PROPERTIES OF (γ, γ') -SEMIOPEN SETS

C. Carpintero

Universidad De Oriente Nucleo De Sucre Cumana Venezuela e-mail: carpintero.carlos@gmail.com

N. Rajesh

Department of Mathematics Rajah Serfoji Govt. College Thanjavur-613005 Tamilnadu India e-mail: nrajesh_topology@yahoo.co.in

E. Rosas

Universidad De Oriente Nucleo De Sucre Cumana Venezuela e-mail: ennisrafael@gmail.com

Abstract. In this paper, we introduce and study the concept of (γ, γ') - θ -semiconnectedness and (γ, γ') - θ -semicomponents using (γ, γ') - θ -semiopen sets.

Keywords: topological spaces, (γ, γ') -open set, (γ, γ') -semiopen set.

2000 Mathematics Subject Classification: 54A40.

1. Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real Analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Kasahara [3] defined the concept of an operation on topological spaces. Umehara et. al. [9] introduced the notion of $\tau_{(\gamma,\gamma')}$ which is the collection of all (γ, γ') -open sets in a topological space (X, τ) . Recently, G.S.S. Krishnan and K. Balachandran (see [4], [6], [5] and [8]) studied in this field. In [1] the authors, introduced the notion of (γ, γ') -semiopeness and investigated its fundamental properties. In this paper, we introduce and study the concept of (γ, γ') - θ -semiconnectedness and (γ, γ') - θ -semiconnectedness using (γ, γ') - θ -semiconnectedness.

2. Preliminaries

Definition 2.1 [3] Let (X, τ) be a topological space. An operation γ on the topology τ is function from τ on to power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. It is denoted by $\gamma : \tau \to \mathcal{P}(X)$.

Definition 2.2 [9] A subset A of a topological space (X, τ) is said to be (γ, γ') open set if, for each $x \in A$, there exist open neighborhoods U and V of x such that $U^{\gamma} \cup V^{\gamma'} \subset A$. The complement of (γ, γ') -open set is called (γ, γ') -closed. $\tau_{(\gamma, \gamma')}$ denotes set of all (γ, γ') -open sets in (X, τ) .

Remark 2.3 It is easily to see that $\tau_{(\gamma,\gamma')} = \tau_{\gamma} \cap \tau_{\gamma'}$, where τ_{γ} denotes set of all γ -open sets in (X, τ) .

Definition 2.4 [2] Let A be a subset of a space X. A point $x \in A$ is said to be (γ, γ') -interior point of A, if there exist open neighborhoods U and V of x such that $U^{\gamma} \cup V^{\gamma'} \subset A$ and we denote the set of all such points by $\operatorname{Int}_{(\gamma,\gamma')}(A)$. Thus $\operatorname{Int}_{(\gamma,\gamma')}(A) = \{x \in A : x \in U \in \tau, V \in \tau \text{ and } U^{\gamma} \cup V^{\gamma'} \subset A.$ Note that A is (γ, γ') -open if and only if $A = \operatorname{Int}_{(\gamma,\gamma')}(A)$. A set A is called (γ, γ') -closed if and only if $X \setminus A$ is (γ, γ') -open.

Definition 2.5 [9] A point $x \in X$ is called a (γ, γ') -closure point of $A \subset X$, if $(U^{\gamma} \cup V^{\gamma'}) \cap A \neq \emptyset$, for any open neighborhoods U and V of x. The set of all (γ, γ') -closure points of A is called (γ, γ') -closure of A and is denoted by $\operatorname{cl}_{(\gamma, \gamma')}(A)$. A subset A of X is called (γ, γ') -closed, if $\operatorname{cl}_{(\gamma, \gamma')}(A) \subset A$. Note that $\operatorname{cl}_{(\gamma, \gamma')}(A)$ is contained in every (γ, γ') -closed superset of A.

Definition 2.6 [1] A subset A of a space (X, τ) is said to be (γ, γ') -semiopen set, if there exists a (γ, γ') -open set O such that $O \subset A \subset cl_{(\gamma,\gamma')}(O)$. The set of all (γ, γ') -semiopen sets is denoted by $SO_{(\gamma,\gamma')}(X)$. A is (γ, γ') -semiclosed if and only if $X \setminus A$ is (γ, γ') -semiopen in X. Note that A is (γ, γ') -semiclosed if and only if $Int_{(\gamma,\gamma')}(cl_{(\gamma,\gamma')}(A)) \subset A$.

Remark 2.7 Observe that if $\{A_i : i \in I\}$ is a collection of (γ, γ') -open set, then $\bigcup_{i \in I} A_i$ is (γ, γ') -open set. From this, it follows that $\operatorname{cl}_{(\gamma,\gamma')}(A)$ is a (γ, γ') -closed set. Moreover, if we define $\beta : \tau \to \mathcal{P}(X)$ as $\beta(U) = \operatorname{cl}_{(\gamma,\gamma')}(U)$, then β is a monotone operation on τ .

Definition 2.8 [1] Let A be a subset of a space X. The intersection of all (γ, γ') semiclosed sets containing A is called (γ, γ') -semiclosure of A and is denoted by $scl_{(\gamma,\gamma')}(A)$. Note that A is (γ, γ') -semiclosed if and only if $scl_{(\gamma,\gamma')}(A) = A$.

Definition 2.9 [1] Let A be a subset of a space X. The union of (γ, γ') -semiopen subsets of A is called (γ, γ') -semiinterior of A and is denoted by $sInt_{(\gamma,\gamma')}(A)$.

Definition 2.10 [1] A point $x \in X$ is said to be (γ, γ') -semi- θ -adherent point of a subset A of X, if $scl_{(\gamma,\gamma')}(U) \cap A \neq \emptyset$, for every $U \in SO_{(\gamma,\gamma')}(X,x)$. The set of all (γ, γ') -semi- θ -adherent points of A is called the (γ, γ') -semi- θ -closure of A and is denoted by $s_{(\gamma,\gamma')}cl_{\theta}(A)$. A subset A is called (γ, γ') -semi- θ -closed, if $s_{(\gamma,\gamma')}cl_{\theta}(A) = A$. A subset A is called (γ, γ') -semi- θ -open, if and only if $X \setminus A$ is (γ, γ') -semi- θ -closed.

Definition 2.11 [1] A subset A of a space X is said to be (γ, γ') -semiregular, if it is both (γ, γ') -semiopen and (γ, γ') -semiclosed. The class of all (γ, γ') -semiregular sets of X is denoted by $SR_{(\gamma,\gamma')}(A)$.

3. (γ, γ') -semi- θ -closed sets

Theorem 3.1 For a subset A of a topological space X, $s_{(\gamma,\gamma')} cl_{\theta}(A) = \cap \{V: A \subset V \text{ and } V \text{ is } SR_{(\gamma,\gamma')}(X)\}.$

Proof. Let $x \notin s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(A)$. Then there exists a (γ, γ') -semiopen set U containing x such that $\operatorname{scl}_{(\gamma,\gamma')}(U) \cap A = \emptyset$. Then $A \subset X \setminus \operatorname{scl}_{(\gamma,\gamma')}(U) = V$ (say). Thus $V \in SR_{(\gamma,\gamma')}(X)$ such that $x \notin V$. Hence $x \notin \cap \{V : A \subset V \text{ and } V \text{ is } SR_{(\gamma,\gamma')}(X)\}$. Again, if $x \notin \cap \{V : A \subset V \text{ and } V \text{ is } SR_{(\gamma,\gamma')}(X)\}$, then there exists $V \in SR_{(\gamma,\gamma')}(X)$ containing A such that $x \notin V$. Then $(X \setminus V) (= U, \operatorname{say})$ is a (γ, γ') -semiopen set containing x such that $\operatorname{scl}_{(\gamma,\gamma')}(U) \cap V = \emptyset$. This shows that $\operatorname{scl}_{(\gamma,\gamma')}(U) \cap A = \emptyset$ so that $x \notin s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(A)$.

Corollary 3.2 A subset A of X is (γ, γ') -semi- θ -closed if and only if $A = \cap \{V : A \subset V \in SR_{(\gamma, \gamma')}(X)\}.$

Theorem 3.3 For any subset A of X, $s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(A)) = s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(A)$.

Proof. Obviously, $s_{(\gamma,\gamma')} cl_{\theta}(A) \subset s_{(\gamma,\gamma')} cl_{\theta}(s_{(\gamma,\gamma')} cl_{\theta}(A)))$. Now, let

 $x \in s_{(\gamma,\gamma')} \mathrm{cl}_{\theta}(s_{(\gamma,\gamma')} \mathrm{cl}_{\theta}(A)))$ and $U \in SO_{(\gamma,\gamma')}(X,x)$.

Then $\operatorname{scl}_{(\gamma,\gamma')}(U) \cap s_{(\gamma,\gamma')}\operatorname{cl}_{\theta}(A) \neq \emptyset$. Let $y \in \operatorname{scl}_{(\gamma,\gamma')}(U) \cap s_{(\gamma,\gamma')}\operatorname{cl}_{\theta}(A)$. Since $\operatorname{scl}_{(\gamma,\gamma')}(U) \in SO_{(\gamma,\gamma')}(X,y), s_{(\gamma,\gamma')}\operatorname{cl}(s_{(\gamma,\gamma')}\operatorname{cl}(U)) \cap A \neq \emptyset$, that is, $s_{(\gamma,\gamma')}\operatorname{cl}(U) \cap A \neq \emptyset$. Thus $x \in s_{(\gamma,\gamma')}\operatorname{cl}_{\theta}(A)$.

Corollary 3.4 $s_{(\gamma,\gamma')} cl_{\theta}(A)$ is (γ,γ') -semi- θ -closed for any $A \subset X$.

Theorem 3.5 Intersection of arbitrary collection of (γ, γ') -semi- θ -closed sets in X is (γ, γ') -semi- θ -closed.

Proof. Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be any collection of (γ, γ') -semi- θ -closed sets in a topological space (X, τ) and $A = \bigcap_{\alpha \in \Lambda} A_{\alpha}$. Now, using Definition 2.10, $x \in s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(A)$, in consequence, $x \in s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(A_{\alpha})$ for all $\alpha \in \Lambda$. Follows that $x \in A_{\alpha}$ for all $\alpha \in \Lambda$. Therefore, $x \in A$. Thus $A = s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(A)$.

Corollary 3.6 For any $A \subset X$, $s_{(\gamma,\gamma')} cl_{\theta}(A)$ is the intersection of all (γ, γ') -semi- θ -closed sets each containing A.

Remark 3.7 The following example shows that the union of (γ, γ') -semi- θ -closed sets may fail to be (γ, γ') -semi- θ -closed. Thus (γ, γ') -semi- θ -closure operator is not a Kuratowski's closure operator.

Example 3.8 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ and $\gamma' : \tau \to \mathcal{P}(X)$ be operators defined as follows: for every $A \in \tau$,

$$\gamma(A) = \operatorname{Int}(\operatorname{cl}(A))$$
$$\gamma'(A) = \begin{cases} X & \text{if } A = \{a, b\} \\ A & \text{if } A \neq \{a, b\}. \end{cases}$$

Then the subsets $\{a\}$ and $\{b\}$ are (γ, γ') -semi- θ -closed, but their union $\{a, b\} = A \cup B$ is not (γ, γ') -semi- θ -closed.

Example 3.9 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $\gamma : \tau \to \mathcal{P}(X)$ and $\gamma' : \tau \to \mathcal{P}(X)$ be operators defined as follows: for every $A \in \tau$,

$$\gamma(A) = \begin{cases} X & \text{if } A = \{a,b\}, \{c\} \\ A & \text{if } A \neq \{a,b\}, \{c\}. \end{cases}$$
$$\gamma'(A) = \begin{cases} X & \text{if } A = \{a,b\}, \{c\}, \{a,c\} \\ A & \text{if } A \neq \{a,b\}, \{c\}, \{a,c\} \end{cases}$$

 $\{c\}$ is (γ, γ') -semi- θ -closed but not (γ, γ') -semiregular.

Remark 3.10 It is proved by Carpintero et. al. [1] that a (γ, γ') -semiregular set is (γ, γ') -semi- θ -closed set. In the above example, $\{c\}$ is (γ, γ') -semi- θ -closed but not (γ, γ') -semiregular. Again, for a subset A, we always have $A \subset s_{(\gamma,\gamma')} cl(A) \subset$ $s_{(\gamma,\gamma')} cl_{\theta}(A)$. Therefore, every (γ, γ') -semi- θ -open set is (γ, γ') -semiopen. The following example shows that the converse is not true in general.

Example 3.11 Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ and $\gamma : \tau \to P(X)$ and $\gamma' : \tau \to P(X)$ be operators defined as follows: for every $A \in \tau$,

$$\gamma(A) = \begin{cases} \operatorname{cl}(A) & \text{if } A = \{a\}, \\ A & \text{if } A \neq \{a\}, \end{cases}$$
$$\gamma'(A) = \begin{cases} \operatorname{cl}(A) & \text{if } A = \{b\}, \\ A & \text{if } A \neq \{b\}. \end{cases}$$

Then $\{a, b\}$ is a (γ, γ') -semiopen set but not a (γ, γ') -semi- θ -open set.

Remark 3.12 The notions (γ, γ') -openness and (γ, γ') -semi- θ -openness are independent. In Example 3.9, $\{a, b\}$ is a (γ, γ') -semi- θ -open set but not a (γ, γ') -open set, whereas in Example 3.11, $\{b\}$ is a (γ, γ') -open set but not a (γ, γ') -semi- θ -open set.

4. (γ, γ') -semi- θ -connectedness

Definition 4.1 A pair (A, B) of nonempty subsets of a topological space (X, τ) is said to be a (γ, γ') -semi- θ -separation relative to X, if $s_{(\gamma,\gamma')} cl_{\theta}(A) \cap B = A \cap s_{(\gamma,\gamma')} cl_{\theta}(B) = \emptyset$.

Definition 4.2 A subset N of a topological space (X, τ) is said to be (γ, γ') -semi- θ -connected relative to X (or, simply (γ, γ') -semi- θ -connected), if there exists no (γ, γ') -semi- θ -separation (A, B) relative to X such that $N = A \cup B$. If N is not (γ, γ') -semi- θ -connected, then it is called (γ, γ') -semi- θ -disconnected.

Lemma 4.3 If (A, B) is a (γ, γ') -semi- θ -separation relative to X and P,Q are nonempty subsets of A and B respectively, then (P,Q) is also a (γ, γ') -semi- θ separation relative to X.

Proof. The proof is obvious.

Theorem 4.4 For a subset A of X, the following are equivalent:

- 1. A is (γ, γ') -semi- θ -connected.
- 2. If (L, M) is a (γ, γ') -semi- θ -separation relative to X and $A \subset L \cup M$, then either $A \subset L$ or $A \subset M$.

Theorem 4.5 Let A be a (γ, γ') -semi- θ -closed set in a topological space (X, τ) . If (P,Q) is a (γ, γ') -semi- θ -separation relative to X such that $A = P \cup Q$, then P and Q are (γ, γ') -semi- θ -closed sets in X.

Proof. We have $A = P \cup Q$, where $s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(P) \cap Q = P \cap s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(Q) = \emptyset$. Now, $A \cap s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(P) = (P \cup Q) \cap s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(P) = (P \cap s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(P)) \cup (Q \cap s_{(\gamma,\gamma')} \operatorname{cl}_{\theta}(P)) = P$. In view of Corollary 3.4 and Theorem 3.5, P is (γ, γ') -semi- θ -closed. Similarly, Q is (γ, γ') -semi- θ -closed.

Theorem 4.6 If C is a (γ, γ') -semi- θ -connected set relative to a topological space X and $C \subset T \subset s_{(\gamma,\gamma')} cl_{\theta}(C)$, then T is also (γ, γ') -semi- θ -connected.

Corollary 4.7 The (γ, γ') -semi- θ -closure of a (γ, γ') -semi- θ -connected set is (γ, γ') -semi- θ -connected.

Remark 4.8 Since for any subset A of X, $A \subset s_{(\gamma,\gamma')} cl(A) \subset s_{(\gamma,\gamma')} cl_{\theta}(A)$, the (γ, γ') -semiclosure of a (γ, γ') -semi- θ -connected set is (γ, γ') -semi- θ -connected set.

Theorem 4.9 A set E in a topological space X is (γ, γ') -semi- θ -connected if and only if any two points of E are contained in some (γ, γ') -semi- θ -connected set contained in E.

Theorem 4.10 The union of any collection of (γ, γ') -semi- θ -connected sets, no two of which are (γ, γ') -semi- θ -separated relative to X is a (γ, γ') -semi- θ -connected set.

Corollary 4.11 The union of any family of (γ, γ') -semi- θ -connected sets, every pair of which has an element in common is (γ, γ') -semi- θ -connected.

Theorem 4.12 For a topological space (X, τ) the following statements are equivalent:

- 1. X is (γ, γ') -semi- θ -connected.
- 2. There do not exist disjoint nonempty (γ, γ') -semi- θ -clopen sets A, B in X such that $X = A \cup B$.
- 3. The only subset of X which are both (γ, γ') -semi- θ -open and (γ, γ') -semi- θ closed are X and \emptyset .

Definition 4.13 [7] A topological space (X, τ) is said to be a (γ, γ') -connected, if there does not exist a pair A, B of nonempty disjoint (γ, γ') -open subsets of X such that $X = A \cup B$, otherwise X is called (γ, γ') -disconnected.

The relation between (γ, γ') -semi- θ -connectedness and (γ, γ') -connectedness, is as follows.

Theorem 4.14 Every (γ, γ') -semi- θ -connected space X is (γ, γ') -connected.

Proof. If X is (γ, γ') -disconnected, there exist nonempty disjoint (γ, γ') -closed sets U and V such that $X = U \cup V$. Then U and V are (γ, γ') -semiregular sets and hence each is (γ, γ') -semi- θ -closed. Thus X is not (γ, γ') -semi- θ -connected.

Remark 4.15 The converse of the above theorem is false. In fact, in Example 3.9 the topological space (X, τ) is (γ, γ') -connected but not (γ, γ') -semi- θ -connected.

5. (γ, γ') -semi- θ -components and (γ, γ') -semi- θ -quasi components

Definition 5.1 Let (X, τ) be a topological space. A maximal (γ, γ') -semi- θ connected subset relative to X, that is, an (γ, γ') -semi- θ -connected set in X which is not properly contained in any larger (γ, γ') -semi- θ -connected set of X, is called a (γ, γ') -semi- θ -component of the space X.

Theorem 5.2 For a topological space (X, τ) , the following statements are true:

- 1. Each point of X is contained in exactly one (γ, γ') -semi- θ -component of X.
- 2. X is equal to the union of its (γ, γ') -semi- θ -components.
- 3. Each (γ, γ') -semi- θ -connected subset of X is contained in an (γ, γ') -semi- θ -component of X.
- 4. Each (γ, γ') -semi- θ -component of X is (γ, γ') -semi- θ -closed.
- 5. Two different (γ, γ') -semi- θ -components of X are disjoint.

Proof. (1). Let $x \in X$. Consider the class $\{C_{\alpha} : \alpha \in \Lambda\}$ of all (γ, γ') -semi- θ connected sets of X, each of which contains x. The class is nonempty, since $\{x\}$ belongs to the class. By Corollary 4.11, $C = \bigcup_{\alpha \in \Lambda} C_{\alpha}$ is a maximal (γ, γ') -semi- θ connected set containing x that is, a (γ, γ') -semi- θ -component of X. Uniqueness of the (γ, γ') -semi- θ -component (containing x) is obvious. (2). Follows from (1). (3). By construction in (1), any (γ, γ') -semi- θ -connected set is contained in the (γ, γ') -semi- θ -component which contains any one of its points. (4). Follows from Corollary 4.7. (5). If C_1 and C_2 are two (γ, γ') -semi- θ -components and $C_1 \cap C_2 \neq \emptyset$, then by Corollary 4.11, $C_1 \cup C_2$ is a (γ, γ') -semi- θ -connected set in X. By the maximality of C_1 and C_2 , $C_1 = C_1 \cup C_2 = C_2$.

Definition 5.3 Let A be a nonempty subset of X. Two elements x, y of A are said to be (γ, γ') -semi- θ -equivalent, written $x \sim y$, if whenever (L, M) is a (γ, γ') -semi- θ -separation relative to X and $A = L \cup M$, we have either $x, y \in L$ or $x, y \in M$.

The relation " \backsim " is an equivalence relation on A. The equivalence classes are called (γ, γ') -semi- θ -quasi components of A. We shall denote by A(x) the (γ, γ') -semi- θ -quasi component of A containing x. For a nonempty subset A of X, let us call a subset P of A a (γ, γ') -semi- θ -component of A if P is (γ, γ') -semi- θ -connected and there does not exist any subset Q of A such that $P \nsubseteq Q$ and Q is (γ, γ') -semi- θ -connected.

Theorem 5.4 Let (X, τ) be a topological space and A a nonempty subset of X. Then A(x) is an (γ, γ') -semi- θ -component of A for each $x \in A$ for which A(x) is (γ, γ') -semi- θ -connected.

Proof. Let $x \in A$ for which A(x) is (γ, γ') -semi- θ -connected and $B \subset A$ be a (γ, γ') -semi- θ -connected set and also assume that $A(x) \subset B$. If $Y \in B$ and $A = L \cup M$, where (L, M) is a (γ, γ') -semi- θ -separation relative to X, then either $B \subset L$ or $B \subset M$. Thus either $x, y \in L$ or $x, y \in M$. Hence $y \in A(x)$ and consequently, A(x) = B. Thus A(x) is a (γ, γ') -semi- θ -component of A.

Definition 5.5 Let A be a nonempty subset of X and $x \in A$. We define $L_x(A) = \{L \subset X : \text{ for some } M \subset X, (L, M) \text{ is a } (\gamma, \gamma')\text{-semi-}\theta\text{-separation relative to } X \text{ satisfying } A = L \cup M \text{ and } x \in L\}.$

Theorem 5.6 Let A be a nonempty subset of a topological space (X, τ) and $x \in A$. Then a (γ, γ') -semi- θ -quasi component A(x) of A is the intersection of the elements of $L_x(A)$.

Proof. Let $y \in A(x)$ and L_x be any member of $L_x(A)$. Then for some $M_x \subset X$, (L_x, M_x) is a (γ, γ') -semi- θ -separation relative to X satisfying $A = L_x \cup M_x$ and $x \in L_x$. Since $x \backsim y$, we have $x, y \in L_x$. Thus $y \in \cap L_x(A)$; hence $A(x) \subset \cap L_x(A)$. On the other hand, if $y \in \cap L_x(A)$ then obviously, $y \in A(x)$.

Theorem 5.7 Each (γ, γ') -semi- θ -quasi component Q in the topological space (X, τ) is the intersection of all (γ, γ') -semi- θ -clopen sets containing a given point belonging to Q.

Proof. Straightforward.

Corollary 5.8 Every (γ, γ') -semi- θ -quasi component of a topological space (X, τ) is (γ, γ') -semi- θ -closed in X.

References

- [1] CARPINTERO, C., RAJESH, N., ROSAS, E., *Bioperations-semiopen sets* (under preparation).
- [2] HUSSAIN, S., AHMAD, B., Bi γ-operations in topological spaces, Math. Today, 22 (1) (2006), 21-36.
- [3] KASAHARA, S., Operation-compact spaces, Math. Japonica, 24 (1979), 97-105.
- [4] KRISHNAN, G.S.S., BALACHANDRAN, K., On a class of γ -preopen sets in a topological space, East Asian Math., 22 (2) (2006), 131-149.
- [5] KRISHNAN, G.S.S., BALACHANDRAN, K., On γ -semiopen sets in topological spaces, Bull. Cal. Math. Soc., 98 (6) (2006), 517-530.
- [6] KRISHNAN, G.S.S., GANSTER, M., BALACHANDRAN, K., Operation approches on semiopen sets and applications, Kochi J. Math., 2 (2007), 21-33.
- [7] RAJESH, N., VIJAYABHMATH, V., (γ, γ') -Connected Spaces, Bulletin of International Mathematical. Virtual Institute, vol. 1 (2011), 59-65.
- [8] MUKHERJEE, M.N., BASS, C.K., On semi-θ-closed sets, semi θ-connectedness and some associate mappings, Bull. Calcutta Math. Soc., 83 (3) (1991), 227-238.
- [9] UMEHARA, J., MAKI, H., NOIRI, T., Bioperation on topological spaces and some separation axioms, Mem. Fac. Sci. Kochi Univ. (A), 13 (1992), 45-59.

Accepted: 13.09.2013