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1. Preliminaries

Unless otherwise stated, Y is a fixed topological space with topology τ , collection
of all neighborhoods (nbd(s)) of y ∈ Y is denoted by N(y). If f : X → Y is
a mapping and A ⊆ X and B ⊆ X, then [A]B means the closure of A in B.
For continuous mappings f : X → Y and g : Z → Y , a continuous mapping
λ : X → Z such t etc. if λ is hat f = g λ is called a morphism of f into g and
is denoted byλ : f → g. λ is called surjective, closed, perfect surjective, closed,
perfect etc., respectively. Open covers will be denoted by Û , V̂ , Ŵ , ....

To proceed we need the following definitions and results. For more details
one can consult [3] and [5].

Definition 1.1 A mapping f : X → Y is called a T2-mapping, if there exist
disjoint nbds in X for every x, x∗ ∈ f−1y such that x 6= x∗.

Definition 1.2 If A and B are subsets of X, then we say that A and B are

1. nbd separated in U ⊆ X.

2. Functionally separated in U ⊆ X.
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if, respectively, the sets A ∩ U and B ∩ U .

1. Have disjoint nbds in U .

2. There exists a continuous function f : U → [0, 1] such that A ∩ U ⊆ f−1(0)
and B ∩ U ⊆ f−1(1).

Definition 1.3 A mapping f : X → Y is said to be completely regular (regular)
if for every x ∈ X and every closed set F in X such that x /∈ F there exists a
neighborhood O ∈ N(fx) such that {x} and F are functionally separated (nbd
separated) in f−1O.

A completely regular (regular) T0-mapping is called a Tychonoff or T3 1
2
-

mapping (regular or T3-mapping).

Definition 1.4 A mapping f : X → Y is called functionally prenormal (prenor-
mal) if for every y ∈ Y and every disjoint closed (in X) sets F and H there exists
a neighborhood O of y such that F and H are functionally separated (nbd sepa-
rated) in f−1O. If for every open subset O of Y the mapping f |f−1O : f−1O → O
is functionally prenoraml (prenormal), then f is called functionally normal (nor-
mal). A normal T3-mapping is called T4-mapping.

A mapping g : A→ B is said to be a (closed, open, dense, etc.) submapping
of the mapping f : X → Y if g is the restriction of f on the (closed, open, dense,
etc.) subset A of the space X and g(A) = f(A) ⊆ B ⊆ Y. A mapping f : X → Y
is said to be compact if and only if f is perfect. If f : X → Y is a compact
T2-mapping and g : A→ B is a submapping of f where B is a closed subset of Y ,
then g is compact.

Definition 1.5 [3] A mapping f : X → Y is called paracompact if for every
y ∈ Y and every open (in X) cover Û = {Uα; α ∈ ∆} of f−1y there exists
Oy ∈ N(y) such that f−1y is covered by Û and (f−1Oy ∧ Û) has an open (in X)
y-locally finite refinement in f−1Oy.

Theorem 1.6 [3] If f : X → Y is a regular mapping, then the following conditions
are equivalent.

1) f is a paracompact T2-mapping.

2) For every y ∈ Y and every open (in X) cover Û of f−1y there exists
Oy ∈ N(y) such that f−1y is covered by Û and (f−1Oy ∧ Û) has an open

(in X) σ-locally finite refinement V̂ in f−1Oy; that is V̂ =
⋃
i<ω V̂i, where

V̂i is locally finite in f−1Oy for every i < ω.

Definition 1.7 [1] Let f : X → Y be a mapping. Then f is called countably
paracompact if for every y ∈ Y and every countable open (in X) cover Û of f−1y
there exists Oy ∈ N(y) such that f−1y is covered by Û and f−1Oy ∧ Û has an
open (in X) y-locally finite refinement in f−1Oy.
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Theorem 1.8 [1] Let f : X → Y be a mapping. Then the following conditions
are equivalent.

(i) f is normal and countably paracompact.

(ii) For every y ∈ Y and every countable open (in X) cover Û = {Ui; i ∈ N}
of f−1y there exists a neighborhood Oy ∈ N(y) such that f−1Oy is covered

by Û ; furthermore, for every i = 1, 2, ... there exists Oi(y) ∈ N(y), where
Oi(y) ⊆ Oy, and a closed ( in f−1Oi(y)) subset Fi ⊆ f−1Oi(y) ∩ Ui such that

f−1Oy =
∞⋃
i=1

Fi.

2. Strongly paracompact mappings

Definition 2.1 Let f : X → Y be a mapping. For every y ∈ Y the open (in X)
cover Û = {Uα}α∈∆ of f−1y is said to be y-star-finite if for every x ∈ f−1y there
exists Uα ∈ Û such that x ∈ Uα and the family S(Uα, Û) = {Uβ ∈ Û ;Uβ∩Uα 6= Φ}
is finite.

Definition 2.2 Let f : X → Y be a mapping. Then f is said to be strongly
paracompact if for every y ∈ Y and every open (in X ) cover Û = {Uα}α∈∆ of
f−1y there exists Oy ∈ N(y) such that f−1Oy ⊆

⋃
α∈∆

Uα and Û ∧ f−1Oy has a

y-star-finite open (in X) refinement in f−1Oy.

The following results can be derived easily from Definitions 2.1 and 2.2.

Theorem 2.3 If f : X → Y is a strongly paracompact mapping, L a subset of Y
and A is a closed subset of X, then

1) f is closed.

2) For every y ∈ Y and every open (in X) cover Û = {Uα}α∈∆ of f−1y there
exists Oy ∈ N(y) such that f−1Oy ⊆

⋃
α∈∆

Uα and Û ∧ f−1Oy has a star-finite

open (in X) refinement V̂ = {Vβ}β∈Λ in f−1Oy; that is, Vβ intersects finitely

many elements of V̂ for every β ∈ Λ.

3) f is paracompact.

4) If f is, also, Hausdorf, then it is normal.

5) f |A : A→ Y is strongly paracompact.

6) fL : f−1L→ L is strongly paracompact.

7) Each fibre of f is a strongly paracompact space.
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If the fibres of a mapping f are strongly paracompact spaces, then f is not
necessarily a strongly paracompact mapping, even if f is closed and Tychonoff.

Example 2.4 Let L be the Niemytzki plane and let L1 be the line y = 0. Then
L1 is closed in L and so the quotient mapping q : L → L/L1 is closed. Since L
is Tychonof space, q is Tychonof. Since each fibre is discrete, the fibres of f are
strongly paracompact space. But f is still not strongly paracompact because it is
not paracompact. See Buhagiar [1997].

We know that if {Vα; α ∈ ∆} is a locally finite open cover of a space X, then
the cover {[Vα]X ; α ∈ ∆} is locally finite in X. The same holds for star-finite
families; more precisely

Lemma 2.5 If {Vα; α ∈ ∆} is a star-finite cover of the space X, then the corres-
ponding cover {St(Vα); α ∈ ∆} such that St(Vα) =

⋃{Vγ; Vγ ∩ Vα 6= Φ, γ ∈ ∆}
is a star-finite cover of X.

Corollary 2.6 If {Vα; α ∈ ∆} is a star-finite open cover of the space X, then
the corresponding cover {[Vα]X ; α ∈ ∆} is a star-finite cover of X.

Now, we shall prove the following characterization of strongly paracompact
mappings in the presence of regular mappings.

Theorem 2.7 If f : X → Y is a regular mapping, then the following conditions
are equivalent.

1) f is strongly paracompact.

2) For every y ∈ Y and every open (in X) cover Û = {Uα}α∈∆ of f−1y there
exists Oy ∈ N(y) such that f−1Oy ⊆

⋃
α∈∆

Uα and Û ∧ f−1Oy has y-closed

star-finite locally finite refinement in f−1Oy.

Proof. (1)→ (2). Let Û = {Uα}α∈∆ be an open (in X) cover of f−1y. For every
x ∈ f−1y there exists Wx (open neighborhood of x ) and Oy(x) ∈ N(y) such that

[Wx]f−1Oy(x)
⊆ Uα(x) ∩ f−1Oy(x), where Wx ⊆ Uα(x). Let Ŵ = {Wx;x ∈ f−1y}.

Then Ŵ is an open cover of f−1y, so that there exists Oy ∈ N(y) such that

f−1Oy ⊆
⋃
Ŵ and Ŵ ∧ f−1Oy has a star-finite (and so locally finite) open (in X)

refinement in f−1Oy, say V̂ = {Vβ; β ∈ B}. Since V̂ is star-finite and open (in
f−1Oy), we have (by the previous lemma) the family {[Vβ]f−1Oy

; β ∈ B}is star-

finite (and so locally finite) closed refinement of Ŵ ∧ f−1Oy in f−1Oy. For every
x ∈ X let O∗y(x) = Oy ∩ Oy(x). But for every β ∈ B there exists x ∈ X such

that Vβ ⊆ Wx ∩ f−1Oy; let V ∗β = [Vβ]f−1O∗
y(x)

. Since Vβ ⊆ Wx ∩ f−1Oy, we’ve

V ∗β ⊆ [Wx ∩ f−1Oy]f−1O∗
y(x)

. Note that
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[Wx ∩ f−1Oy]f−1O∗
y(x)

= [Wx ∩ f−1Oy]X ∩ f−1O∗y(x)

⊆ [Wx]X ∩ [f−1Oy]X ∩ f−1O∗y(x)

⊆ [Wx]X ∩ f−1O∗y(x)

⊆ [Wx]X ∩ f−1Oy(x)

⊆ Uα(x) ∩ f−1Oy(x)

for some α(x) ∈ ∆; hence V ∗β ⊆ Uα(x) ∩ f−1Oy(x) for some α(x) ∈ ∆. Let

V̂ ∗β = {V ∗∗β ; β ∈ B} such that V ∗∗β = V ∗β
⋃
Vβ. It is clear that V ∗∗β is y-closed

for every β ∈ B. Since V ∗β ⊆ f−1O∗y(x) ⊆ f−1Oy, V
∗
β ⊆ Uα(x) ∩ f−1Oy and

V ∗∗β = V ∗β
⋃
Vβ ⊆ Uα(x)∩f−1Oy; this implies that V̂ ∗ is a refinement of Û ∧f−1Oy.

One can readily prove that V ∗∗β ⊆ [Vβ]f−1Oy
for every β ∈ B. Since {[Vβ]f−1Oy

}
is star-finite and locally finite in f−1Oy, we have V̂ ∗ is star-finite locally finite in
f−1Oy. This completes the proof of (1)→ (2).

Now, we shall show that (2) → (1). If Û is an open cover of f−1y, then
there is Oy ∈ N(y) such that f−1Oy ⊆

⋃
Û and Û ∧ f−1Oy has a star-finite

locally finite y-closed refinement in f−1Oy, say {Pα;α ∈ ∆}. For every α ∈ ∆

let Ẑα = {Pα∗;Pα∗ ∩ Pα = Φ} and Zα =
⋃{Pα∗;Pα∗ ∩ Pα = Φ}. Now, for every

x ∈ f−1y − Zα there exists an open (in f−1Oy) neighborhood Vx of x such that
Vx intersects finitely many elements of {Pα;α ∈ ∆}, so that Vx intersects finitely
many elements of Ẑα, say Pα1, Pα2, ..., Pαn. But

⋃n
i=1 Pαi is closed in f−1O∗y for

some O∗y ∈ N(y). Set Gx = Vx ∩ (f−1O∗y −
⋃n
i=1 Pαi). Then Gx is an open

(in X) neighborhood of x and disjoint from Zα. Let Ŵ = {Wα;α ∈ ∆} where
Wα =

⋃{Gx;x ∈ f−1y − Zα}for everyα ∈ ∆. Then Ŵ is an open (in X) cover
of f−1y and Wα is contained in St(Pα) =

⋃{Pα∗;Pα∗ ∩ Pα 6= Φ} for each α ∈ ∆.
But the family {St(Pα)α ∈ ∆} is star-finite, by Lemma 2.1, so that Ŵ is a star-
finite open (in X) cover of f−1y. For every α ∈ ∆ there exists Uα ∈ Û such that
Pα is contained in Uα. Let W ∗

α = Wα ∩ Uα and let Ŵ ∗ = {W ∗
α;α ∈ ∆}. Then

Ŵ ∗ is a star-finite open (in X) refinement of Û ∧ f−1Oy. To complete the proof
note that ii) implies that f is closed, so that there exists O∗y ∈ N(y) such that

f−1O∗y ⊆
⋃
Ŵ ∗; hence the cover Ŵ ∗∧f−1O∗y is a star-finite open (in X) refinement

of Û ∧ f−1O∗y in f−1O∗y. This completes the proof.

For the sake of a later application we shall prove the following theorem.

Theorem 2.8 If f : X → Y is a regular mapping, then the following conditions
are equivalent.

1) For every y ∈ Y and every open (in X) cover Û = {Uα}α∈∆ of f−1y there
exists Oy ∈ N(y) such that f−1Oy ⊆

⋃
α∈∆

Uα and Û ∧ f−1Oy has a y-closed

star-countable locally finite refinement in f−1Oy.
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2) For every y ∈ Y and every open (in X) cover Û = {Uα}α∈∆ of f−1y there
exists Oy ∈ N(y) such that f−1Oy ⊆

⋃
α∈∆

Uα and Û ∧ f−1Oy has a star-

countable open (in X) refinement in f−1Oy.

Proof. (1) → (2). If Û is an open (in X) cover of f−1y, then there exists Oy ∈
N(y) such that f−1Oy ⊆

⋃
Û and Û ∧ f−1Oy has a locally finite star-countable y-

closed refinement in f−1Oy, say V̂ . We can write V̂ =
⋃
t∈T V̂t such that {V̂t; t ∈ T}

is the set of all components of V̂ and V̂t = {Vt,i; i ∈ N} for every t ∈ T . Set
Ct =

⋃
i∈N Vt,i. The family {Ct; t ∈ T} covers f−1Oy. We shall show that, Ct is

closed and open in f−1Oy for every t ∈ T . Since {Ct; t ∈ T} is a pairwise disjoint
family, it is sufficient to show that Ct is open in f−1Oy for each t ∈ T . Let x ∈ Ct.
Then, by locally finiteness, there exists Vx(open neighborhood of x ) such that
Vx intersects finitely many elements of V̂ − V̂t, say Pα1, Pα2, ..., Pαn. There exists
O∗y ∈ N(y) such that

⋃n
i=1 Pαi is closed in f−1O∗y. If Gx = (f−1O∗y−

⋃n
i=1 Pαi), then

Gx is an open neighborhood of x contained in Ct; this implies that Ct is open in
f−1Oy and so closed and open in f−1Oy. For every t ∈ T and every natural number

i let U(t, i) in Û such that Vt,i ⊆ U(t, i) and V̂ ∗ = {Ct ∩ U(t, i); t ∈ T, i ∈ N}.
It is clear that V̂ ∗is an open (in X) star-countable refinement of f−1Oy ∧ Û in
f−1Oy. This completes the proof of (1)→ (2).

Now, we prove (2) → (1). First, we shall show that f is paracompact. Let
Û be an open (in X) cover of f−1y. Then there exists Oy ∈ N(y) such that

f−1Oy ⊆
⋃
Û and Û ∧ f−1Oy has a starcountable open refinement V̂ in f−1Oy.

Since V̂ is star-countable, we have V̂ =
⋃
t∈T V̂t such that {V̂t; t ∈ T} is the set of

all components of V̂ and V̂t = {Vt,i; i ∈ N} for every t ∈ T . Let V̂i = {Vt,i; t ∈ T}.
V̂i is locally finite in f−1Oy, so that V̂ =

⋃
t∈T V̂t =

⋃
i∈N V̂i is a σ-locally finite

open (in X) refinement of Û in f−1Oy. But f is regular; hence(by Theorem 1.6) f
is paracompact.

(2)→ (1). Let Û be an open cover of f−1y. For every x ∈ f−1y there exists
Wx open (in X) neighborhood of x and Oy(x) ∈ N(y) such that [Wx]f−1Oy(x)

⊆
U(x) ∩ f−1Oy(x), where Wx ⊆ U(x) for some U(x) ∈ Û . Let Ŵ = {Wx;x ∈ f−1y}.
Ŵ is an open cover of f−1y, so that there exists Oy ∈ N(y) such that f−1Oy ⊆⋃
Ŵ and Ŵ ∧ f−1Oy has a star-countable open (in X) refinement in f−1Oy, say

V̂ = {Vα;α ∈ ∆}. Since V̂ is an open cover of f−1y and f is a paracompact
mapping, there exists O∗y ∈ N(y) such that O∗y ⊆ Oy, f

−1Oy ⊆
⋃
V̂ and V̂ ∧f−1Oy

has a locally finite open (in X) refinement in f−1O∗y, say V̂ ∗. If V ∈ V̂ ∗ , then there

exists α(V ) ∈ ∆ such that V ⊆ Vα(V ). For every V ∈ V̂ ∗ fix such an α(V ) and let

Mα =
⋃{V ; α(V ) = α and V ∈ V̂ ∗}. It is clear that Mα ⊆ Vαfor every α ∈ ∆;

hence {Mα;α ∈ ∆} is an open (in X) cover of f−1O∗y. Since V̂ = {Vα;α ∈ ∆}is
star-countable and Mα ⊆ Vα ,the family {Mα;α ∈ ∆}is star-countable, and since
V̂ ∗ is locally finite in f−1O∗y, there exist Ux (open subset of f−1O∗y) such that Ux

intersects finitely many elements of V̂ ∗ for every x ∈ f−1O∗y(and so finitely many
elements of {Mα;α ∈ ∆}); hence the family {Mα;α ∈ ∆} is a star-countable
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locally finite open (in X) refinement of V̂ ∧ f−1O∗y in f−1O∗y, so that the family

{[Mα]f−1O∗
y
}α∈∆ is a star-countable locally finite (in X) refinement of V̂ ∧ f−1O∗y

in f−1O∗y. For every x ∈ X let O∗y(x) = O∗y ∩ Oy(x), and for every α ∈ ∆ let

M∗
α = [Mα]X ∩ f−1O∗y(x) and M∗∗

α = M∗
α

⋃
Mα. Then, one readily proves that

M̂ = {M∗∗
α }α∈∆ is a star-countable locally finite refinement of Û ∧f−1O∗y inf−1O∗y

consisting of y-closed subsets. This completes the proof.

The next two lemmas will be used to show that the conditions in Theorems
2.7 and 2.8 are equivalent in the realm of functionally normal mappings. First,
we shall define functionally open sets for mappings.

Definition 2.9 Let f : X → Y be any mapping. For a subset A of X we say that
A is y-functionally open if there exists Oy ∈ N(y) and a continuous real valued
function g : f−1Oy → I such that g−1((0, 1]) = A ∩ f−1Oy.

Lemma 2.10 If f : X → Y is a continuous mapping and {U∗i ; i ∈ N} is an
open cover of f−1y such that each U∗i is y-functionally open, then there exists a
star-finite open cover of f−1y and refines {U∗i ; i ∈ N}.

Proof. For every i∈N there exists Oi ∈ N (y) and a continuous real valued
function αi : f−1Oi → I such that α−1

i ((0, 1]) = U∗i ∩f−1Oi. Let Ui = U∗i ∩f−1Oi.
It is clear that {Ui; i ∈ N} is an open cover of f−1y refinement of {U∗i ; i ∈ N}.
For every i ∈ N let fi : X → I be defined such that

fi(x) =

{
αi(x); x ∈ f−1Oi

0 x ∈ X − f−1Oi

Note that fi is not necessarily a continuous function. Let g : X → I be
defined such that g(x) =

∑∞
i=1

fi(x)
2i

. g is not necessarily continuous. For every
k ∈ N set Vk = g−1(( 1

k
, 1]) and Fk = g−1([ 1

k
, 1]). Note that Vk is not necessarily an

open subset of X, and Fk is not necessarily a closed subset of X. For every i ≤ k
let Ui,k = Ui∩ (Vk+1−Fk−1) . We shall show that the family Û = {Int(Ui,k); i, k ∈
N, i ≤ k} is a star-finite open cover of f−1y and refines {U∗i ; i ∈ N}. First, one
can readily prove that {Ui,k; i, k ∈ N} is a star-finite refinement of {U∗i ; i ∈ N}, so

that the family Û = {Int(Ui,k); i, k ∈ N and i ≤ k} is a star-finite refinement of

{U∗i ; i ∈ N}. It remains to show that the family Û = {Int(Ui,k); i, k ∈ N and i ≤
k} covers f−1y. If x ∈ f−1y, then x ∈ Ui for some natural number i ; which
implies that fi(x) 6= 0 and so g(x) 6= 0, so that there exists a natural number m
such that g(x) > 1

m
, i.e., x ∈ Vm ⊆ Fm .Let k be the smallest natural number

such that x ∈ Fk. Since Fk ⊆ Vk+1, we have x ∈ Vk+1 and x /∈ Fk−1. It is clear
that Fk ⊆

⋃
i≤k Ui, so that there exists j ≤ k such that x ∈ Uj; which implies

that x ∈ Uj,k. Now, we shall show that x ∈ int(Uj,k). Since x ∈ Vk+1, we have

g(x) =
∑∞
i=1

fi(x)
2i

> 1
k+1

, so that there exists no ∈ N such that
∑no
i=1

fi(x)
2i

> 1
k+1

.
For every i = 1, 2, ..., no let si = 0 whenever fi(x) = 0, and if fi(x) 6= 0 let si be
any real number such that si < fi(x) and

∑∞
i=1

si
2i
> 1

k+1
; furthermore let

Mi =

{
f−1
i Oi if fi(x) = 0

f−1
i ((si, 1] = α−1

i ((si, 1] if fi(x) 6= 0
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Set Hx = ∩no
i=1Mi. It is clear that Hx is an open subset of X and contains

x. We shall show that Hx ⊆ Vk+1. But if t ∈ Hx, then t ∈ f−1
i ([si, 1]) for every

i = 1, 2, ..., no, so that fi(t) ≥ si and g(t) =
∑∞
i=1

fi(t)
2i
≥ ∑no

i=1
fi(t)

2i
≥ ∑no

i+1
si
2i
>

1
k+1

; hence t ∈ g−1(( 1
k+1

, 1]) = Vk+1 , which implies that Hx ⊆ Vk+1. On the other

hand, since x /∈ Fk−1, we’ve g(x) < 1
k−1

. Let s ∈ (g(x), 1
k−1

) and no ∈ N such

that
∑∞
i=no+1

1
2i
< 1

k−1
− s. For every i ≤ no let si = 1 whenever fi(x) = 1 and let

si ∈ (fi(x), 1) such that
∑no
i=1

si
2i
< s whenever fi(x) 6= 1; furthermore let

Ai =

 f−1
i Oi = α−1

i ([0, 1]) iffi(x) = 1,

α−1
i ([0, si]) iffi(x) 6= 1.

Set H∗x = ∩no
i=1Ai. It is clear that H∗x is open in X and contains x. We shall

show hat H∗x ∩ Fk−1 = Φ. If t ∈ H∗x, then t ∈ Ai for every i = 1, 2, .., n0, so that
fi(x) ≤ si for every si , which implies that

g(t) =
∞∑
i=1

fi(t)

2i
=

no∑
i=1

fi(t)

2i
+

∞∑
i=no+1

fi(t)

2i

≤
no∑
i=1

fi(t)

2i
+

∞∑
i=no+1

1

2i

<
no∑
i=1

si
2i

+
1

k − 1
− s

< s+
1

k − 1
− s =

1

k − 1

So that t /∈ g−1([ 1
k−1

, 1]) = Fk−1 and H∗x∩Fk−1 = Φ. Let H∗∗x = H∗x∩Hx∩Uj.
H∗∗x is an open (in X) neighborhood of x contained in Uj,k; more precisely x ∈
Int(Uj,k), so that the family Û = {Int(Ui,k); i, k ∈ N, i ≤ k} covers f−1y. This
completes the proof.

Lemma 2.11 If f : X → Y is a countably paracompact functionally normal
mapping, then for every open (in X) cover Û = {Ui; i ∈ N} of f−1y there exists
Oy ∈ N(y) such that f−1Oy ⊆

⋃
Û and Û ∧ f−1Oy has a star-finite open (in X)

refinement in f−1Oy.

Proof. By Theorem 1.8, there exists Oy ∈ N(y) such that f−1Oy ⊆
⋃
Û and

Û ∧ f−1Oy has a refinement {Fi; i ∈ N} in f−1Oy such that Fi ⊆ Ui for every i,
and there exists Oi ∈ N(y) for every i such that Oi ⊆ Oy, Fi is a closed subset
of f−1Oi and

⋃∞
i=1 Fi = f−1Oy. Since f is functionally normal, the mapping

fOi
: f−1Oi → Oi is functionally normal for every i, so that there exists O∗i ∈ N(y)

such that O∗i ⊆ Oi and there exists a continuous function αi : f−1O∗i → I such
that αi(Fi ∩ f−1O∗i ) = 1 and αi((f

−1O∗i ) − Ui) = 0. Set Vi = α−1
i ((0, 1]). Since

Fi ∩ f−1O∗i ⊆ V ∗i , we have the family V̂ = {Vi; i ∈ N} is an open cover of f−1y
consisting of y-functionally open subsets. By Lemma 2.10, there exists a star-
finite open (in X) cover Ŵ of f−1y refines V̂ = {Vi; i ∈ N}. Since f is closed,
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there exists O∗y ∈ N(y) such thatf−1O∗y ⊆
⋃
Ŵ . It is clear that f−1O∗y ∧ Ŵ is

a star-finite open (in X) refinement of f−1O∗y ∧ Û in f−1O∗y. This completes the
proof.

Question 2.12 Is Lemma 2.11 true if the functional normality is replaced by
normality?

The following theorem is a characterization of strongly paracompact map-
pings.

Theorem 2.13 If f : X → Y is a functionally normal mapping, then the fol-
lowing conditions are equivalent.

1) f is strongly paracompact.

2) For every y ∈ Y and every open (in X) cover Û = {Uα}α∈∆ of f−1y there
exists Oy ∈ N(y) such that f−1Oy ⊆

⋃
α∈∆

Uα and Û ∧ f−1Oy has a y-closed

star-finite locally finite refinement in f−1Oy.

3) For every y ∈ Y and every open (in X) cover Û = {Uα}α∈∆ of f−1y there
exists Oy ∈ N(y) such that f−1Oy ⊆

⋃
α∈∆

Uα and Û ∧ f−1Oy has a star-

countable y-closed locally finite refinement in f−1Oy.

4) For every y ∈ Y and every open (in X) cover Û = {Uα}α∈∆of f−1y there ex-
ists Oy ∈ N(y)such thatf−1Oy ⊆

⋃
α∈∆

Uα and Û ∧f−1Oy has a star-countable

open (in X) refinement in f−1Oy.

Proof. By Theorems 2.7 and 2.8 we have 1) is equivalent to 2) and 3) is equivalent
to 4). It is clear that 2) implies 3). It suffices to show that 4) implies 1).

Assume 4). First, note that f is paracompact (see the proof of Theorem 2.7).
Now, we shall show that f is a strongly paracompact mapping.

Let Û be an open (in X) cover of f−1y. Then there exists Oy ∈ N(y)such that

f−1Oy ⊆
⋃
Û and Û ∧ f−1Oy has a starcountable open refinementV̂ in f−1Oy. We

can write V̂ =
⋃
t∈T V̂t such that {V̂t ∈ T} is the set of all components of V̂ . But

for every t ∈ T we have V̂t = {Vt,i; i ∈ N}. Set Ct =
⋃
i∈N Vt,i. Then Ct is a closed

and open subset of f−1Oy for every t ∈ T . Since f is a paracompact functionally
normal mapping, we have fOy

: f−1Oy → Oy is a paracompact functionally normal
mapping, and since Ct is a closed subset of f−1Oy, we have ft = f |Ct : Ct → Oy

is a paracompact (and so a countably paracompact) functionally normal mapping
for every t ∈ T . But V̂t is an open cover of Ct so it is an open cover of f−1

t y and

(by Lemma 2.11) there exists Ot ∈ N(y) such that f−1
t Ot ⊆

∞⋃
i=1

Vt,i and V̂t∧f−1
t Ot

has a star-finite open (in X) refinement V̂ ∗t in f−1
t Ot. It is clear that V̂ ∗ =

⋃
t∈T

V̂ ∗t

is an open (in X ) cover of f−1y. Since the family Ĉ = {Ct; t ∈ T} is pairwise
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disjoint and V̂ ∗t is star-finite for every t ∈ T , we have V̂ ∗ =
⋃
t∈T

V̂ ∗t is star-finite,

and since f is closed , there exists O∗y ∈ N(y) such that f−1O∗y ⊆
⋃
V̂ ∗, so that

f−1O∗y ∧ V̂ ∗ is a star-finite open (in X) refinement of f−1O∗y ∧ Û in f−1O∗y. This
completes the proof.

Corollary 2.14 Every Lindelöf functionally normal mapping is strongly para-
compact.
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