COMPACTIFICATION OF A SOFT FUZZY PRODUCT C-SPACE

T. Yogalakshmi

E. Roja

M.K. Uma

Department of Mathematics Sri Sarada College for Women Salem-636016 Tamil Nadu India e-mail: YogaPrithvi_ssp@yahoo.co.in

Abstract. In this paper, the soft fuzzy product C-structure is introduced and some of the relevant properties of the associated product map on soft fuzzy product C-space are studied. Moreover, compactifying the soft fuzzy product C-space through the soft fuzzy product generalized topological space on $\mathcal{Q}(X_1 \times X_2)$ is established.

Keywords: Soft fuzzy product C-structure, functor, associated product map, weakly induced soft fuzzy product C#-space, soft fuzzy $C^{\#}$ -quotient product map, soft fuzzy product dense set, soft fuzzy product strong generalized topological space, soft fuzzy \mathfrak{G} -compact space.

2000 Mathematics Subject Classification: 54A40, 03E72.

1. Introduction

The fuzzy concept has penetrated almost all branches of Mathematics since the introduction of the concept of fuzzy set by Zadeh [8]. Fuzzy sets have applications in many fields such as information [4] and control [5]. The theory of fuzzy topological spaces was introduced and developed by C.L.Chang [2]. Several properties on fuzzy product topological spaces were discussed by K.K. Azad [1].

The notions of Soft fuzzy set over a poset I and soft fuzzy topological space was introduced by Ismail U. Tiryaki [6]. The notion of *C*-set in general topology was introduced by E. Hatir, T. Noiri and S. Yuksel [3]. The concept of a soft fuzzy C-open set in a soft fuzzy topological space is introduced by T. Yogalakshmi, E. Roja, M.K. Uma [7]. In this paper, a new structure, called soft fuzzy product C-structure on the soft fuzzy product space is introduced. An associated product map is defined and some of its properties are studied. Moreover, a compactification of the soft fuzzy product C-space through the soft fuzzy product strong generalized topological space is established.

2. Preliminaries

Definition 2.1. [7] Let X be a nonempty set. Let μ be a fuzzy subset of X such that $\mu : X \to [0, 1]$ and M be any crisp subset of X. Then, the ordered pair (μ, M) is called as a *soft fuzzy set* in X. The family of all soft fuzzy subsets of X, will be denoted by **SF(X)**.

Definition 2.2. [7] Let X be a non-empty set. Then, the *complement* of a soft fuzzy set (μ, M) is defined as $(\mu, M)' = (1 - \mu, X|M)$

Definition 2.3. [7] Let X be a non-empty set and the soft fuzzy sets A and B be in the form,

$$A = \{(\mu, M) : \mu(x) \in I^X, \forall x \in X, M \subseteq X\}$$
$$B = \{(\lambda, N) : \lambda(x) \in I^X, \forall x \in X, N \subseteq X\}$$

Then,

- (1) $A \sqsubseteq B \Leftrightarrow \mu(x) \le \lambda(x), \forall x \in X, M \subseteq N.$
- (2) $A = B \Leftrightarrow \mu(x) = \lambda(x), \forall x \in X, M = N.$
- (3) $A \sqcap B \Leftrightarrow \mu(x) \land \lambda(x), \forall x \in X, M \cap N.$
- (4) $A \sqcup B \Leftrightarrow \mu(x) \lor \lambda(x), \forall x \in X, M \cup N.$

Definition 2.4. [7] A soft fuzzy topology on a non-empty set X is a family τ of soft fuzzy sets in X satisfying the following axioms:

- (1) $(0, \phi), (1, X) \in \tau.$
- (2) For any family of soft fuzzy sets $(\lambda_j, N_j) \in \tau$, $j \in J$, $\Rightarrow \sqcup_{j \in J}(\lambda_j, N_j) \in \tau$.
- (3) For any finite number of soft fuzzy sets $(\lambda_j, N_j) \in \tau, j = 1, 2, 3, ..., n \Rightarrow \prod_{i=1}^{n} (\lambda_j, N_j) \in \tau.$

Then, the pair (X, τ) is called as a *soft fuzzy topological space*. (in short, **SFTS**)

Any soft fuzzy set in τ is said to be a *soft fuzzy open set* (in short, **SFOS**) in X.

The complement of SFOS in a SFTS (X, τ) is called as a *soft fuzzy closed set*, denoted **SFCS** in X.

Definition 2.5. [1] The product $\lambda \times \mu$ of a fuzzy set λ of X and a fuzzy set μ of Y is a fuzzy set of $X \times Y$, defined by $(\lambda \times \mu) \langle x, y \rangle = \min(\lambda(x), \mu(y))$, for each $\langle x, y \rangle \in X \times Y$.

Definition 2.6. [1] The product $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ of mappings $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$, defined by $(f_1 \times f_2) \langle x_1, x_2 \rangle = (f_1(x_1), f_2(x_2))$, for each $\langle x_1, x_2 \rangle \in X_1 \times X_2$.

3. On soft fuzzy product C-space

Definition 3.1. Let $\langle x_1, x_2 \rangle \in X_1 \times X_2$ and $\lambda : X_1 \times X_2 \rightarrow [0, 1]$. Define,

$$\langle x_1, x_2 \rangle_{\lambda} \langle y_1, y_2 \rangle = \begin{cases} \lambda \ (0 < \lambda \le 1), & \text{if } \langle x_1, x_2 \rangle = \langle y_1, y_2 \rangle \\ 0, & \text{otherwise} \end{cases}$$

Then, the soft fuzzy set $(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$ is called as the *soft fuzzy point* (in short, **SFP**) in $SF(X_1 \times X_2)$, with *support*, $\langle x_1, x_2 \rangle$ and *value*, λ .

Definition 3.2. Let (λ_1, N_1) and (λ_2, N_2) be any two soft fuzzy sets. Then, the soft fuzzy product set is defined as $(\lambda_1, N_1) \times (\lambda_2, N_2) = (\lambda_1 \times \lambda_2, N_1 \times N_2)$

Definition 3.3. Let (X_1, τ_1) and (X_2, τ_2) be any two soft fuzzy topological spaces. The collection $\mathcal{B} = \{(\lambda_1 \times \lambda_2, N_1 \times N_2) : (\lambda, N) \in \tau_1, (\mu, M) \in \tau_2 \& N \times M \subseteq X_1 \times X_2\}$ forms an open base of a soft fuzzy topology in $X_1 \times X_2$.

The soft fuzzy topology in $X_1 \times X_2$, induced by \mathcal{B} is called as the *soft fuzzy* product topology of τ_1 and τ_2 , denoted by $\tau_1 \times \tau_2$.

The ordered pair $(X_1 \times X_2, \tau_1 \times \tau_2)$, which means the product of (X_1, τ_1) and (X_2, τ_2) , is called the *soft fuzzy product topological space* (in short, *SFPTS*).

Moreover, the member of a soft fuzzy product topology is called as a *soft fuzzy product open set*.

Definition 3.4. Let $(X_1 \times X_2, \tau_1 \times \tau_2)$ be a SFPTS and (λ, N) be a soft fuzzy product set in $X_1 \times X_2$. Then, the soft fuzzy product interior and soft fuzzy product closure of (λ, N) are defined by,

$$cl(\lambda, N) = \sqcap \{(\mu, M) : (\mu, M) \text{ is a soft fuzzy closed set in } X_1 \times X_2$$

and $(\lambda, N) \sqsubseteq (\mu, M) \}$
$$int(\lambda, N) = \sqcup \{(\gamma, L) : (\gamma, L) \text{ is a soft fuzzy open set in } X_1 \times X_2$$

and $(\lambda, N) \sqsupseteq (\gamma, L) \}$

Definition 3.5. Let $(X_1 \times X_2, \tau_1 \times \tau_2)$ be a SFPTS. A soft fuzzy product set (λ, N) is said to be *soft fuzzy product* α^* -open, if $int(\lambda, N) = int(cl(int(\lambda, N)))$.

Definition 3.6. Let $(X_1 \times X_2, \tau_1 \times \tau_2)$ be a SFPTS. A soft fuzzy product set (λ, N) is said to be *soft fuzzy product C-open* (in short, *SFPcOS*), if

$$(\lambda, N) = (\mu, M) \sqcap (\gamma, K)$$

where, (μ, M) is a soft fuzzy product open set and (γ, K) is a soft fuzzy product α^* -open set.

The complement of soft fuzzy product C-open set is called as a *soft fuzzy* product C-closed set (in short, SFPcCS).

Definition 3.7. A soft fuzzy product C-structure on a non-empty set $X_1 \times X_2$ is a family $\mathfrak{st}(\tau_1 \times \tau_2)$ of soft fuzzy product C-open sets in $X_1 \times X_2$ satisfying the following axioms:

- (1) $(0, \phi), (1, X) \in \tau.$
- (2) For any finite number of soft fuzzy C-open sets $(\lambda_j, N_j) \in \tau, j = 1, 2, 3, ...n,$ $\Rightarrow \sqcap_{j=1}^n (\lambda_j, N_j) \in \tau.$

Then, the pair $(X_1 \times X_2, \mathfrak{st}(\tau_1 \times \tau_2))$ is called as a *soft fuzzy product C-space*. (in short, $SFPC\mathfrak{st}(X_1 \times X_2)$)

Any soft fuzzy product set (λ, N) in $\mathfrak{st}(\tau_1 \times \tau_2)$ is said to be a *soft fuzzy* product C-open set in $X_1 \times X_2$.

The complement of a soft fuzzy product C-open set in $SFPC\mathfrak{st}(X_1 \times X_2)$ is called as a *soft fuzzy product C-closed set*.

Definition 3.8. Let $(X_1 \times X_2, \mathfrak{st}(\tau_1 \times \tau_2))$ and $(Y_1 \times Y_2, \mathfrak{st}(\sigma_1 \times \sigma_2))$ be any soft fuzzy product C-spaces. A function $f: X \to Y$ is said to be *soft fuzzy* $C^{\#}$ *continuous product map*, if the inverse image of every soft fuzzy product C-open set in $(Y_1 \times Y_2, \mathfrak{st}(\sigma_1 \times \sigma_2))$ is a soft fuzzy product C-open set in $(X_1 \times X_2, \mathfrak{st}(\tau_1 \times \tau_2))$.

Definition 3.9. Let $(X_1 \times X_2, \mathfrak{st}(\tau_1 \times \tau_2))$ and $(Y_1 \times Y_2, \mathfrak{st}(\sigma_1 \times \sigma_2))$ be any soft fuzzy product topological spaces. A surjective function $f : X \to Y$ is said to be *soft fuzzy* $C^{\#}$ -quotient product map, if the inverse image of every soft fuzzy product C-open set in $(Y_1 \times Y_2, \mathfrak{st}(\sigma_1 \times \sigma_2))$ is a soft fuzzy product C-open set in $(X_1 \times X_2, \mathfrak{st}(\tau_1 \times \tau_2)).$

Definition 3.10. Let $(X_1 \times X_2, T_1 \times T_2)$ be a product topological space and I = [0, 1] equipped with the usual topology, a lower semi $C^{\#}$ -continuous pair (μ, M) , where $\mu : (X_1 \times X_2, T_1 \times T_2) \to I$ with a C-open set $\mu^{-1}((\alpha, 1])$ and $M \subseteq X_1 \times X_2$ is also a C-open set in $X_1 \times X_2$, for all $\alpha \in [0, 1]$.

Definition 3.11. A soft fuzzy product C-space $(X_1 \times X_2, \mathfrak{st}(\tau_1 \times \tau_2))$ is said to be a weakly induced soft fuzzy product $C^{\#}$ -space, which is the soft fuzzy product C-space induced by a topological space $(X_1 \times X_2, T_1 \times T_2)$ if the following conditions hold :

- (a) $T_1 \times T_2 = \{A \subset X_1 \times X_2 \text{ is a product C-open set } | (\chi_A, A) \in St(\tau_1 \times \tau_2)\}$
- (b) Every $(\mu, M) \in \mathfrak{st}(\tau_1 \times \tau_2)$ is a lower semi $C^{\#}$ -continuous pair.

Definition 3.12. Let PrTop be the category of all the product topological spaces and the continuous product maps. Let SFPrCst be the category of all the soft fuzzy product C-space and SF C#-continuous product maps. Define a functor, ω : $PrTop \rightarrow SFPrCst$, which associates to any product topological space $(X_1 \times X_2, \tau_1 \times \tau_2)$, the soft fuzzy product C-space $(X_1 \times X_2, \omega(\tau_1 \times \tau_2))$, where $\omega(\tau_1 \times \tau_2)$ is the totality of all lower semi $C^{\#}$ -continuous pair. Then, $(X_1 \times X_2, \omega(\tau_1 \times \tau_2))$ is called as the weakly induced soft fuzzy product $C^{\#}$ -space by $(X_1 \times X_2, \tau_1 \times \tau_2)$.

Proposition 3.1. For mappings $f_i : X_i \to Y_i$ and soft fuzzy sets (λ_i, N_i) of Y_i , (i = 1, 2); we have $(f_1 \times f_2)^{-1}(\lambda_1 \times \lambda_2, N_1 \times N_2) = f_1^{-1}(\lambda_1, N_1) \times f_2^{-1}(\lambda_2, N_2)$.

Proof. The proof is clear.

Proposition 3.2. For mappings $f_i : X_i \to Y_i$ and soft fuzzy sets (λ_i, N_i) of Y_i , (i = 1, 2); we have $(f_1 \times f_2)(\lambda_1 \times \lambda_2, N_1 \times N_2) \sqsubseteq f_1(\lambda_1, N_1) \times f_2(\lambda_2, N_2)$.

Proof. The proof is clear.

4. Properties of the associated product map on soft fuzzy product C-space

Definition 4.1. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two maps. Let $X_1 \times X_2$ and $Y_1 \times Y_2$ be two product sets and $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ be a product map. Then, define the product associated map $f_1 \times f_2$ as $f_1 \times f_2(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) = f_1 \times f_2(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$, for each soft fuzzy point $(\langle x_1, x_2 \rangle \lambda, \{\langle x_1, x_2 \rangle\})$ in $SFPC\mathfrak{st}(X_1 \times X_2)$.

Proposition 4.1. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two onto maps. Let $X_1 \times X_2$ and $Y_1 \times Y_2$ be two product sets. If $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is a product onto map, then for each soft fuzzy point $(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$ in $SFPC\mathfrak{st}(X_1 \times X_2(, f_1 \times f_2(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}))$ is the soft fuzzy point in $SFPC\mathfrak{st}(Y_1 \times Y_2)$ that takes the value λ in $f_1 \times f_2 \langle x_1, x_2 \rangle$.

Proof. For $0 < \lambda \leq 1$,

$$f_1 \times f_2(\langle x_1, x_2 \rangle_\lambda, \{\langle x_1, x_2 \rangle\}) = f_1 \times f_2(\langle x_1, x_2 \rangle_\lambda, \{\langle x_1, x_2 \rangle\})$$
$$= (f_1 \times f_2 \langle x_1, x_2 \rangle_\lambda, f_1 \times f_2(\{\langle x_1, x_2 \rangle\}))$$
$$= (f_1 \times f_2(\langle x_1, x_2 \rangle_\lambda), \{\langle f_1(x_1), f_2(x_2) \rangle\})$$

where, $f_1 \times f_2(\langle x_1, x_2 \rangle_{\lambda})(\langle y_1, y_2 \rangle)$

$$= \begin{cases} \sup_{\langle x,y\rangle\in(f_1\times f_2)^{-1}(\langle y_1,y_2\rangle)} \langle x_1,x_2\rangle_\lambda (\langle x,y\rangle), & \text{if } (f_1\times f_2)^{-1}(\langle y_1,y_2\rangle) \neq \phi \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \lambda, & \text{if}(f_1 \times f_2)^{-1}(\langle y_1, y_2 \rangle) \neq \phi \\ 0, & \text{otherwise} \end{cases}$$

Then, $f_1 \times f_2(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$ is the soft fuzzy point in $SFPC\mathfrak{st}(Y_1 \times Y_2)$ that takes the value λ in $f_1 \times f_2(\langle x_1, x_2 \rangle)$.

Proposition 4.2. Let $f_1 : X_1 \to Y_1$, $f_2 : X_2 \to Y_2$, $g_1 : Y_1 \to Z_1$ and $g_2 : Y_2 \to Z_2$ be any maps. Let $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ and $g_1 \times g_2 : Y_1 \times Y_2 \to Z_1 \times Z_2$ be the two product onto maps. Then, $(g_1 \times g_2) \circ (f_1 \times f_2) = (g_1 \times g_2) \circ (f_1 \times f_2)$.

Proof. By using the above Property 4.1, we have for each soft fuzzy point $(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$ in $SFPC\mathfrak{st}(X_1 \times X_2)$

$$\begin{array}{l} (g_1 \times g_2) \circ (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) \\ = (g_1 \times g_2) \circ (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) \\ = (g_1 \times g_2)((f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})) \\ = (g_1 \times g_2)((\widetilde{f_1 \times f_2})(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})) \\ = (\widetilde{g_1 \times g_2})((\widetilde{f_1 \times f_2})(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})) \\ = (\widetilde{g_1 \times g_2}) \circ (\widetilde{f_1 \times f_2})(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$$

Thus, $(g_1 \times g_2) \circ (f_1 \times f_2) = (g_1 \times g_2) \circ (f_1 \times f_2).$

Proposition 4.3. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two onto maps. Let $X_1 \times X_2$ and $Y_1 \times Y_2$ be two product sets. Let $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is a product onto map. If $(f_1 \times f_2)$ is the identity map, then $f_1 \times f_2$ is also the identity map.

Proof. Since $(f_1 \times f_2)$ is the identity map, $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) = \langle (x_1, x_2)_{\lambda}, \{(x_1, x_2)\} \rangle$, for each soft fuzzy point $(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$ in $SFPC\mathfrak{st}(X_1 \times X_2)$. This implies that, $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) = \langle (x_1, x_2)_{\lambda}, \{(x_1, x_2)\} \rangle$, for each soft fuzzy point $(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$. Now, by the definition of the associated product map, $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) = \langle (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) = \langle (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) = \langle (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) = \langle (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle f_1(x_1), f_2(x_2) \rangle\} \rangle$. This implies that, $((f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}), \{\langle f_1(x_1), f_2(x_2) \rangle\})$ is the soft fuzzy point which takes the value λ in $\langle x_1, x_2 \rangle$. Thus, $(f_1 \times f_2)(\langle x_1, x_2 \rangle) = \langle x_1, x_2 \rangle$, for each $\langle x_1, x_2 \rangle \in X_1 \times X_2$. Hence, $f_1 \times f_2$ is the identity map.

Proposition 4.4. Let $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ be any two maps.

- (1) If $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is a product onto map, then $(f_1 \times f_2)$ is also the product onto map.
- (2) If $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is a product one- to-one map, then $(f_1 \times f_2)$ is also the product one-to-one map.

Proof. (1) For each $(\langle y_1, y_2 \rangle_{\alpha}, \{\langle y_1, y_2 \rangle\})$ soft fuzzy point in $SFPC\mathfrak{st}(Y_1 \times Y_2)$, we have $\langle y_1, y_2 \rangle \in Y_1 \times Y_2$, then there exists at least $\langle x_1, x_2 \rangle \in X_1 \times X_2$ such that $(f_1 \times f_2) \langle x_1, x_2 \rangle = \langle y_1, y_2 \rangle$. Now, $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = ((f_1 \times f_2)(\langle x_1, x_2 \rangle_{\alpha}), (f_1 \times f_2)(\{\langle x_1, x_2 \rangle\}))$ which takes the value α in $(f_1 \times f_2) \langle x_1, x_2 \rangle$ and since $(f_1 \times f_2) \langle x_1, x_2 \rangle = \langle y_1, y_2 \rangle$, this

shows that $((f_1 \times f_2)(\langle x_1, x_2 \rangle_{\alpha}), (f_1 \times f_2)(\{\langle x_1, x_2 \rangle\})) = (\langle y_1, y_2 \rangle_{\alpha}, \{\langle y_1, y_2 \rangle\}).$ Therefore, $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (\langle y_1, y_2 \rangle_{\alpha}, \{\langle y_1, y_2 \rangle\}).$ Thus, $f_1 \times f_2$ is the product onto map.

(2) If $(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}), (\langle x'_1, x'_2 \rangle_{\beta}, \{\langle x'_1, x'_2 \rangle\})$ are the two soft fuzzy points in $SFPC\mathfrak{st}(X_1 \times X_2)$ such that $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (f_1 \times f_2)(\langle x'_1, x'_2 \rangle_{\beta}, \{\langle x'_1, x'_2 \rangle\})$. This implies that $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (f_1 \times f_2)(\langle x'_1, x'_2 \rangle_{\beta}, \{\langle x'_1, x'_2 \rangle\})$. This shows $(f_1 \times f_2)\langle x_1, x_2 \rangle = (f_1 \times f_2)\langle x'_1, x'_2 \rangle$ and $\alpha = \beta$. Since $(f_1 \times f_2)$ is a one-to-one map, $\langle x_1, x_2 \rangle = \langle x'_1, x'_2 \rangle$ and $\alpha = \beta$, it follows

$$(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (\langle x_1', x_2' \rangle_{\beta}, \{\langle x_1', x_2' \rangle\}).$$

Thus, $\widetilde{f_1 \times f_2}$ is one-to-one.

Proposition 4.5. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two maps. If $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is a product one- to-one map, then $(f_1 \times f_2)^{-1} = (\widetilde{f_1 \times f_2})^{-1}$.

Proof. For each soft fuzzy point $(\langle y_1, y_2 \rangle_{\alpha}, \{\langle y_1, y_2 \rangle\})$ in $SFPC\mathfrak{st}(Y_1 \times Y_2)$ and by the hypothesis, there exists a unique $\langle x_1, x_2 \rangle \in X_1 \times X_2$ such that $(f_1 \times f_2) \langle x_1, x_2 \rangle = \langle y_1, y_2 \rangle$. It must be shown that $(f_1 \times f_2)^{-1}$ is well-defined. It is enough to show that $(f_1 \times f_2)^{-1}(\langle y_1, y_2 \rangle_{\alpha}, \{\langle y_1, y_2 \rangle\}) = (\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\})$. Otherwise, let $(f_1 \times f_2)^{-1}(\langle y_1, y_2 \rangle_{\alpha}, \{\langle y_1, y_2 \rangle\}) = (\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\})$ and $\alpha \neq \lambda$. Then, $(f_1 \times f_2)(\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\}) = (f_1 \times f_2)((f_1 \times f_2)^{-1}(\langle y_1, y_2 \rangle_{\alpha}, \{\langle y_1, y_2 \rangle\}))$ $= (f_1 \times f_2)(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\})$. Since $(f_1 \times f_2)$ is a one-to-one map, $(f_1 \times f_2)$ is one-to-one. Thus, $(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (\langle x_1, x_2 \rangle_{\lambda}, \{\langle x_1, x_2 \rangle\})$. But, $\lambda \neq \alpha$. Thus, it leads to a contradiction. Therefore, $(f_1 \times f_2)^{-1}(\langle y_1, y_2 \rangle_{\alpha}, \{\langle y_1, y_2 \rangle\})$ is uniquely the soft fuzzy point in $SFPC\mathfrak{st}(X_1 \times X_2)$ which takes the value α in $(f_1 \times f_2)^{-1} < y_1, y_2 >$. Thus, it is well defined.

$$\underbrace{\operatorname{Next,} (f_1 \times f_2) \quad (\langle y_1, y_2 \rangle_{\alpha}, \{\langle y_1, y_2 \rangle\}) = (f_1 \times f_2)^{-1} (\langle y_1, y_2 \rangle_{\alpha}, \{\langle y_1, y_2 \rangle\})}_{(f_1 \times f_2)^{-1} (\langle y_1, y_2 \rangle_{\alpha}, \{\langle y_1, y_2 \rangle\}). \text{ Hence, } (f_1 \times f_2)^{-1} = (f_1 \times f_2)^{-1}.$$

Proposition 4.6. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two maps. Let $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ be a product map.

- (a) If $(f_1 \times f_2)$ is onto, then $(f_1 \times f_2)$ is also onto.
- (b) If $(f_1 \times f_2)$ is one-to-one, then $(f_1 \times f_2)$ is also one-to-one.

Proof. (a) For each $\langle y_1, y_2 \rangle \in Y_1 \times Y_2$, let $(\langle y_1, y_2 \rangle_1, \{\langle y_1, y_2 \rangle\})$ be the soft fuzzy point in $SFPC\mathfrak{st}(Y_1 \times Y_2)$ which takes the value 1 in $\langle y_1, y_2 \rangle$. By hypothesis, there exists a soft fuzzy point $(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\})$ in $SFPC\mathfrak{st}(X_1 \times X_2)$ such that $\widetilde{f_1 \times f_2}(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (\langle y_1, y_2 \rangle_1, \{\langle y_1, y_2 \rangle\})$. Then,

 $f_1 \times f_2(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (\langle y_1, y_2 \rangle_1, \{\langle y_1, y_2 \rangle\}) \text{ and } (f_1 \times f_2)^{-1}(\langle y_1, y_2 \rangle) \neq \phi.$

Hence, $(f_1 \times f_2)$ is a onto map.

(b) Let
$$\langle x_1, x_2 \rangle$$
, $\langle x'_1, x'_2 \rangle \in X_1 \times X_2$ with $(f_1 \times f_2)(\langle x_1, x_2 \rangle) = (f_1 \times f_2)(\langle x'_1, x'_2 \rangle)$.
Now, $(f_1 \times f_2)(\langle x_1, x_2 \rangle_1, \{\langle x_1, x_2 \rangle\}) = (f_1 \times f_2)(\langle x_1, x_2 \rangle_1, \{\langle x_1, x_2 \rangle\}) = \langle (f_1 \times f_2)(\langle x_1, x_2 \rangle_1)(\langle y_1, y_2 \rangle) \rangle$, where, for $\lambda = 1$
 $(f_1 \times f_2)(\langle x_1, x_2 \rangle_1)(\langle y_1, y_2 \rangle)$
 $= \begin{cases} \sup_{\langle x,y \rangle \in (f_1 \times f_2)^{-1}(\langle y_1, y_2 \rangle) = \langle x, y \rangle \text{ otherwise}} \\ 0, & \text{otherwise} \end{cases}$
 $= \begin{cases} 1, & \text{if } \langle x_1, x_2 \rangle = \langle x, y \rangle \text{ and } (f_1 \times f_2)^{-1}(\langle y_1, y_2 \rangle) \neq \phi \\ 0, & \text{otherwise} \end{cases}$
 $= \begin{cases} 1, & \text{if } (f_1 \times f_2)(\langle x'_1, x'_2 \rangle) = \langle y_1, y_2 \rangle \\ 0, & \text{otherwise} \end{cases}$
 $= (f_1 \times f_2)(\langle x'_1, x'_2 \rangle_1)(\langle y_1, y_2 \rangle).$

This implies that, $(f_1 \times f_2)(\langle x_1, x_2 \rangle_1, \{\langle x_1, x_2 \rangle\}) = (f_1 \times f_2)(\langle x'_1, x'_2 \rangle_1, \{\langle x'_1, x'_2 \rangle\}).$ Since $(f_1 \times f_2)$ is a one-to-one map, $(\langle x'_1, x'_2 \rangle_1, \{\langle x'_1, x'_2 \rangle\}) = (\langle x_1, x_2 \rangle_1, \{\langle x_1, x_2 \rangle\}).$ This implies that, $\langle x_1, x_2 \rangle = \langle x'_1, x'_2 \rangle$. Thus, $(f_1 \times f_2)$ is a one-to-one map.

Definition 4.2. Let $(X_1 \times X_2, T_1 \times T_2)$ and $(Y_1 \times Y_2, S_1 \times S_2)$ be any two product topological spaces. A function $f: X \to Y$ is said to be a *C-irresolute product map*, if the inverse image of every product C-open set in $(Y_1 \times Y_2, S_1 \times S_2)$ is a product C-open set in $(X_1 \times X_2, T_1 \times T_2)$.

Proposition 4.7. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two maps. Let $(X_1 \times X_2, \tau_1 \times \tau_2)$ and $(Y_1 \times Y_2, \sigma_1 \times \sigma_2)$ be any two product topological spaces. If $f_1 \times f_2 : (X_1 \times X_2, \tau_1 \times \tau_2) \to (Y_1 \times Y_2, \sigma_1 \times \sigma_2)$ is a *C*-irresolute product map iff $f_1 \times f_2 : (X_1 \times X_2, \omega(\tau_1 \times \tau_2)) \to (Y_1 \times Y_2, \omega(\sigma_1 \times \sigma_2))$ is a soft fuzzy $C^{\#}$ -continuous product map.

Proof. For each soft fuzzy C-open set (μ, M) in $(Y_1 \times Y_2, \omega(\sigma_1 \times \sigma_2))$, we have $\mu^{-1}((\alpha, 1])$ is a C-open set in $\sigma_1 \times \sigma_2$ for all $\alpha \in [0, 1]$ and by hypothesis $(f_1 \times f_2)^{-1}(\mu^{-1}(\alpha, 1])$ is a C-open set in $\tau_1 \times \tau_2$. Then, $(\mu \circ (f_1 \times f_2))^{-1}(\alpha, 1]$ is a C-open set in $\tau_1 \times \tau_2$, and also $(f_1 \times f_2)^{-1}(M) \subseteq X_1 \times X_2$ is a C-open in $X_1 \times X_2$. Therefore, $<(\mu \circ (f_1 \times f_2)), (f_1 \times f_2)^{-1}(M) >$ is a soft fuzzy C-open set in $(X_1 \times X_2, \omega(\tau_1 \times \tau_2))$. Now,

$$\widetilde{(f_1 \times f_2)}^{-1}(\mu, M) = (f_1 \times f_2)^{-1}(\mu, M)$$

= $((f_1 \times f_2)^{-1}(\mu), (f_1 \times f_2)^{-1}(M))$
= $((\mu \circ (f_1 \times f_2)), (f_1 \times f_2)^{-1}(M))$

Thus, $(f_1 \times f_2)^{-1}(\mu, M)$ is a soft fuzzy C-open set in $(X_1 \times X_2, \omega(\tau_1 \times \tau_2))$. Hence, $(f_1 \times f_2)$ is a soft fuzzy $C^{\#}$ -continuous product map.

The converse part is clear by using the definition of the weakly induced soft fuzzy product $C^{\#}$ -space.

Definition 4.3. Let $(X_1 \times X_2, T_1 \times T_2)$ and $(Y_1 \times Y_2, S_1 \times S_2)$ be any two product topological spaces. A surjective function $f : X \to Y$ is said to be *C*-quotient product map, if the inverse image of every product C-open set in $(Y_1 \times Y_2, S_1 \times S_2)$ is a product C-open set in $(X_1 \times X_2, T_1 \times T_2)$.

Proposition 4.8. Let $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ be any two maps. Let $(X_1 \times X_2, \tau_1 \times \tau_2)$ and $(Y_1 \times Y_2, \sigma_1 \times \sigma_2)$ be any two product topological spaces. Then, $f_1 \times f_2 : (X_1 \times X_2, \tau_1 \times \tau_2) \to (Y_1 \times Y_2, \sigma_1 \times \sigma_2)$ is a C-quotient product map iff $f_1 \times f_2 : (X_1 \times X_2, \omega(\tau_1 \times \tau_2)) \to (Y_1 \times Y_2, \omega(\sigma_1 \times \sigma_2))$ is also a soft fuzzy $C^{\#}$ -quotient product map.

Proof. By the definition of a weakly induced soft fuzzy product C-space, A is a Copen set in $(\sigma_1 \times \sigma_2)$ iff (χ_A, A) is a soft fuzzy C-open set in $((Y_1 \times Y_2), \omega(\sigma_1 \times \sigma_2))$. Now,

$$\widetilde{(f_1 \times f_2)}^{-1}(\chi_A, A) = (f_1 \times f_2)^{-1}(\chi_A, A)$$

= $((f_1 \times f_2)^{-1}(\chi_A), (f_1 \times f_2)^{-1}(A))$
= $(\chi_A \circ (f_1 \times f_2), (f_1 \times f_2)^{-1}(A))$
= $(\chi_{(f_1 \times f_2)^{-1}(A)}, (f_1 \times f_2)^{-1}(A))$

That is, $(f_1 \times f_2)^{-1}(\chi_A, A) = (\chi_{(f_1 \times f_2)^{-1}(A)}, (f_1 \times f_2)^{-1}(A))$ is the soft fuzzy Copen set in $(X_1 \times X_2, \omega(\tau_1 \times \tau_2))$. Hence, $(f_1 \times f_2)^{-1}(A)$ is a C-open set in $\tau_1 \times \tau_2$. Therefore, $f_1 \times f_2$ is a C-quotient product map.

Conversely, let (μ, M) be a soft fuzzy C-open set in $(Y_1 \times Y_2, \omega(\sigma_1 \times \sigma_2))$ iff $\mu^{-1}(\alpha, 1]$ is a C-open set in $\sigma_1 \times \sigma_2$, and $M \subseteq Y_1 \times Y_2$ is a C-open set in $\sigma_1 \times \sigma_2$, for all $\alpha \in [0, 1]$. By the hypothesis, $(f_1 \times f_2)^{-1}(\mu^{-1}(\alpha, 1])$ is a C-open set in $\tau_1 \times \tau_2$ and $(f_1 \times f_2)^{-1}(M) \subseteq X_1 \times X_2$ is a C-open set in $\tau_1 \times \tau_2$, for each $\alpha \in [0, 1]$. That is, $((f_1 \times f_2)^{-1}(\mu), (f_1 \times f_2)^{-1}(M)) = (f_1 \times f_2)^{-1}(\mu, M)$ is a soft fuzzy C-open set in $(X_1 \times X_2, \omega(\tau_1 \times \tau_2))$. Hence, $f_1 \times f_2$ is also a soft fuzzy C[#]-quotient product map.

Definition 4.4. Let $(X_1 \times X_2, \omega(\tau_1 \times \tau_2))$ and $(Y_1 \times Y_2, \omega(\sigma_1 \times \sigma_2))$ be any two soft fuzzy product C-spaces and $f_1 \times f_2$ be a soft fuzzy product map from $X_1 \times X_2$ to $Y_1 \times Y_2$. Then, $f_1 \times f_2$ is called as a soft fuzzy $C^{\#}$ -homeomorphism from $X_1 \times X_2$ to $Y_1 \times Y_2$, if

- (i) $f_1 \times f_2$ is a soft fuzzy $C^{\#}$ -continuous product function.
- (ii) $f_1 \times f_2$ is a soft fuzzy bijective product function.
- (iii) Inverse of $f_1 \times f_2$ is also soft fuzzy $C^{\#}$ -continuous product function.

Proposition 4.9. Let $(X_1 \times X_2, \omega(\tau_1 \times \tau_2))$ and $(Y_1 \times Y_2, \omega(\sigma_1 \times \sigma_2))$ be two weakly induced soft fuzzy product C-spaces, and $(f_1 \times f_2)$ be a soft fuzzy C[#]-continuous map from $(X_1 \times X_2, \omega(\tau_1 \times \tau_2))$ onto $(Y_1 \times Y_2, \omega(\sigma_1 \times \sigma_2))$. If there exists a soft fuzzy C[#]-continuous map $(g_1 \times g_2)$ from $(Y_1 \times Y_2, \omega(\sigma_1 \times \sigma_2))$ to $(X_1 \times X_2, \omega(\tau_1 \times \tau_2))$ such that $(f_1 \times f_2) \circ (g_1 \times g_2) = 1_{Y_1 \times Y_2}$, then $(Y_1 \times Y_2, \omega(\sigma_1 \times \sigma_2))$ is soft fuzzy C[#]-homeomorphic with $(X_1 \times X_2) \mid R$, where R is the equivalence relation.

Proof. Since $(f_1 \times f_2) \circ (g_1 \times g_2) = 1_{Y_1 \times Y_2}$, then by using all the above propositions, we have $(f_1 \times f_2) \circ (g_1 \times g_2) = 1_{Y_1 \times Y_2}$. Then, the map $h_1 \times h_2 : (X_1 \times X_2) | R \to Y_1 \times Y_2$ induced by $f_1 \times f_2$ is a $C^{\#}$ -homeomorphism. Finally, by the above all propositions, $h_1 \times h_2$ is clearly a soft fuzzy $C^{\#}$ -homeomorphism.

5. Compactification of $SFPC\mathfrak{st}(X_1 \times X_2)$

Definition 5.1. Let $X_1 \times X_2$ be a product space. Let $(X_1 \times X_2) \mid R$ be a quotient set on $(X_1 \times X_2$ with R, an equivalence relation. Then, the collection of all quotient sets on $X_1 \times X_2$, denoted by $\mathcal{Q}(X_1 \times X_2)$.

Definition 5.2. Let R_x be an equivalence relation. Then, $X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle} = \{ [\langle x_1, x_2 \rangle], [\langle y_1, y_2 \rangle] : \langle x_1, x_2 \rangle \not R \langle z_1, z_2 \rangle, \langle y_1, y_2 \rangle R \langle z_1, z_2 \rangle, \forall \langle z_1, z_2 \rangle \in X_1 \times X_2 \}$ is also a quotient product set on $X_1 \times X_2$.

Definition 5.3. Let $(X_1 \times X_2, \mathfrak{st}(\tau_1 \times \tau_2))$ be a soft fuzzy product C-space and A be a subset of $X_1 \times X_2$. If χ_A is a characteristic function of A in $X_1 \times X_2$, then

 $\mathfrak{st}(\tau_1 \times \tau_2)_A = \{ (\lambda, N) \sqcap (\chi_A, A) : (\lambda, N) \in \mathfrak{st}(\tau_1 \times \tau_2) \}$

is called as a soft fuzzy product C-substructure. Now, the pair $(A, \mathfrak{st}(\tau_1 \times \tau_2)_A)$ is called as a soft fuzzy product C-subspace.

Let $(X_1 \times X_2, \mathfrak{st}(\tau_1 \times \tau_2))$ be a non compact soft fuzzy product C-space. Associated with each $(\mu, M) \in \mathfrak{st}(\tau_1 \times \tau_2)$, we define $(\mu, M)^* = (\mu^*, M^*) \in SF(\mathcal{Q}(X_1 \times X_2))$. For each $(X_1 \times X_2) \mid R \in \mathcal{Q}(X_1 \times X_2)$

 $\mu^*((X_1 \times X_2) \mid R) = \begin{cases} \mu(<x_1, x_2 >), & \text{if } \exists < x_1, x_2 > \in X_1 \times X_2 \\ & \text{such that } X_1 \times X_2 \mid R = X_1 \times X_2 \mid R_{<x_1, x_2>}; \\ \bigvee_{[<x_1, x_2>] \in X_1 \times X_2 \mid R} \mu(<x_1, x_2>), & \text{otherwise.} \end{cases}$

$$M^* = \begin{cases} \phi, & \text{if } M = \phi; \\ \mathcal{Q}(X_1 \times X_2), & \text{if } M = X_1 \times X_2; \\ \{(X_1 \times X_2) \mid R_{< x_1, x_2 > i}\}, & \text{if } < x_1, x_2 >_i \in M \subset X_1 \times X_2, i \in I. \end{cases}$$

Proposition 5.1. Under the previous conditions the following identities hold.

- (i) $(0, \phi)^* = (0, \phi).$
- (ii) $(1_{X_1 \times X_2}, X_1 \times X_2)^* = (1_{\mathcal{Q}(X_1 \times X_2)}, \mathcal{Q}(X_1 \times X_2)).$

Definition 5.4. A soft fuzzy product strong generalized topology on a non-empty set X is a family \mathfrak{G} of soft fuzzy product sets in X satisfying the following axioms:

(1) $(0, \phi), (1, X) \in \tau.$

(2) For any family of soft fuzzy sets $(\lambda_j, N_j) \in \tau, j \in J$, $\Rightarrow \sqcup_{j \in J} (\lambda_j, N_j) \in \tau$.

Then, the pair (X, \mathfrak{G}) is called as a *soft fuzzy product strong generalized topological space*. (in short, **SFPsGTS**)

Any soft fuzzy product set in \mathfrak{G} is said to be a *soft fuzzy product* \mathfrak{G} -open set (in short, **SFPGOS**) in X.

The complement of SFPGOS in a SFPsGTS (X, τ) is called as a *soft fuzzy* product \mathfrak{G} -closed set, denoted **SFPGCS** in X.

Proposition 5.2. Under the previous conditions the collection

$$\mathfrak{B}^* = \{(\mu, M)^* : (\mu, M) \in \mathfrak{st}(\tau_1 \times \tau_2)\}$$

is a base for some soft fuzzy product strong generalized topology on $\mathcal{Q}(X_1 \times X_2)$.

Proof.

(i) For $(\mu_1, M_1), (\mu_2, M_2) \in \mathfrak{st}(\tau_1 \times \tau_2)$ and $X_1 \times X_2 \mid R \in \mathcal{Q}(X_1 \times X_2)$, we have $(\bigsqcup_{i \in I} (\mu_i, M_i))^* = (\bigvee_{i \in I} \mu_i, \bigcup_{i \in I} M_i)^* = ((\bigvee_{i \in I} \mu_i)^*, (\bigcap_{i \in I} M_i)^*)$

$$\begin{split} (\bigvee_{i\in I} \mu_i)^* ((X_1 \times X_2) \mid R) \\ &= \begin{cases} (\bigvee \mu_i)(\langle x_1, x_2 \rangle), & \text{if } \exists \langle x_1, x_2 \rangle \in X_1 \times X_2 \\ & \text{such that } (X_1 \times X_2) \mid R = (X_1 \times X_2) \mid R_{\langle x_1, x_2 \rangle} ; \\ \bigvee_{[\langle x_1, x_2 \rangle] \in (X_1 \times X_2) \mid R} (\bigvee_{i\in I} \mu_i)(\langle x_1, x_2 \rangle), & \text{otherwise.} \end{cases} \\ &= \begin{cases} \bigvee_{i\in I} \mu_i(\langle x_1, x_2 \rangle), & \text{if } \exists \langle x_1, x_2 \rangle \in X_1 \times X_2 \\ & \text{such that } (X_1 \times X_2) \mid R = (X_1 \times X_2) \mid R_{\langle x_1, x_2 \rangle} ; \\ \bigvee_{i\in I} \bigvee_{[\langle x_1, x_2 \rangle] \in (X_1 \times X_2) \mid R} \mu_i(\langle x_1, x_2 \rangle), & \text{otherwise.} \end{cases} \\ &= \bigvee_{i\in I} \mu_i^*(X_1 \times X_2) \mid R). \end{split}$$

Thus $(\bigvee_{i \in I} \mu_i)^* = \bigvee_{i \in I} \mu_i^*$. Now,

$$(M_1 \cap M_2)^* = \begin{cases} \phi, & \text{if } M_1 \cap M_2 = \phi; \\ \mathcal{Q}(X_1 \times X_2), & \text{if } M_1 \cap M_2 = X_1 \times X_2; \\ X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle}, & \text{if } \langle x_1, x_2 \rangle \in M_1 \cap M_2 \subset X_1 \times X_2. \end{cases}$$

$$= \begin{cases} \phi, & \text{if } M_1 = \phi \text{ and } M_2 = \phi \text{ or } M_1 \neq \phi \text{ and } M_2 \neq \phi; \\ \mathcal{Q}(X_1 \times X_2), & \text{if } M_1 = X_1 \times X_2 \text{ and } M_2 = X_1 \times X_2; \\ X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle}, & \text{if } \langle x_1, x_2 \rangle \in M_1 \subset X_1 \times X_2 \\ & \text{and } \langle x_1, x_2 \rangle \in M_2 \subset X_1 \times X_2. \end{cases}$$
$$= M_1^* \cap M_2^*$$

Therefore $((\mu_1, M_1) \sqcap (\mu_2, M_2))^* = (\mu_1, M_1)^* \sqcap (\mu_2, M_2)^*$.

Thus, \mathfrak{b}^* forms a base for $\mathcal{Q}(X_1 \times X_2)$.

Definition 5.5. The soft fuzzy product C-space, generated by the base \mathfrak{b}^* of soft fuzzy product C-open sets, is denoted by $(\tau_1 \times \tau_2)^* = \tau_1^* \times \tau_2^*$.

Definition 5.6. Let $q: X_1 \times X_2 \to Q(X_1 \times X_2)$ defined by

$$\mathfrak{q}(\langle x_1, x_2 \rangle) = X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle}$$

for each $\langle x_1, x_2 \rangle \in X_1 \times X_2$.

Proposition 5.3. Under the previous conditions, $q(X_1 \times X_2)$ is soft fuzzy Cstdense in $(\mathcal{Q} \ (X_1 \times X_2), (\tau_1 \times \tau_2)^*)$, that is $C \cdot cl_{(\tau_1 \times \tau_2)^*}(q(1_{X_1 \times X_2}), X_1 \times X_2) = (1_{\mathcal{Q}(X_1 \times X_2)}, \mathcal{Q}(X_1 \times X_2)).$

Proof. Given $(\mu, M) \in SFPCst(X_1 \times X_2)$, we have $\mathfrak{q}(\mu, M) \in SF(\mathcal{Q}(X_1 \times X_2))$. Then for each $(\mu, M) \in SFPCst(X_1 \times X_2)$. Now $\mathfrak{q}(\mu, M) = (\mathfrak{q}(\mu), \mathfrak{q}(M))$

$$\begin{split} q(\mu)(X_1 \times X_2 \mid R) &= \begin{cases} \sup_{\substack{\langle x_1, x_2 \rangle \in \mathfrak{q}^{-1}(X_1 \times X_2 \mid R) \\ 0, & \text{if } \mathfrak{q}^{-1}(X_1 \times X_2 \mid R) \neq \phi ; \\ 0, & \text{if } \mathfrak{q}^{-1}(X_1 \times X_2 \mid R) = \phi . \end{cases} \\ &= \begin{cases} \mu(\langle x_1, x_2 \rangle), & \text{if } \exists \langle x_1, x_2 \rangle \in X_1 \times X_2 \text{ such that} \\ X_1 \times X_2 \mid R = X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle}; \\ 0, & \text{if } \forall \langle x_1, x_2 \rangle \in X_1 \times X_2, X_1 \times X_2 \mid R \neq X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle}. \end{cases} \end{split}$$

 $\mathfrak{q}(M) = \{ \mathfrak{q}(<x_1, x_2 >), \forall < x_1, x_2 > \in M \}.$

Now C- $cl_{(\tau_1 \times \tau_2)^*}(\mathfrak{q}(1_{X_1 \times X_2}, X_1 \times X_2))$

$$= \begin{cases} \operatorname{C-cl}_{(\tau_1 \times \tau_2)^*}(1_{\mathcal{Q}(X_1, X_2)}, \mathcal{Q}(X_1 \times X_2)), & \text{if } \exists \langle x_1, x_2 \rangle \in X_1 \times X_2 \text{ such that} \\ X_1 \times X_2 \mid R = X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle} \text{ ;} \\ \operatorname{C-cl}_{(\tau_1 \times \tau_2)^*}(0, \phi), & \text{if } \forall \langle x_1, x_2 \rangle \in X_1 \times X_2, X_1 \times X_2 \mid \\ R \neq X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle}. \end{cases}$$

Let $(\delta, L)^* = \prod_{j \in J} (\mu_j, M_j)^* = C \cdot cl_{(\tau_1 \times \tau_2)^*} (\mathfrak{q}(1_{X_1 \times X_2}, X_1 \times X_2)).$ Since $\mathfrak{q}(1_{X_1 \times X_2}, X_1 \times X_2) \sqsubseteq (\delta, L)^*$, we have for each $\langle x_1, x_2 \rangle \in X_1 \times X_2,$ $\delta^*((X_1 \times X_2) \mid R_{\langle x_1, x_2 \rangle}) \ge \mathfrak{q}(1_{X_1 \times X_2})((X_1 \times X_2) \mid R_{\langle x_1, x_2 \rangle}) = 1$ and $L^* \supseteq \mathfrak{q}(X_1 \times X_2).$ This implies that, $\delta^*((X_1 \times X_2) \mid R_{\langle x_1, x_2 \rangle}) = 1$ and $L^* = \mathcal{Q}(X_1 \times X_2).$ Now, for each $\langle x_1, x_2 \rangle \in X_1 \times X_2$ and $j \in J$, $\wedge \mu_j^*((X_1 \times X_2) \mid R_{\langle x_1, x_2 \rangle}) = 1$ and $\cap M_j^* = \mathcal{Q}(X_1 \times X_2)$. It implies $\mu_j^*((X_1 \times X_2) \mid R_{\langle x_1, x_2 \rangle}) = 1$ and $M_j^* = \mathcal{Q}(X_1 \times X_2)$. Thus, for each $\langle x_1, x_2 \rangle \in X_1 \times X_2$ and $j \in J$, $\mu_j(\langle x_1, x_2 \rangle) = 1$ and $M_j = X_1 \times X_2$. That is, for each $j \in J$, $(\mu_j, M_j) = (1_{X_1 \times X_2}, X_1 \times X_2)$. Now, we conclude that, $(\delta^*, L^*) = \prod_{j \in J} (\mu_j, M_j)^* = \prod_{j \in J} (1_{X_1 \times X_2}, X_1 \times X_2)^* = (1_{\mathcal{Q}(X_1 \times X_2)}, \mathcal{Q}(X_1 \times X_2))$. This implies that, $\mathfrak{q}(1_{X_1 \times X_2}, X_1 \times X_2)$ is a soft fuzzy Cst-dense set in $(\mathcal{Q}(X_1 \times X_2), (\tau_1 \times \tau_2)^*)$.

Proposition 5.4. The function \mathfrak{q} is a soft fuzzy Cst-embedding of $X_1 \times X_2$ into $\mathcal{Q}(X_1 \times X_2)$.

Proof.

- (i) q is a one to one function:
 If ⟨x₁, x₂⟩ ≠ ⟨y₁, y₂⟩, we have R<sub>⟨x₁,x₂⟩ ≠ R<sub>⟨y₁,y₂⟩. Let
 (⟨x₁, x₂)⟩_α, {< x₁, x₂ >}) ≠ (⟨y₁, y₂⟩_β, {⟨y₁, y₂⟩}) be two soft fuzzy points.
 </sub></sub>
- (a) If $\langle x_1, x_2 \rangle \neq \langle y_1, y_2 \rangle$ for each $X_1 \times X_2 \mid R \in \mathcal{Q}(X_1 \times X_2)$. We have

$$\mathfrak{q}(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) = (X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle_{\alpha}}, \{X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle}\}).$$

Similarly, $q(\langle y_1, y_2 \rangle_\beta, \{\langle y_1, y_2 \rangle\})$ and it is clear that

$$\mathfrak{q}(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) \neq \mathfrak{q}(\langle y_1, y_2 \rangle_{\beta}, \{\langle y_1, y_2 \rangle\}).$$

(b) If $\langle x_1, x_2 \rangle = \langle y_1, y_2 \rangle$, then $\alpha \neq \beta$ and therefore, clearly

$$\mathfrak{q}(\langle x_1, x_2 \rangle_{\alpha}, \{\langle x_1, x_2 \rangle\}) \neq \mathfrak{q}(\langle y_1, y_2 \rangle_{\beta}, \{\langle y_1, y_2 \rangle\}).$$

Hence q is one to one.

(ii) **q** is soft fuzzy product Cst-continuous: For each $(\mu, M)^* \in \mathfrak{b}^*$ and $\langle x_1, x_2 \rangle \in X_1 \times X_2$, we have

$$\begin{aligned} \mathbf{q}^{-1}(\mu, M)^* &= \mathbf{q}^{-1}(\mu^*, M^*) \\ &= (\mathbf{q}^{-1}(\mu^*), \mathbf{q}^{-1}(M^*)) \\ &= (\mu^* \circ \mathbf{q}, \mathbf{q}^{-1}(M^*)) \end{aligned}$$

where

$$\mu^* \circ \mathfrak{q}(\langle x_1, x_2 \rangle) = \mu^*(\mathfrak{q}(\langle x_1, x_2 \rangle))$$

= $\mu^*(X_1 \times X_2 \mid R_{\langle x_1, x_2 \rangle})$
= $\mu(\langle x_1, x_2 \rangle)$

and $\mathfrak{q}^{-1}(M^*) = M$. Thus $\mathfrak{q}^{-1}(\mu, M)^* = (\mu, M) \in St(\tau_1 \times \tau_2)$. Hence \mathfrak{q} is soft fuzzy product Cst-continuous.

(iii) **q** is a soft fuzzy product Cst-open function on $\mathcal{Q}(X_1 \times X_2)$: For each $X_1 \times X_2 \mid R \in \mathcal{Q}(X_1 \times X_2)$ and $(\mu, M) \in St(\tau_1 \times \tau_2)$. $(\mu^*, M^*) \sqcap (\chi_{\mathfrak{q}(X_1 \times X_2)}, \{\mathfrak{q}(X_1 \times X_2)\}) = (\mu^* \land \chi_{\mathfrak{q}(X_1 \times X_2)}, M^* \cap \{\mathfrak{q}(X_1 \times X_2)\})$ $= (\mathfrak{q}(\mu), \mathfrak{q}(M)) = \mathfrak{q}(\mu, M) \in (\tau_1 \times \tau_2)^*$

Thus \mathbf{q} is a soft fuzzy product Cst-open function. Hence \mathbf{q} is a soft fuzzy Cst-embedding of $X_1 \times X_2$ into $\mathcal{Q}(X_1 \times X_2)$.

Proposition 5.5. The soft fuzzy quotient product space $(\mathcal{Q}(X_1 \times X_2), (\tau_1 \times \tau_2)^*)$ is soft fuzzy product Cst-compact.

Proof. Let $\mathfrak{F} = \{(\lambda_i^*, N_i^*) \in \tau_1^* \times \tau_2^* : (\lambda_i, N_i) \in St(\tau_1 \times \tau_2) \text{ for } i \in J\}$ be a soft fuzzy product Cst-open cover of $\mathcal{Q}(X_1 \times X_2)$. That is,

$$\sqcup_{i\in J}(\lambda_i^*, N_i^*) = (1_{\mathcal{Q}(X_1 \times X_2)}, \mathcal{Q}(X_1 \times X_2)).$$

By definition of (λ_i^*, N_i^*) , $\sqcup_{i \in F}(\lambda_i^*, N_i^*) \sqsubseteq (1_{\mathcal{Q}(X_1 \times X_2)}, \mathcal{Q}(X_1 \times X_2))$, for some finite subfamily F of J. Thus \mathfrak{F} has a soft fuzzy product finite subcover.

Hence, $(\mathcal{Q}(X_1 \times X_2), (\tau_1 \times \tau_2)^*)$ is soft fuzzy product Cst-compact.

Conclusion. Cst-compactification of the category of all product topological space can be done, using section- 5.

Acknowledgement. The author is thankful to the referee for his/her several valuable suggestions which improved the presentation of the paper.

References

- [1] AZAD, K.K., Fuzzy Hausdroff spaces and fuzzy perfect mappings, J. Math. Anal. Appl., 82 (1981), 297-305.
- [2] CHANG, C.L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [3] HATIR, E., NOIRI, T., YUKSEL, S., A decomposition of continuity, Acta. Math. Hungar., 70 (1996), 145-150.
- [4] SMETS, P., The degree of belief in a fuzzy event, Information Sciences, 25 (1981), 1-19.
- [5] SUGENO, M., An introductory Survey of fuzzy control, Information Sciences, 36 (1985), 59-83.
- [6] TIRYAKI, ISMAIL U., Fuzzy sets over the poset I, Hacettepe, Journal of Mathematics and Statistics, vol. 37 (2) (2008), 143-166.
- [7] YOGALAKSHMI, T., ROJA, E., UMA, M.K., A view on soft fuzzy Ccontinuous function, International Fuzzy Mathematics Institute, (accepted).

[8] ZADEH, L.A., Fuzzy sets, Inform. and Control, 8 (1965), 338-353.

Accepted: 25.12.2012