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1. Introduction

Concepts of graph theory have applications in many areas of computer science
(such as data mining, image segmentation, clustering, image capturing, networking
etc.). For examples, a data structure can be designed in the form of trees, mode-
ling of network topologies can be done using graph concepts. The most important
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concept of graph coloring is utilized in resource allocation and scheduling. The
concepts of paths, walks and circuits in graph theory are used in traveling salesman
problem, database design concepts, and resource networking. This leads to the
development of new algorithms and new theorems that can be used in tremendous
applications.

A notion having certain influence on graph theory is fuzzy set, which is in-
troduced by Zadeh [17] in 1965; actually, the theory of fuzzy sets has already
become a vigorous research area which intersects with many research areas, such
as medical and life sciences, management sciences, social sciences, engineering,
statistics, graph theory, artificial intelligence, signal processing, multi-agent sys-
tems, pattern recognition, robotics, computer networks, expert systems, decision
making and automata theory, etc. A fuzzy set on a given set X is just a mapping
A : X −→ [0, 1]. Based on the same idea, Zhang [20] defined the notion of bipolar
fuzzy set on a given set X in 1994, which is just a mapping A : X −→ [−1, 1],
where the membership degree 0 of an element x means that the element x is irrele-
vant to the corresponding property, the membership degree in (0, 1] of an element
x indicates that the element somewhat satisfies the property, and the membership
degree in [−1, 0) of an element x indicates that the element somewhat satisfies
the implicit counter-property.

In 1975, Rosenfeld [13] discussed the concept of fuzzy graph whose basic
idea was introduced by Kauffmann [11] in 1973. By considering fuzzy relations
between fuzzy sets and developing structure of fuzzy graphs, Rosenfeld obtained
analogs of several graph theoretical concepts. Bhattacharya [9] gave some remarks
on fuzzy graphs. The complement of a fuzzy graph was defined by Mordeson [12]
and further studied by Sunitha and Vijayakumar [15]. Ahmed and Gani discussed
the concepts of perfect fuzzy graph and self median fuzzy graph in [7]. Based on
the notion of intuitionistic fuzzy set [5], Atanassov [5] introduced the concepts of
intuitionistic fuzzy relation and intuitionistic fuzzy graphs. Recently, the bipolar
fuzzy graphs have been defined and discussed in [1-3] based on the notion of
bipolar fuzzy set. The present paper continues to study bipolar fuzzy graphs. We
introduce the concepts of antipodal bipolar fuzzy graph and self median bipolar
fuzzy graph of a given bipolar fuzzy graph, and prove several characterizations
theorems of antipodal bipolar fuzzy graphs whose bipolar fuzzy graph are complete
or strong. We also discuss isomorphic properties of antipodal bipolar fuzzy graph.

2. Preliminaries

In this section, we review some elementary concepts whose understanding is ne-
cessary fully benefit from this paper.

By a graph G∗ = (V,E), we mean a non-trivial, finite, connected and undi-
rected graph without loops or multiple edges. Formally, given a graph G∗ =
(V,E), two vertices x, y ∈ V are said to be neighbors, or adjacent nodes, if
{x, y} ∈ E. The antipodal graph of a graph G, denoted by A(G∗), has the same
vertex set as G∗ with an edge joining vertices u and v if d(u, v) is equal to the
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diameter of G∗. For a graph G∗ of order p, the antipodal graph A(G∗) = G∗ if and
only if G∗ = Kp. If G

∗ is a non-complete graph of order p, then A(G∗) ⊂ G∗. For
a graph G∗, the antipodal graph A(G∗) = G∗ if and only if (a) G∗ is of diameter 2
or (b) G∗ is disconnected and the components of G∗ are complete graphs. A graph
G∗ is an antipodal graph if aut only if it is the antipodal graph of its complement.
A graph G∗ is an antipodal graph if and only if (i) diam(G∗) = 2 or (ii) G∗ is dis-
connected and the components of G∗ are complete graphs. The self median fuzzy
graphs were introduced by Ahmed and Gani in [7] The median of a graph G∗ is
the set of all vertices v of G∗ for which the value d∗G(v) is minimized. A graph is
distance-balanced (also called self-median) if its median is the whole vertex set.
Thus, a graph G∗ is self-median if and only if the value d∗G(v) is constant over all
vertices v of G∗. The status, or distance sum, of a given vertex v in a graph is
defined by s(v) =

∑

u 6=v

d(u, v), where d(u, v) is the distance from a vertex u to v. In

other words, a self median graph G∗ is one in which all the nodes have the same
status s(v). The graphs Cn, Kn,n and Kn are self median. The status of a vertex
vi is denoted by S(vi) and is defined as S(vi) =

∑

∀vj∈V

δ(vi, vj). The total status of

a fuzzy graph G∗ is denoted by t[S(G∗)] and is defined as t[S(G∗)] =
∑

∀vi∈V

S(vi).

The median of a fuzzy graph G∗, denoted, is the set of nodes with minimum sta-
tus. A fuzzy graph G∗ is said to be self-median if all the vertices have the same
status. Every self-median fuzzy graph is a self centered fuzzy graph. Every cube
Qn is self-median fuzzy graph.

Definition 2.1 [17, 18] A fuzzy subset µ on a set X is a map µ : X → [0, 1].
A fuzzy binary relation on X is a fuzzy subset µ on X ×X . By a fuzzy relation
we mean a fuzzy binary relation given by µ : X ×X → [0, 1].

Definition 2.2 [20] Let X be a nonempty set. A bipolar fuzzy set B in X is an
object having the form

B = {(x, µP
B(x), µ

N
B (x)) | x ∈ X}

where µP
B : X → [0, 1] and µN

B : X → [−1, 0] are mappings.

We use the positive membership degree µP
B(x) to denote the satisfaction de-

gree of an element x to the property corresponding to a bipolar fuzzy set B, and
the negative membership degree µN

B (x) to denote the satisfaction degree of an ele-
ment x to some implicit counter-property corresponding to a bipolar fuzzy set B.
If µP

B(x) 6= 0 and µN
B (x) = 0, it is the situation that x is regarded as having only

positive satisfaction for B. If µP
B(x) = 0 and µN

B (x) 6= 0, it is the situation that x
does not satisfy the property of B but somewhat satisfies the counter property of
B. It is possible for an element x to be such that µP

B(x) 6= 0 and µN
B (x) 6= 0 when

the membership function of the property overlaps that of its counter property over
some portion of X .
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For the sake of simplicity, we shall use the symbol B = (µP
B, µ

N
B ) for the

bipolar fuzzy set

B = {(x, µP
B(x), µ

N
B (x)) | x ∈ X}.

A nice application of bipolar fuzzy concept is a political acceptation (map to [0, 1])
and non-acceptation (map to [-1, 0]).

Definition 2.3 [20] Let X be a nonempty set. Then, we call a mapping
A = (µP

A, µ
N
A ) : X × X → [0, 1] × [−1, 0] a bipolar fuzzy relation on X such

that µP
A(x, y) ∈ [0, 1] and µN

A (x, y) ∈ [−1, 0].

Definition 2.4 [1] Let A = (µP
A, µ

N
A ) and B = (µP

B, µ
N
B ) be bipolar fuzzy sets on

a set X . If A = (µP
A, µ

N
A ) is a bipolar fuzzy relation on a set X , then A = (µP

A, µ
N
A )

is called a bipolar fuzzy relation on B = (µP
B, µ

N
B ) if µ

P
A(x, y) ≤ min(µP

B(x), µ
P
B(y))

and µN
A (x, y) ≥ max(µN

B (x), µ
N
B (y)) for all x, y ∈ X . A bipolar fuzzy relation A

on X is called symmetric if µP
A(x, y) = µP

A(y, x) and µN
A (x, y) = µN

A (y, x) for all x,
y ∈ X .

Definition 2.5 [3] Let G be a connected bipolar fuzzy graph. The µP -distance,
δµP (vi, vj), is the smallest µP -length of any vi − vj path P in G, where vi, vj ∈ V .
That is, δµP (vi, vj) = min(lµP (P )). The µN -distance, δµN (vi, vj), is the largest
µN -length of any vi − vj path P in G, where vi, vj ∈ V . That is, δµN (vi, vj) =
max(lµN (P )). The distance, δ(vi, vj), is defined as δ(vi, vj) =(δµP (vi, vj), δµN (vi, vj)).
For each vi ∈ V , the µP -eccentricity of vi, denoted by eµP (vi) and is defined as
eµP (vi) =max{δµP (vi, vj) : vi ∈ V, vi 6= vj}. For each vi ∈ V , the µN -eccentricity of
vi, denoted by eµN (vi) and is defined as eµN (vi) = min{δµN (vi, vj) : vi ∈ V, vi 6= vj}.
For each vi ∈ V , the eccentricity of vi, denoted by e(vi) and is defined as
e(vi) = (eµP (vi), eµN (vi)). The µ

P -radius of G is denoted by rµP (G) and is defined
as rµP (G) = min{eµP (vi) : vi ∈ V }. The µN -radius of G is denoted by rµN (G)
and is defined as rµN (G) = max{eµN (vi) : vi ∈ V }. The radius of G is denoted by
r(G) and is defined as r(G) = (rµP (G), rµN (G)). The µP -diameter of G is denoted
by dµP (G) and is defined as dµP (G) =max{eµP (vi) : vi ∈ V }. The µN -diameter of
G is denoted by dµN (G) and is defined as dµN (G) =min{eµN (vi) : vi ∈ V }. The
diameter of G is denoted by d(G) and is defined as d(G) = (dµP (G), dµN (G)). A
connected bipolar fuzzy graph G is a self centered graph, if every vertex of G is a
central vertex, that is rµP (G) = eµP (vi) and rµN (G) = eµN (vi), ∀vi ∈ V .

3. Antipodal bipolar fuzzy graphs

Definition 3.1 Let G = (A,B) be a bipolar fuzzy graph. An antipodal bipolar

fuzzy graph A(G) = (E, F ) is a bipolar fuzzy graph G = (A,B) in which:

(a) An bipolar fuzzy vertex set of G is taken as bipolar fuzzy vertex set of A(G),
that is, µP

E(x) = µP
A(x) and µN

E (x) = µN
A (x) for all x ∈ V ,
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(b) If δ(x, y) = d(G), then

µP
F (xy) =

{

µP
B(xy) if x and y are neighbors in G,

min(µP
A(x), µ

P
A(y)) if x and y are not neighbors in G,

µN
F (xy) =

{

µN
B (xy) if x and y are neighbors in G,

max(µN
A (x), µ

N
A (y)) if x and y are not neighbors in G.

That is, two vertices in A(G) are made as neighborhood if the µPµN−distance
between them is diameter of G.

Example 3.2 Consider a bipolar fuzzy graph G such that

A = {v1, v2, v3}, B = {v1v2, v1v3, v2v3}.
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Figure 1

By routine calculations, we have,

δµP (v1, v2) = 6, δµP (v1, v3) = 3, δµP (v2, v3) = 3,

δµN (v1, v2) = −6, δµN (v1, v3) = −7, δµN (v2, v3) = −9,

eµP (v1) = 6, eµP (v2) = 6, eµP (v3) = 3,

eµN (v1) = −6, eµN (v2) = −6, eµN (v3) = −7,

d(G) = (6,−6), δ(v1, v2) = (6,−6) = d(G).

Hence A(G) = (E, F ), such that E = {v1, v2, v3} and F = {v1v2}.

Theorem 3.3 Let G = (A,B) be a complete bipolar fuzzy graph where (µP
A, µ

N
A )

is constant function then G is isomorphic to A(G).

Proof. Given that G = (A,B) be a complete bipolar fuzzy graph with (µP
1
, µN

1
) =

(k1, k2), where k1 and k2 are constants, which implies that δ(vi, vj) = (l1, l2),
∀vi, vj ∈ V . Therefore, eccentricity e(vi) = (l1, l2), ∀vi ∈ V , which implies that
d(G) = (l1, l2). Hence δ(vi, vj) = (l1, l2) = d(G), ∀vi, vj ∈ V . Hence every pair of
vertices are made as neighbors in A(G) such that
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(a) An bipolar fuzzy vertex set of G is taken as bipolar fuzzy vertex set of A(G),
that is, µP

E(vi) = µP
A(vi) and µN

E (vi) = µN
A (vi) for all vi ∈ V ,

(b) µP
F (vivj) = µP

B(vivj), since vi and vj are neighbors in G

µN
F (vivj) = µN

B (vivj), since vi and vj are neighbors in G.

It has same number of vertices, edges and it preserves degrees of the vertices.
Hence G ∼= A(G).

Theorem 3.4 Let G : (A,B) is a connected bipolar fuzzy graph. Every antipodal

bipolar fuzzy graph is spanning subgraph of G.

Proof. By the definition of an antipodal bipolar fuzzy graph, A(G) contains all
the vertices of G. That is,

(a) µP
E(x) = µP

A(x) and µN
E (x) = µN

A (x) for all x ∈ V , and

(b) If δ(x, y) = d(G), then

µP
F (xy) =

{

µP
B(xy) if x and y are neighbors in G,

min(µP
A(x), µ

P
A(y)) if x and y are not neighbors in G,

µN
F (xy) =

{

µN
B (xy) if x and y are neighbors in G,

max(µN
A (x), µ

N
A (y)) if x and y are not neighbors in G.

Hence A(G) is spanning subgraph of G.

Theorem 3.5 Let G be a bipolar fuzzy graph, where crisp graph G is an even or

odd cycle. If alternate edges have same membership values and non-membership

values, then G is self centered bipolar fuzzy graph.

Theorem 3.6 Let G be a bipolar fuzzy graph, where crisp graph G∗ is an even or

odd cycle. If alternate edges have same positive and negative values, then AµP (G)
and AµN (G) is the edge induced bipolar fuzzy subgraph of Ḡ, whose end vertices

of AµP (G) and AµN (G) are with maximum µP - eccentricity and minimum µN -

eccentricity in G.

Proof. If alternate edges have same positive and negative values, then µP -
distance between non-adjacent vertices is greater than the adjacent vertices and
µN -distance between non-adjacent vertices is lesser than the adjacent vertices.
Let µP

B(vi, vj) be the least among all other edges, then

δµP (vi, vj) =
1

µP
B(vi, vj)

.

Claim (i): Neighbors in G are not neighbors in A(G).

Consider an arbitrary path connecting vk, vt such that

(1) (vk, vt) 6∈ µP
B∗
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If P is a path of length 2 between vk, vt, then

(2) lµP (P ) ≥
1

µP
B(vi, vj)

Hence

δ(vk, vt) ≥
1

µP
B(vi, vj)

,

since by equation (1) and (2), which implies that δ(vi, vj) < δ(vk, vt) ≤ d(G),
where δ(vk, vt) 6∈ µP

B∗ and (vi, vj) ∈ µP
B∗ . That is, δ(vi, vj) < d(G), if (vi, vj) ∈ µP

B∗ .
Therefore, if (vi, vj) ∈ µP

B∗ , then vi and vj are not neighbors in A(G).

Claim (ii): Edges in A(G) are edges in Ḡ.

If (vm, vn) ∈ µP
F ∗, then by Claim (i), (vi, vj) 6∈ µP

B∗ . So,

µP
F (vm, vn) = min(µP

A(vm), µ
P
A(vn)),

since by the definition of A(G), which implies that edges in A(G) are edges in Ḡ.
Hence A(G) is a bipolar fuzzy subgraph of Ḡ, induced by the edges of Ḡ, whose
end vertices are with maximum µP eccentricity in G.

Let (vi, vj) ∈ E, then δµN (vi, vj) = k.

Claim (i): Neighbors in G are not neighbors in A(G).

Consider an arbitrary path connecting vk, vt such that

(3) (vk, vt) 6∈ µN
B∗

If Q is a path of length 2 between vk, vt, then

(4) δµP (P ) ≤ k

Hence

δµN (vk, vt) ≤ δµN (vi, vj),

since by equation (3) and (4), which implies that δµN (vk, vt) ≤ d(G), where
(vk, vt) 6∈ µN

B∗ and (vi, vj) ∈ µN
B∗ . That is, δµN (vi, vj) ≥ d(G), if (vi, vj) ∈ µN

B∗ .
Therefore, if (vi, vj) ∈ µN

B∗ , then vi and vj are not neighbors in A(G).

Claim (ii): Edges in A(G) are edges in Ḡ.

If (vm, vn) ∈ µN
F ∗, then by Claim (i), (vi, vj) 6∈ µP

B∗ . So,

µN
F (vm, vn) = max(µN

A (vm), µ
N
A (vn)),

since by the definition of A(G), which implies that edges in AµN (G) are edges in
Ḡ. Hence AµN (G) is a bipolar fuzzy subgraph of Ḡ, induced by the edges of Ḡ,
whose end vertices are with minimum µN eccentricity in G.
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Theorem 3.7 Let G be a bipolar fuzzy graph, where crisp graph G∗ is an even or

odd cycle. If alternate edges have same positive and negative values, then A(G) is
a bipartite bipolar fuzzy graph.

Theorem 3.8 Let G : (A,B) be a connected strong bipolar fuzzy graph, where

crisp graph G∗ is an even or odd cycle, such that (µP
A, µ

N
A )(vi) = (k1, k2), ∀vi ∈ µP

A

and ∀vi ∈ µN
A . Then A(G) is the spanning bipolar fuzzy graph subgraph of Ḡ,

induced by the edges of Ḡ, whose end vertices are maximum µP - eccentricity and

minimum µN - eccentricity in G.

Proof. Let (vi, vj) ∈ µP
B∗ , δµP (vi, vj) =

1

k1
. But for any (vi, vj) 6∈ µP

B∗ , δ(vk, vm) ≥
2

k1
. That is δµP (vi, vj) =

1

k1
< 2

k1
≤ δµP (vk, vm), where (vi, vj) 6∈ µP

B∗ , which implies
that vi, vj are vertices in A(G), but are not neighbors in A(G). Now, let (vi, vj) ∈
µN
B∗ , δµN (vi, vj) >

1

k1
. But for any (vi, vj) 6∈ µN

B∗ , δµN (vi, vj) ≥ δµN (vk, vm), where

(vi, vj) 6∈ µN
B∗ , which implies that vi, vj are vertices in A(G), but are not neighbors

in A(G). The remaining proof is similar to claim (ii) of above Theorem and hence
we omit it.

Theorem 3.9 If G1 and G2 are isomorphic to each other, then A(G1) and A(G2)
are also isomorphic.

Proof. As G1 and G2 are isomorphic, the isomorphism h, between them pre-
serves the edge weights, so the µPµN -length and µPµN -distance will also be pre-
served. Hence, if the vertex vi has the maximum µP -eccentricity and minimum
µN -eccentricity, in G1, then h(vi) has the maximum µP -eccentricity and minimum
µN -eccentricity, in G2. So, G1 and G2 will have the same diameter. If the µPµN -
distance between vi and vj is (k1, k2) in G1, then h(vi) and h(vj) will also have
their µPµN -distance as (k1, k2). The same mapping h itself is a bijection between
A(G1) and A(G2) satisfying the isomorphism condition.

(i) µP
E1
(vi) = µP

A1
(vi) = µP

A2
(h(vi)) = µP

E2
(h(vi)), ∀vi ∈ G1

(ii) µN
E1
(vi) = µN

A1
(vi) = µN

A2
(h(vi)) = µN

E2
(h(vi)), ∀vi ∈ G1

(iii) µP
F1
(vi, vj) = µP

B1
(vi, vj), if vi and vj are neighbors in G1

µP
F1
(vi, vj) = min(µP

E1
(vi), µ

P
E1
(vj)), if vi and vj are not neighbors in G1

and

(iv) µN
F1
(vi, vj) = µN

B1
(vi, vj), if vi and vj are neighbors in G1

µN
F1
(vi, vj) = max(µN

E1
(vi), µ

N
E1
(vj)), if vi and vj are not neighbors in G1

As h : G1 → G2 is an isomorphism,

µN
F1
(vi, vj) = µN

B2
(h(vi), h(vj)), if vi and vj are neighbors in G1

µN
F1
(vi, vj) = max(µN

B2
(vi), µ

N
B2
(vj)), if vi and vj are not neighbors in G1

µN
F1
(vi, vj) = µN

B2
(h(vi), h(vj)), if vi and vj are neighbors in G1

µN
F1
(vi, vj) = max(µN

B2
(vi), µ

N
B2
(vj)), if vi and vj are not neighbors in G1
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Hence µP
F1
(vi, vj) = µP

F2
(h(vi), h(vj)) and µN

F1
(vi, vj) = µN

F2
(h(vi), h(vj)). So, the

same h is an isomorphism between A(G1) and A(G2).

Theorem 3.10 If G1 and G2 are complete bipolar fuzzy graph such that G1 is

co-weak isomorphic to G2 then A(G1) is co-weak isomorphic to A(G2).

Proof. As G1 is co-weak isomorphic to G2, there exists a bijection h : G1 →
G2 satisfying, µP

A(vi) ≤ µP ′

A (h(vi)), µ
P
B(vi, vj) = µP ′

B (h(vi), h(vj)), ∀vi, vj ∈ V1.
If G1 has n vertices, arrange the vertices of G1 in such a way that µP

A(v1) ≤
µP
A(v2) ≤ µP

A(v3) . . . µ
P
A(vn). As G1 and G2 are complete, co-weak isomorphic

bipolar fuzzy graph, µP
B(vi, vj) = µP ′

B (h(vi), h(vj)), ∀vi, vj ∈ V1. By Theorem 3.9
and the definition of antipodal bipolar fuzzy graph, we have A(Gi) contains all
the vertices of G, where i = 1, 2. That is, µP

E(x) = µP
A(x) and µN

E (x) = µN
A (x) for

all x ∈ V and µP
F (vi, vj) = µP ′

F (h(vi), h(vj)), ∀vi, vj ∈ V1. So, the same bijection h

is a co-weak isomorphism between A(G1) and A(G2).

We state the following Theorem without its proof.

Theorem 3.11 If G1 and G2 are complete bipolar fuzzy graph such that G1 is

co-weak isomorphic to G2 then A(G1) is homomorphic to A(G2).

Remark 1 If G is a self complementary bipolar fuzzy graph, then its antipodal
bipolar fuzzy graph may not be self complementary.

Example 3.12 Consider a bipolar fuzzy graph G
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Figure 2

By routine calculations, we have

δ(a, b) = (15,−4), δ(a, c) = (10,−2), δ(a, d) = (10,−2), δ(b, c) = (5,−2),

δ(b, d) = (25,−6), δ(c, d) = (20,−4), e(a) = (15,−2), e(b) = (15,−2),

e(c) = (20,−2), e(d) = (25,−2), d(G) = (25,−2).

Since d(G) 6= δ(x, y) for all x, y ∈ V . Hence A(G) is an antipodal bipolar fuzzy
graph of G having same vertices as in G only, and no two vertices in A(G) are
made as neighborhood since their µPµN− distance between them is not equal to
the diameter of G.
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Consider a bipolar fuzzy graph G
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Figure 3

By routine calculations, we have

δ(a, b) = (8,−5), δ(a, c) = (24,−18), δ(a, d) = (16,−11), δ(b, c) = (16,−13),

δ(b, d) = (8,−6), δ(c, d) = (8,−7), e(a) = (24,−5), e(b) = (16,−5),

e(c) = (24,−7), e(d) = (16,−6), d(G) = (24,−5).

Since d(G) 6= δ(x, y) for all x, y ∈ V . Hence A(G) is an antipodal bipolar fuzzy
graph of G having same vertices as in G only, and no two vertices in A(G) are
made as neighborhood since their µPµN−distance between them is not equal to
the diameter of G.
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Figure 4

Clearly, A(G) is not isomorphic to A(G) Hence G is self complementary , but
its antipodal bipolar fuzzy graph A(G) is not a self complementary bipolar fuzzy
graph.
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Example 3.13 Consider a bipolar fuzzy graph G
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Figure 5

By routine calculations, we have

δ(a, b) = (5,−4), δ(a, c) = (11,−7), δ(a, d) = (17,−10), δ(b, c) = (6,−3),

δ(b, d) = (12,−6), δ(c, d) = (6,−3), e(a) = (17,−4), e(b) = (12,−3),

e(c) = (11,−3), e(d) = (17,−3), d(G) = (17,−3).

Since d(G) 6= δ(x, y) for all x, y ∈ V . Hence A(G) is an antipodal bipolar fuzzy
graph of G having same vertices as in G only, and no two vertices in A(G) are
made as neighborhood since their µPµN−distance between them is not equal to
the diameter of G.
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A(Ḡ)

b

a d

( 1

5
,− 1

4
) ( 1

5
,− 1

5
)

( 1

5
,− 1

4
) ( 1

6
,− 1

3
)

Figure 6

By routine calculations, we have

δ(a, b) = (12,−6), δ(a, c) = (5,−4), δ(a, d) = (6,−3), δ(b, c) = (17,−10),

δ(b, d) = (6,−3), δ(c, d) = (11,−7), e(a) = (12,−3), e(b) = (17,−3),

e(c) = (17,−4), e(d) = (11,−3), d(G) = (17,−3).
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Since d(G) 6= δ(x, y) for all x, y ∈ V . Hence A(G) is an antipodal bipolar fuzzy
graph of G having same vertices as in G only, and no two vertices in A(G) are
made as neighborhood since their µPµN−distance between them is not equal to
the diameter of G.
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Figure 7

Clearly, A(G) is not isomorphic to A(G), though A(G) is isomorphic to A(G).
Hence G is self complementary bipolar fuzzy graph but A(G) is not self comple-
mentary bipolar fuzzy graph.

We now present the concept of median bipolar fuzzy graphs.

Definition 3.14 Let G be a connected bipolar fuzzy graph. The µP -status of
a vertex vi is denoted by SµP (vi) and is defined as SµP (vi) =

∑

∀vj∈V

δµP (vi, vj).

The µN -status of a vertex vi is denoted by SµN (vi) and is defined as SµN (vi) =
∑

∀vj∈V

δµN (vi, vj). The minimum µP -status of G is denoted by m[SµP (G)] and

is defined as m[SµP (G)] = min(SµP (vi), ∀vi ∈ V ). The minimum µN -status

of G is denoted by m[SµN (G)] and is defined as m[SµN (G)] = min(SµN (vi),
∀vi ∈ V ). The minimum µPµN status of G is denoted by m[SµP µN (G)] and
is defined as m[SµP µN (G)] = (m[SµP (G)], m[SµN (G)]). The maximum µP -status

of G is denoted by M [SµP (G)] and is defined as M [SµP (G)] = max(SµP (vi),
∀vi ∈ V ). Themaximum µN -status ofG is denoted byM [SµN (G)] and is defined as
M [SµN (G)] = max(SµN (vi), ∀vi ∈ V ). The maximum µPµN status of G is denoted
by M [SµP µN (G)] and is defined as M [SµP µN (G)] = (M [SµP (G)],M [SµN (G)]). The
total µP -status of a bipolar fuzzy graph G is denoted by t[SµP (G)] and is de-
fined as t[SµP (G)] =

∑

∀vi∈V

SµP (vi). The total µN -status of a bipolar fuzzy graph

G is denoted by t[SµN (G)] and is defined as t[SµN (G)] =
∑

∀vi∈V

SµN (vi). The

total µN -status of a bipolar fuzzy graph G is denoted by t[SµPµN (G)] and is de-
fined as t[SµP µN (G)] = (t[SµP (G)], t[SµN (G)]). The median of a bipolar fuzzy
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graph G is denoted by M(G) and is defined as the set of nodes with mini-
mum µPµN status. An bipolar fuzzy graph G is said to be self-median if all
the vertices have the same status. In other words, G is self-median if and only if
m[SµP µN (G)] = M [SµP µN (G)].

Example 3.15
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Figure 8. Selfmedianbipolarfuzzygraph.

By routine calculations, we have,

δµP (v1, v2) = 3, δµP (v1, v3) = 6, δµP (v1, v4) = 3,

δµP (v2, v3) = 3, δµP (v2, v4) = 6, δµP (v3, v4) = 3,

δµN (v1, v2) = −11, δµN (v1, v3) = −7, δµN (v1, v4) = −10,

δµN (v2, v3) = −10, δµN (v2, v4) = −7, δµN (v3, v4) = −11,

SµP (v1) = 12, SµP (v2) = 12, SµP (v3) = 12, SµP (v4) = 12,

SµN (v1) = −28, SµN (v2) = −28, SµN (v3) = −28, SµN (v4) = −28.

Therefore, SµP µN (v1) = (12,−28), SµPµN (v2) = (12,−28), SµPµN (v3) = (12,−28),
SµP µN (v4) = (12,−28) and t[SµP µN (G)] = (48,−112). Here, SµP µN (vi) = (12,−28),
∀vi ∈ V . Hence G is self median bipolar fuzzy graph.

Theorem 3.15 Let G be a bipolar fuzzy graph, where crisp graph G∗ is an even

cycle. If alternate edges have same positive values and negative values, then G is

self median bipolar fuzzy graph.

Proof. Given that G is a bipolar fuzzy graph. Since crisp graph G∗ is an even
cycle. Also, alternate edges of G have same positive values and negative values, we
have, δ(v1, v2) = δ(v3, v4) = δ(v1, v2) = . . . = δ(vn−1, vn) and, similarly, δ(v2, v3) =
δ(v4, v5) = . . . = δ(vn, v1), δ(v1, v3) = δ(v2, v4) = δ(v3, v5) = . . . = l, so on. Hence
SµP (vi) = k and SµN (vi) = m, ∀vi ∈ V . Hence G is a self median bipolar fuzzy
graph.

Remark 2 Let G be a bipolar fuzzy graph, where crisp graph G∗ is an odd cycle.
If alternate edges have same positive and negative values, then G may not be self
median bipolar fuzzy graph.
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