed set is said to be an γ - δ -open set.

Lemma 3.20 Let A and B be subsets of a topological space (X, τ) . Then the following properties hold:

- (i) $A \subset \tau_{\gamma} \operatorname{-cl}_{\delta}(A)$.
- (ii) If $A \subset B$, then τ_{γ} -cl_{δ} $(A) \subset \tau_{\gamma}$ -cl_{δ}(B).
- (iii) τ_{γ} -cl_{δ}(A) = \cap { $F \subset X : A \subset F$ and F is γ - δ -closed}.
- (iv) If A is an γ - δ -closed set of X for each $\alpha \in \Delta$, then $\cap \{A_{\alpha} : \alpha \in \Delta\}$ is γ - δ -closed.
- (v) τ_{γ} -cl_{δ}(A) is γ - δ -closed.

Proof. (i). For any $x \in A$ and any γ -open set V containing x, we have $\emptyset \neq A \cap V \subset A \cap \tau_{\gamma}$ -Int $(\tau_{\gamma}\text{-}cl(V))$ and hence $x \in \tau_{\gamma}\text{-}cl_{\delta}(A)$. This shows that $A \subset \tau_{\gamma}$ -cl_{\delta}(A). (ii). Suppose that $x \notin \tau_{\gamma}\text{-}cl_{\delta}(B)$. Then there exists a γ -open set V containing x such that $\emptyset = \tau_{\gamma}\text{-Int}(\tau_{\gamma}\text{-}cl(V)) \cap B$. Hence $\tau_{\gamma}\text{-Int}(\tau_{\gamma}\text{-}cl(V)) \cap A = \emptyset$. Therefore, we have $x \notin \tau_{\gamma}\text{-}cl_{\delta}(A)$. (iii). Suppose that $x \in \tau_{\gamma}\text{-}cl_{\delta}(A)$. For any γ -open set V containing x and any γ - δ - closed set F containing A, we have $\emptyset \neq A \cap \tau_{\gamma}\text{-Int}(\tau_{\gamma}\text{-}cl(V)) \subset F \cap \tau_{\gamma}\text{-Int}(\tau_{\gamma}\text{-}cl(V))$ and hence $x \in \tau_{\gamma}\text{-}cl_{\delta}(F) = F$. This shows that $x \in \cap \{F \subset X : A \subset F \text{ and } F \text{ is } \gamma \text{-}\delta\text{-}closed\}$. Conversely, suppose that $x \notin \tau_{\gamma}\text{-}cl_{\delta}(A)$. Then there exists a γ -open set V containing x such that τ_{γ} -Int $(\tau_{\gamma}\text{-}cl(V))$ is a γ - $\delta\text{-}closed$ set which contains A and does not contain x. Therefore, we have $x \notin \cap \{F \subset X : A \subset F \text{ and } F \text{ is } \gamma \text{-}\delta\text{-}closed$ set which contains A and does not contain x. Therefore, we have $x \notin \cap \{F \subset X : A \subset F \text{ and } F \text{ is } \gamma \text{-}\delta\text{-}closed\}$. (iv). For each $\alpha \in \Delta$, $\tau_{\gamma}\text{-}cl_{\delta}(\bigcap_{\alpha \in \Delta} A_{\alpha}) \subset \tau_{\gamma}\text{-}cl_{\delta}(A_{\alpha}) = A_{\alpha}$ and hence τ_{γ} - $cl_{\delta}(\bigcap_{\alpha \in \Delta} A_{\alpha}) \subset (\bigcap_{\alpha \in \Delta} A_{\alpha})$. By (i) we obtain $\tau_{\gamma}\text{-}cl_{\delta}(\bigcap_{\alpha \in \Delta} A_{\alpha}) = (\bigcap_{\alpha \in \Delta} A_{\alpha})$. This shows that $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is γ - δ -closed. (v). This follows immediately from (iii) and (iv).

Proposition 3.21 Let A and B be subsets of a topological space (X, τ) . Then the following properties hold:

- (i) If A is γ -regular open, then it is γ - δ -open.
- (ii) Every γ - δ -open set is the union of a family of γ -regular open sets.

Proof. (i). Let A be any γ -regular open set. For each $x \in A$, $(X \setminus A) \cap A = \emptyset$ and A is γ -regular open. Hence $x \notin \tau_{\gamma}$ -cl $_{\delta}(X \setminus A)$ for each $x \in A$. This shows that $x \notin (X \setminus A) \Rightarrow x \notin \tau_{\gamma}$ -cl $_{\delta}(X \setminus A)$. Therefore we have τ_{γ} -cl $_{\delta}(X \setminus A) \subset (X \setminus A)$. Since in general, for any subset S of X, $S \subseteq \tau_{\gamma}$ -cl $_{\delta}(S)$, τ_{γ} -cl $_{\delta}(X \setminus A) = (X \setminus A)$; A is γ - δ -open. (ii). Let A be a γ - δ -open set. Then $(X \setminus A)$ is γ - δ -closed and hence $(X \setminus A) = \tau_{\gamma}$ -cl $_{\delta}(X \setminus A)$. For each $x \in A$, $x \notin \tau_{\gamma}$ -cl $_{\delta}(X \setminus A)$ and there exists a γ -open set V_x such that τ_{γ} -Int $(\tau_{\gamma}$ -cl $(V_x)) \cap (X \setminus A) = \emptyset$. Therefore, $x \in V_x \subset \tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(V_x)) \subset A$ and hence $A = \cup \{\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(V_x)) : x \in A\}$. By (i) τ_{γ} -Int $(\tau_{\gamma}$ cl (V_x)) is γ -regular open for each $x \in A$.

Theorem 3.22 Let (X, τ) be topological space and $\tau_{\gamma\delta} = \{A \subset X : A \text{ is a } \gamma \text{-}\delta \text{-} open \text{ set of } (X, \tau)\}.$

Proof. (i). It is obvious that \emptyset , $X \in \tau_{\gamma\delta}$. (ii). Let $V_{\alpha} \in \tau_{\gamma\delta}$ for each $\alpha \in \Delta$. Then $X \setminus V_{\alpha}$ is γ - δ -closed, for each $\alpha \in \Delta$. By Proposition 3.21, $\bigcap_{\alpha \in \Delta} (X \setminus V_{\alpha})$ is γ - δ -closed and $\bigcap_{\alpha \in \Delta} (X \setminus V_{\alpha}) = X \setminus \bigcup_{\alpha \in \Delta} V_{\alpha}$. Hence $\bigcup_{\alpha \in \Delta} V_{\alpha}$ is γ - δ -open. (iii) Let $A, B \in \tau_{\gamma\delta}$. Then $A = \bigcup_{\kappa\omega \in \Delta_1} A_{\kappa}$ and $B = \bigcup_{\omega \in \Delta_2} B_{\omega}$, where A_{κ} and B_{ω} are γ -regular open sets for each $\kappa \in \Delta_1$ and $\omega \in \Delta_2$. Thus, $A \cap B = \bigcup \{A_{\kappa} \cap B_{\omega} : \kappa \in \Delta_1, \omega \in \Delta_2\}$. Since $A_{\kappa} \cap B_{\omega}$ is γ -regular open, $A \cap B$ is a γ - δ -open set.

Remark 3.23 It is clear that γ - δ -open sets in (X, τ) form a topology $\tau_{\gamma\delta}$ on X weaker than τ_{γ} for which the γ -regular open sets of X form a base.

Lemma 3.24 If A is a γ - β -open set in a topological space (X, τ) , then τ_{γ} -cl $(A) = \tau_{\gamma}$ -cl $_{\delta}(A)$.

Proof. Let A be a γ - β -open set. Suppose that $x \notin \tau_{\gamma}$ -cl (A). Then there exists an γ -open set U containing x such that $U \cap A = \emptyset$. We have $U \cap \tau_{\gamma}$ -cl $(A) = \emptyset$. This implies that τ_{γ} -Int $(\tau_{\gamma}$ -cl $(U)) \cap \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl $(A))) = \emptyset$. Since A is a γ - β -open set, then τ_{γ} -Int $(\tau_{\gamma}$ -cl $(U)) \cap A = \emptyset$. Thus, $x \notin \tau_{\gamma}$ -cl $_{\delta}(A)$ and τ_{γ} -cl $(A) \supset \tau_{\gamma}$ -cl $_{\delta}(A)$. On the other hand, we have τ_{γ} -cl $(A) \subset \tau_{\gamma}$ -cl $_{\delta}(A)$. Hence, we obtain τ_{γ} -cl $_{\delta}(A)$.

Lemma 3.25 If A is a γ -semiopen set in a topological space (X, τ) , then τ_{γ} cl $(A) = \tau_{\gamma}$ -cl $_{\delta}(A)$.

Proof. Let A be a γ -semiopen set. We have τ_{γ} -cl $(A) \subset \tau_{\gamma}$ -cl $_{\delta}(A)$. Suppose that $x \notin \tau_{\gamma}$ -cl (A). Then there exists a γ -open set U containing x such that $U \cap A = \emptyset$. We have $U \cap \tau_{\gamma}$ -Int $(A) = \emptyset$. This implies that τ_{γ} -Int $(\tau_{\gamma}$ -cl $(U)) \cap \tau_{\gamma}$ -cl $(\tau_{\gamma}$ -Int $(A)) = \emptyset$. Since A is a γ -semiopen set, then τ_{γ} -Int $(\tau_{\gamma}$ -cl $(U)) \cap A = \emptyset$. Thus, $x \notin \tau_{\gamma}$ -cl $_{\delta}(A)$ and τ_{γ} -cl $(A) \supset \tau_{\gamma}$ -cl $_{\delta}(A)$. Hence τ_{γ} -cl $_{\delta}(A) = \tau_{\gamma}$ -cl $_{\delta}(A)$.

Theorem 3.26 For a topological space (X, τ) , the following properties are equivalent:

- (i) X is τ_{γ} -extremally disconnected.
- (ii) τ_{γ} -cl $(A) \in \tau_{\gamma}$ for every $A \in \gamma SO(X)$.
- (iii) τ_{γ} -cl $(A) \in \tau_{\gamma}$ for every $A \in \gamma PO(X)$.
- (iv) τ_{γ} -cl $(A) \in \tau_{\gamma}$ for every $A \in \gamma RO(X)$.

Theorem 3.27 For a topological space (X, τ) , the following properties are equivalent:

- (i) X is τ_{γ} -extremally disconnected.
- (ii) τ_{γ} -cl_{δ}(A) $\in \tau_{\gamma}$ for every $A \in \gamma SO(X)$.
- (iii) τ_{γ} -cl_{δ}(A) $\in \tau_{\gamma}$ for every $A \in \gamma PO(X)$.
- (iv) τ_{γ} -cl_{δ}(A) $\in \tau_{\gamma}$ for every $A \in \gamma RO(X)$.

Proof. The proof follows from Theorems 3.22, 3.26 and Lemmas 3.24, 3.25.

4. Almost (γ, β) -continuous functions

Definition 4.1 A function $f: (X, \tau) \to (Y, \sigma)$ is said to be:

- (i) almost (γ, β) -continuous at a point $x \in X$ if, for each β -open subset V in Y containing f(x), there exists a γ -open set U of X containing x such that $f(U) \subset \tau_{\beta}$ -Int $(\tau_{\beta}$ -cl (V));
- (ii) almost (γ, β) -continuous, if it has this property at each point of X.

Remark 4.2 Almost (γ, β) -continuity implies (γ, β) -continuity. But the converse is not true in general as the following examples shows.

Example 4.3 Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}, \sigma = \{\emptyset, \{a\}, \{a, b\}, X\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c and f(c) = a. Then f is almost (id, id)-continuous but not (id, id)-continuous, where "id" denotes the identity operator.

Theorem 4.4 For a function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is almost (γ, β) -continuous at $x \in X$;
- (ii) $x \in \tau_{\gamma}$ -Int $(f^{-1}(\tau_{\gamma}$ -Int $(\tau_{\gamma}$ -cl(V)))) for every β -open set V of Y containing f(x);

- (iii) $x \in \tau_{\gamma}$ -Int $(f^{-1}(V))$ for every β -regular open set V of Y containing f(x);
- (iv) For any β -regular open set V containing f(x), there exists a γ -open set U containing x such that $f(U) \subset V$.

Proof. (i) \Rightarrow (ii): Let V be any β -open set V of Y containing f(x). By (i), there exists a γ -open set U of X containing x such that $f(U) \subset \tau_{\beta}$ -Int(τ_{β} -cl(V)). Since $x \in U \subset f^{-1}(\tau_{\beta}$ -Int(τ_{β} -cl(V))), we have $x \in \tau_{\gamma}$ -Int($f^{-1}(\tau_{\beta}$ -Int(τ_{β} -cl(V)))). (ii) \Rightarrow (iii): Let V be any β -regular open set V of Y containing f(x). Then since $V = \tau_{\beta}$ -Int(τ_{β} -cl(V)), by (ii), we have $x \in \tau_{\gamma}$ -Int($f^{-1}(V)$). (iii) \Rightarrow (iv): Let V be any β -regular open set of Y containing f(x). From (iii), there exists a γ -open set U containing x such that $U \subset f^{-1}(V)$. Hence we have (iv). (iv) \Rightarrow (i): Let V be any β -open set V of Y containing f(x). Then $f(x) \in V \subset \tau_{\beta}$ -Int(τ_{β} -cl(V)). Since τ_{β} -Int(τ_{β} -cl(V)) is β -regular open, by (iv), there exists a γ -open set U containing x such that $f(U) \subset \tau_{\beta}$ -Int(τ_{β} -cl(V)). Hence f is almost (γ, β)-continuous at $x \in X$.

Theorem 4.5 For a function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is almost (γ, β) -continuous;
- (ii) $f^{-1}(V)$ is γ -open for every β -regular open set V of Y;
- (iii) $f^{-1}(V)$ is γ -closed for every β -regular closed set V of Y;
- (iv) $f(\tau_{\gamma}-\operatorname{cl}(A)) \subset \tau_{\gamma}-\operatorname{cl}_{\delta}(f(A))$ for every subset A of X;
- (v) σ_{β} -cl $(f^{-1}(B)) \subset f^{-1}(\tau_{\gamma}$ -cl $\delta(B))$ for every subset B of Y;
- (vi) $f^{-1}(F)$ is γ -open for every β - δ -open set F of Y;
- (vii) $f^{-1}(V)$ is γ -closed for every β - δ -closed set V of Y.

Proof. (i) \Rightarrow (ii): Clear. (ii) \Rightarrow (iii): Let $F \in \beta RC(Y)$. Then $Y \setminus F \in \beta RO(Y)$. Take $x \in f^{-1}(Y \setminus F)$, then $f(x) \in Y \setminus F$ and since f is almost (γ, β) -continuous, there exists a β open set W_x of X such that $x \in W_x$ and $f(W_x) \subset Y \setminus F$. Then $x \in W_x \subset f^{-1}(Y \setminus F)$ so that $f^{-1}(Y \setminus F) = \bigcup_{x \in f^{-1}(Y \setminus F)} W_x$. Since any union of γ -open sets is γ -open, $f^{-1}(Y \setminus F)$ is γ -open in X and hence $f^{-1}(F) \in \beta RC(X)$. (iii) \Rightarrow (iv): Let A be a subset of X. Since σ_{β} -cl_{δ}(f(A)) is β - δ -closed in Y, it is equal to $\bigcap \{F_{\alpha} : F_{\alpha} \text{ is } \beta \text{-regular closed in } Y, \alpha \in \Lambda \}$, where Λ is an index set. From (iii), we have $A \subset f^{-1}(\tau_{\gamma} \operatorname{cl}_{\delta}(f(A))) = \bigcap \{f^{-1}(F_{\alpha}) : \alpha \in \Lambda\} \in \gamma RC(X)$ and hence τ_{γ} -cl $(A) \subset f^{-1}(\sigma_{\beta}$ -cl $_{\delta}(f(A)))$. Therefore, we obtain $f(\tau_{\gamma}$ -cl $(A)) \subset \sigma_{\beta}$ -cl $_{\delta}(f(A))$. (iv) \Rightarrow (v): Set $A = f^{-1}(B)$ in (iv), then $f(\tau_{\gamma}\text{-cl}(f^{-1}(B))) \subset \sigma_{\beta}\text{-cl}_{\delta}(f(f^{-1}(B))) \subset$ $\sigma_{\beta}\operatorname{-cl}_{\delta}(B)$ and hence $\tau_{\gamma}\operatorname{-cl}(f^{-1}(B)) \subset f^{-1}(\sigma_{\beta}\operatorname{-cl}_{\delta}(B))$. (v) \Rightarrow (vi): Let F be β - δ closed set of Y, then τ_{γ} -cl $f^{-1}(F) \subset f^{-1}(F)$ so $f^{-1}(F) \in \gamma RC(X)$. (vi) \Rightarrow (vii): Let V be β - δ -open set of Y, then $Y \setminus V$ is β - δ -closed set in Y. This gives $f^{-1}(Y \setminus V) \in$ $\gamma RC(X)$ and hence $f^{-1}(V) \in \beta O(X)$. (viii) \Rightarrow (i): Let V be any β -regular open set of Y. Since V is β - δ -open in Y, then $f^{-1}(V) \in \tau_{\gamma}$ and hence from $f(f^{-1}(V)) \subset V$ $= \sigma_{\beta}$ -Int $(\sigma_{\beta}$ -cl(V)). Therefore, f is almost (γ, β) -continuous. **Theorem 4.6** For a function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

- (i) f is almost (γ, β) -continuous;
- (ii) $f^{-1}(V) \subset \tau_{\gamma}$ -Int $(f^{-1}(\tau_{\beta}$ -Int $(\tau_{\beta}$ -cl (V)))) for every β -open set V in Y;
- (iii) τ_{γ} -cl $(f^{-1}(\tau_{\beta}$ -cl $(\tau_{\beta}$ -Int $(F)))) \subset f^{-1}(F)$ for every β -closed set F in Y;
- (iv) τ_{γ} -cl $(f^{-1}(\tau_{\beta}$ -cl $(\tau_{\beta}$ -cl $(B)))) \subset f^{-1}(\tau_{\beta}$ -cl (B)) for every subset B in Y;
- (v) $f^{-1}(\tau_{\beta}\operatorname{-Int}(B)) \subset \tau_{\gamma}\operatorname{-Int}(f^{-1}(\tau_{\beta}\operatorname{-Int}(\tau_{\beta}\operatorname{-Int}(B))))$ for every subset B in Y.

Proof. (i) \Rightarrow (ii): Let V be any β -open set in Y and $x \in f^{-1}(V)$. Then there exists a γ -open set U containing x such that $f(U) \subset \tau_{\beta}$ -Int $(\tau_{\beta}$ -cl (V)). This implies $x \in \tau_{\gamma}$ -Int $(f^{-1}(\tau_{\beta}$ -Int $(\tau_{\beta}$ -cl (V)))). Hence $f^{-1}(V) \subset \tau_{\gamma}$ -Int $(f^{-1}(\tau_{\beta}$ -Int $(\tau_{\beta}$ -cl (V)))). (ii) \Rightarrow (iii): Let F be any β -closed set in Y. Then $f^{-1}(Y \setminus F) \subset \tau_{\gamma}$ -Int $(f^{-1}(\tau_{\beta}$ -cl $(\tau_{\beta}$ -Int $(\tau_{\beta}$ -cl $(Y \setminus F)))) = X \setminus \tau_{\gamma}$ -cl $(f^{-1}(\tau_{\beta}$ -cl $(\tau_{\beta}$ -Int(F)))). Hence τ_{γ} -cl $(f^{-1}(\tau_{\beta}$ -cl $(\tau_{\beta}$ -Int(F)))). Hence τ_{γ} -cl $(f^{-1}(\tau_{\beta}$ -cl $(\tau_{\beta}$ -Int $(F)))) \subset f^{-1}(F)$. (iii) \Rightarrow (iv) and (iv) \Rightarrow (v): It is obvious. (v) \Rightarrow (i): Let V be any β -regular open set in Y. Since τ_{β} -Int $(\tau_{\beta}$ -cl $(\tau_{\beta}$ -Int(F))) = V, from (v), it follows $f^{-1}(V) \subset \tau_{\beta}$ -Int $(f^{-1}(V))$ and so $f^{-1}(V) = \tau_{\beta}$ -Int $(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is γ -open in X. By Theorem 4.5 (ii), f is almost (γ, β) -continuous.

Theorem 4.7 For a function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

(i) f is almost (γ, β) -continuous;

(ii)
$$\tau_{\gamma}$$
-cl $(f^{-1}(G)) \subset f^{-1}(\tau_{\beta}$ -cl $(G))$ for every β - β -open set G of Y ;

- (iii) τ_{γ} -cl $(f^{-1}(G)) \subset f^{-1}(\tau_{\beta}$ -cl (G)) for every β -semiopen set G of Y;
- (iv) τ_{γ} -cl $(f^{-1}(G)) \subset f^{-1}(\tau_{\beta}$ -cl (G)) for every β -preopen set G of Y.

Proof. (i) \Rightarrow (ii): Let G be any β - β -open set of Y. Since τ_{β} -cl (G) is β -regular closed, τ_{γ} -cl ($f^{-1}(\tau_{\beta}$ -cl (G))) = $f^{-1}(\tau_{\beta}$ -cl (G)). Thus, τ_{γ} -cl ($f^{-1}(G)$) $\subset \tau_{\gamma}$ -cl ($f^{-1}(\tau_{\beta}$ -cl (G))) = $f^{-1}(\tau_{\beta}$ -cl (G)). (ii) \Rightarrow (iii): It is obvious since every β -semiopen set is β - β -open. (iii) \Rightarrow (i): Let F be any β -regular closed set of Y; then since F is β -semiopen, we have τ_{γ} -cl ($f^{-1}(G)$) $\subset f^{-1}(\tau_{\beta}$ -cl (G)) = $f^{-1}(F)$. Thus, from Theorem 4.5 (iii), f is almost (γ, β)-continuous. (i) \Rightarrow (iv): Let V be any β -preopen set of Y; then $V \subset \tau_{\beta}$ -Int(τ_{β} -cl (V)) and τ_{β} -Int(τ_{β} -cl (V)) is β -regular open. By Theorem 4.5 (ii), $f^{-1}(\tau_{\beta}$ -Int(τ_{β} -cl (V))) = τ_{γ} -Int($f^{-1}(\tau_{\beta}$ -Int(τ_{β} -cl (V)))). Thus, we have $f^{-1}(V) \subset f^{-1}(\tau_{\beta}$ -Int(τ_{β} -cl (V))) = τ_{γ} -Int($f^{-1}(\tau_{\beta}$ -Int(τ_{β} -cl (V)))). (iv) \Rightarrow (i): Let V be any β -regular open set of Y; then since F is β -preopen and $f^{-1}(V) \subset \tau_{\gamma}$ -cl ($f^{-1}(\tau_{\beta}$ -Int(τ_{β} -cl (V)))) = τ_{γ} -Int($f^{-1}(V)$). Hence by Theorem 4.5 (ii), f is almost (γ, β)-continuous.

References

- BASU, C.K., UZZAL AFSAN, B.M., GHOSH, M.K., A class of functions and separation axioms with respect to an Operation, Hacettepe J. Math. Stat., 38 (2) (2009), 103-118.
- [2] CARPINTERO, C., RAJESH, N., ROSAS, E., Operation- α -open sets (submited).
- [3] KASAHARA, S., Operation-compact spaces, Math. Japonica, 24 (1979), 97-105.
- [4] KRISHNAN, G.S.S., BALACHANDRAN, K., On a class of γ -preopen sets in a topological space, East Asian Math., 22 (2) (2006), 131-149.
- [5] KRISHNAN, G.S.S., GANSTER, M., BALACHANDRAN, K., Operation approches on semiopen sets and applications, Kochi J. Math., 2 (2007), 21-33.
- [6] OGATA, H., Operation on topological spaces and associated topology, Math. Japonica, 36 (1) (1991), 175-184.

Accepted: 13.09.2013