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Abstract. In this paper we study the subgroups of a torsion-free Abelian group A

which are subrings in every ring over A. In particular, we get a necessary and sufficient

condition for the case of rank one and rank two torsion-free groups. Moreover, we

introduce the notion of SR-group and obtain some related results.
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1. Introduction

All groups considered in this paper are Abelian, with addition as the group ope-
ration. Given an Abelian group A, we call R a ring over A if the group A is
isomorphic to the additive group of R. In this situation we write R = (A, ∗),
where ∗ denotes the ring multiplication. This multiplication is not assumed to be
associative. Every group may be turned into a ring in a trivial way, by setting
all products equal to zero; such a ring is called a zero-ring. If this is the only
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multiplication over A, then A is said to be a nil group. Stratton [9] studies the
type set of a torsion-free Abelian group of rank two which supports a non-zero
ring and determines all the cases for the type set of such a group. Aghdam [1]
uses the cases determined by Stratton to find the rings which may be defined on
rank two torsion-free groups. We use the type set and the rings over a torsion-free
Abelian group A of rank two to give necessary and sufficient conditions for the
subgroups of A which are subrings in every ring on A. Moreover, we give such
necessary and sufficient conditions for the subgroups of completely decomposable
torsion-free groups with the given typeset. Finally, we introduce the notion of an
SR-group and obtain some related results.

2. Notations and preliminary results

All groups in this paper are torsion-free Abelian and in general, we will follow the
notation and conventions of [8]. For a group A and x ∈ A, the p−height, height
sequence and the type of x are respectively denoted by hA

p (x), χA(x), t(x) and if
χ = (k1, k2, . . . , kn, . . .) and µ = (l1, l2, . . . , ln, . . .) are two height sequences, then
their product is defined as

χµ = (k1 + l1, k2 + l2, . . . , kn + ln, . . .).

Moreover, we will write ⟨x⟩∗ for the pure subgroup of A generated by x and if
T (A) = {t(a) | 0 ̸= a ∈ A}, then for any t ∈ T (A) we consider A(t) = {a ∈
A | t(a) ≥ t}, which is a fully invariant pure subgroup of A.

Furthermore, following [5], suppose that {x, y} is any independent set of a
rank two torsion-free group A, then each element a of A has the unique represen-
tation a = ux+ vy, where u, v are rational numbers. Consider

U0 = {u0 ∈ Q : u0x ∈ A}, U = {u ∈ Q : ux+ vy ∈ A for some v ∈ Q}

V0 = {v0 ∈ Q : v0y ∈ A}, V = {v ∈ Q : ux+ vy ∈ A for some u ∈ Q}.
Clearly, U0 and V0 are subgroups of U and V respectively and U,U0, V, V0 are
called the groups of rank one belonging to the independent set {x, y}.

We generalize these notions for any subgroup C of A as follows:

UC
0 = {u0 ∈ Q : u0x ∈ C}, UC = {u ∈ Q : ux+ vy ∈ C for some v ∈ Q}

V C
0 = {v0 ∈ Q : v0y ∈ C}, V C = {v ∈ Q : ux+ vy ∈ C for some u ∈ Q},

and for any subgroups R,S of Q we define

Rxu Sy = {rx+ sy ∈ A | r ∈ R, s ∈ S}.

For any subgroup C of a group A, let

I(C) = ⟨φ(C) | φ ∈ Hom(A,E(A))⟩,

where E(A) is the endomorphism group of A, i.e, I(C) is the subgroup of E(A)
generated by all homomorphic images of C in E(A). Now by an argument similar
to that in Theorem 117.2 in [8], it is straightforward to see that:
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Proposition 2.1 A subgroup C of an abelian group A is a subring of every ring
on A exactly if I(C).C ≤ C.

Finally, by Theorem 3.3 of [9], we know if A is a non-nil torsion-free group
of rank two, then T (A) contains a unique minimal member and at most three
elements.

Using this fact we can obtain the next proposition which describes the possible
rings on rank two completely decomposable non-homogeneous groups and will be
needed in Theorem 5.9:

Proposition 2.2 Let A = A1⊕A2 be a completely decomposable non-homogeneous
group of rank two with t(A1) = t1, t(A2) = t2. Let x and y be non-zero elements
of A1 and A2 respectively. If A is non-nil, then any ring on A satisfies one of the
following cases:

1. T (A) = {t0, t1, t2} with t0 < t1, t0 < t2.

(a) t1, t2 are incomparable and in general x2 = ax, y2 = by, xy = yx = 0
for some a ∈ U0 and b ∈ V0.

(b) If t21 = t1, t
2
2 ̸= t2, then x2 = ax, y2 = xy = yx = 0 for some a ∈ U0.

(c) If t21 = t1, t
2
2 = t2, then x2 = ax, y2 = by, xy = yx = 0 for some a ∈ U0

and b ∈ V0.

2. T (A) = {t1, t2} with t1 < t2.

(d) If t21 ̸= t1, t
2
2 = t2, then x2 = ay, y2 = by, xy = cy, yx = dy for some

a, b, c, d, f ∈ V0.

(e) If t21 ̸= t1, t
2
2 ̸= t2, then x2 = ay, y2 = 0, xy = cy, yx = dy, for some

a, c, d ∈ V0.

(f) If t21 = t1, t
2
2 = t2, then x2 = a′x + by, y2 = cy, xy = dy, yx = fy, for

some a′ ∈ U0 and b, c, d, f ∈ V0, in which if b ̸= 0, then a′ ̸= 0.

(g) If t21 = t1, t
2
2 ̸= t2, then x2 = a′x + by, y2 = 0, xy = dy, yx = fy, for

some a′ ∈ U0 and a, b, c, d, f ∈ V0, in which if b ̸= 0, then a′ ̸= 0.

Proof. 1) See [4, Proposition 2.7, Lemma 3.1 and Lemma 3.3].

2) (d) Clearly, t(x2) = t(x)2 = t21 > t1. Now the hypothesis that T (A) contains
two elements, implies that t(x2) = t2. This yields x

2 = ay for some a ∈ V0. By the
same reasoning, the other parts are obtained.

3. Rank one and indecomposable rank two groups

In this section, we give for rank one and rank two torsion-free groups a necessary
and sufficient condition for subgroups to be subrings in every ring.

Let A be a torsion-free group and C be a subgroup of A.We define the nucleus
of C by:

N(C) = {α ∈ Q | α.x ∈ C, ∀x ∈ C}.
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Proposition 3.1 Let A be a torsion-free group of rank one and C be a subgroup
of A. Then C is a subring of every ring on A exactly if I(C) ⊆ N(C).

Proof. =⇒) Suppose that C is a subring of every ring on A, then by Proposition
2.1 we have I(C).C ≤ C. But C, being a group of rank 1, is isomorphic to a
subgroup of Q, which means every generator of I(C) acts on C as multiplication
by a rational number. Therefore I(C).C ≤ C implies that r.c ∈ C for all c ∈ C
and r ∈ I(C). Consequently, I(C) ⊆ N(C).

⇐=) Obvious. In fact, if I(C) ⊆ N(C), then I(C).C ⊆ N(C).C ⊆ C.

Now, we consider rank two groups. Our arguments are based on the following
cases for the typeset of a non-nil rank two group A which is a consequence of
Theorem 3.3 in [9]:

(a) |T (A)| = 1; in this case the type must be idempotent.

(b) |T (A)| = 2; one of the types is minimal and the other is maximal.

(c) |T (A)| = 3; one of the types is minimal and the other two types are maximal.
In this case, at least one of the maximal types is idempotent.

Theorem 3.2 Let A is a torsion-free group of rank two and T(A) = {t0, t1, t2}
such that t0 < t1 and t0 < t2. Let x, y ∈ A, such that t(x) = t1 and t(y) = t2.
If t21 = t1, t

2
2 ̸= t2, then x2 = ax, y2 = xy = yx = 0 for some rational number a.

Proof. See [4, Lemma 3].

Now, consider a subgroup T of U0 defined as follows:

T = {r ∈ Q | x2 = rx, y2 = xy = yx = 0 yields a ring on A},

then we have:

Theorem 3.3 Let A be a torsion-free group of rank two and T(A) = {t0, t1, t2}
such that t0 < t1, t2 and t21 = t1, t22 ̸= t2. Let x, y ∈ A such that t(x) = t1 and
t(y) = t2. Then a subgroup C of A is a subring of every ring on A exactly if
TUCUC ⊆ UC

0 . Moreover, if r(C) = 1, then C is a subring of every ring on A
exactly if C ≤ V0y or C = UC

0 (nx) for some integer n.

Proof. Suppose that C is a subgroup which is a subring of any ring on A and
let c1 = αx + βy, c2 = γx + νy be two arbitrary elements of C. We know that
every φ ∈ Hom(A,End(A)) gives rise to a ring multiplication by defining the
product of a, a′ ∈ A as a.a′ = (φ(a))(a′). Therefore, in view of Theorem 3.2,
(φ(c1))(c2) = c1.c2 = αγrx for some r ∈ T. This implies that I(C).C = TUC.UCx.
Now, the first part is obtained from Proposition 2.1. But, if r(C) = 1, then
suppose R is an arbitrary non-zero ring over A. So there exists a non-zero a ∈ T
such that x2 = ax, y2 = xy = yx = 0. Now, if c = αx + βy ∈ C be such that
α ̸= 0 and β ̸= 0, then c2 = α2ax ̸= 0. This implies that a non-zero multiple of
x is in C. Therefore, a non-zero multiple of y is in C. Hence C must be of rank
two, which is a contradiction. Therefore, α = 0 or β = 0. Consequently, C ≤ V0y
or C = UC

0 (nx) in which n is the smallest positive integer such that nx ∈ C.
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Theorem 3.4 Let A be a torsion-free group of rank two and T(A) = {t0, t1, t2}
such that t0 < t1 and t0 < t2. Let x, y ∈ A such that t(x) = t1 and t(y) = t2. If
t21 = t1, t

2
2 = t2, then x2 = ax, y2 = by, xy = yx = 0 for some rational numbers

a, b which are not both zero.

Proof. See [1, Proposition 9].

In this case, consider the following subgroups of U0 and V0 respectively:

T ′ = {r ∈ Q | x2 = rx, y2 = sy, xy = yx = 0 yields a ring on A for some s ∈ Q},

S = {s ∈ Q | x2 = rx, y2 = sy, xy = yx = 0 yields a ring on A for some r ∈ Q},
then we have:

Theorem 3.5 Let A be a torsion-free group of rank two and T(A) = {t0, t1, t2}
such that t0 < t1, t2 and t21 = t1, t22 = t2. If x, y ∈ A such that t(x) = t1, t(y) = t2,
then any subgroup C of A is a subring of every ring on A exactly if T ′UCUCxu
SV CV Cy ⊆ C. Moreover, if C is a rank one subgroup of A which is a subring of
every ring on A, then C = UC

0 (nx) or C = V C
0 (my) for some integers m and n.

Proof. The proof is similar to the proof of Theorem 3.3. In fact, if c1 = αx+ βy
and c2 = ux+ vy be two arbitrary elements of C and φ ∈ Hom(A,End(A)), then

(φc1)(c2) = c1.c2 = αuax+ βvsy,

for some a ∈ T ′ and s ∈ S. This implies I(C).C = T′UCUC u SVCVC. Therefore,
the first assertion follows from Proposition 2.1. Now, let C be a rank one subgroup
of A which is a subring of every ring on A. Suppose that c = αx + βy ∈ C, with
0 ̸= α, 0 ̸= β and R be a ring on A with x2 = rx, y2 = sy, xy = yx = 0 for some
r ̸= 0, s ̸= 0. Then c2 = α2rx+β2sy ∈ C. This yields a non-zero multiple of y and
therefore a non-zero multiple of x lies in C. We conclude that C is of rank two,
that is a contradiction. Hence α = 0 or β = 0 and a similar argument to the used
in Theorem 3.3 yields the result.

Theorem 3.6 Let A be an indecomposable torsion-free group of rank two and
T(A) = {t1, t2} such that t1 < t2. If {x, y} be an independent set such that
t(x) = t1, t(y) = t2, then all non-trivial rings on A satisfy x2 = by, xy = yx =
y2 = 0, for some rational number b.

Proof. See [1, Lemma 3].

In this situation, we define the following subgroup of V0 as follows

W = {r ∈ Q | x2 = ry, y2 = xy = yx = 0 yields a ring on A}.

Theorem 3.7 Let A be an indecomposable torsion-free group of rank two and
T(A) = {t1, t2} such that t1 < t2. Let {x, y} be an independent set such that
t(x) = t1, t(y) = t2. Then any subgroup C of A is a subring of every ring on
A exactly if WUCUC ⊆ V C

0 . Moreover, any rank one subgroup of A which is a
subring of every ring on A, is a subgroup of V0y.
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Proof. Let C be a subgroup of A. Then, in view of Theorem 3.6, for any arbitrary
φ ∈ Hom(A,End(A)), c1 = ux+ vy, c2 = αx+ βy in C we have (φc1)(c2) = αury
for some r ∈ W. This means I(A).C = WUCUCy, thus the first assertion follows
from Proposition 2.1. Now let C be a rank one subgroup of A which is a subring
of every ring on A. Let αx + βy ∈ C be a non-zero element of C. We claim that
α = 0. By the way of contradiction, suppose that α ̸= 0. If R is any non-zero ring
on A then there exists a non-zero r ∈ W such that x2 = ry, xy = yx = y2 = 0.
Hence 0 ̸= α2ry = c2 ∈ C. Therefore non-zero multiples of x and y are in C which
means C is of rank two, a contradiction.

4. Completely decomposable groups

By [8], any element a of a torsion-free group A with maximal independent set
{x1, x2, ...}, has a unique representation a = u1x1 + u2x2 + · · · + unxn, for some
positive integer n and u1, · · · , un ∈ Q. Let

Ui = {ui ∈ Q |
k∑

j=1

ujxj ∈ A, for some u1, · · · , ui−1, ui+1, ...uk ∈ Q} \ {0}

and
U0i = {ui ∈ Q | uixi ∈ A}.

So, if A =
⊕∞

i=1Ai is a completely decomposable group and xi ∈ Ai, i = 1, 2, ...,
then Ui = U0i and it is straightforward to see that t(U0i) = t(Ai).

Moreover, since the typeset of a completely decomposable group has at most
r(A) maximal element, we can reduce our consideration of such groups to three
cases:

(1) Homogeneous completely decomposable groups.

(2) Completely decomposable groups where the types of all elements in a max-
imal independent set of a group are maximal and incomparable.

(3) Completely decomposable groups where some types of elements in a maximal
independent set are equal or are not maximal.

Theorem 4.1 Let A = ⊕i∈IAi be a homogeneous completely decomposable group.
If A is non-nil, then A contains no non-trivial subgroup of rank less than r(A),
which is a subring of every ring on A.

Proof. Let t(A) = t. If xi ∈ Ai and {x1, x2, ...} is a maximal independent set of A,
then t(Ui) = t = t(UiUj) for all i, j ∈ {1, 2, ...}, because A is non-nil and hence t2 =
t. By the way of contradiction, suppose that C is a non-trivial subgroup of A with
r(C) < r(A) such that C is a subring of every ring on A. Let 0 ̸= c =

∑n
i=1 αixi

be an element of C. Then there exists i ∈ {1, 2, · · · , n} such that αi ̸= 0. Without
loss of generality suppose that α1 ̸= 0. Since t(U2

1 ) = t(U1) = t(U2) = · · · = t(Un),
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there exist some non-zero integer numbers m1,m2, ...,mn, k1, k2, ..., kn such that:
m1U

2
1 = k1U1,m2U

2
1 = k2U2, ...,mnU

2
1 = knUn. Now we define ∗1 as follows

xi ∗1 xj =

{
m1x1 if i = j = 1,

0 otherwise.

If u1 = β1x1 + · · · + βnxn and u2 = γ1x1 + · · · + γnxn are two arbitrary elements
of A, then u1 ∗1 u2 = m1β1γ1x1. But m1β1γ1 ∈ m1U

2
1 = k1U1 ⊆ U1, hence ∗1 is

actually a ring on A. Now we have c ∗1 c = m1.α
2
1x1 ∈ C. Similarly we may define

multiplications ∗2, ∗3, ... on A such that for all l = 2, 3, ... we have

0 ̸= c ∗l c = mlα1xl ∈ C.

This implies that r(C) = r(A), a contradiction.

Now, if A is a homogeneous separable group of infinite rank and {x1, x2, ...}
be a maximal independent set of A, then, by Proposition 87.2 of [8], for all
i = 1, 2, ..., ⟨xi⟩∗ is a direct summand of A and hence U0i = Ui. So, by a similar
proof to the previous theorem we will have:

Proposition 4.2 If A be a non-nil homogeneous separable group (of rank ℵ1),
then A contains no non-trivial subgroup of rank less than r(A), which is a subring
of every ring on A.

Theorem 4.3 Let A = ⊕i∈IAi be a completely decomposable group and S =
{xi | xi ∈ Ai, i ∈ I} a maximal independent set of A such that t(xi) = tis are
maximal and incomparable in T (A) for all i ∈ I. Then

(i) Any rank one subgroup C which is a non-zero subring of every ring on A,
is of the form C = UC

i (mxi) with t2i = ti,m ∈ Z \ {0}.

(ii) Any subgroup C of rank k which is a subring of every ring on A, is generated
by l(≤ k) rational multiples of some elements in S with idempotent types
and k− l combinations with rational coefficients of some elements in S with
non-idempotent types. Moreover, if l ̸= 0 then C is a nonzero subring.

Proof. (i) Let C be any rank one subgroup of A which is a subring of every
ring on A and let c =

∑n
i=1 αixi be a non-zero element of C. We consider two

cases. First suppose that αi ̸= 0, for some i ∈ {1, 2, ..., n} with t2(xi) = t(xi). For
example let α1 ̸= 0 and t2(x1) = t(x1). This implies t(U2

1 ) = t(U1). Hence, similar
to the proof of Theorem 4.1, there exists a non-zero integer m such that

xi ∗ xj =

{
mx1 if i = j = 1,

0 otherwise.

is a ring on A. Clearly, 0 ̸= c ∗ c = α1mx1 ∈ C. Now if αj ̸= 0 for some j ̸= 1,
then r(C) ≥ 2, which is a contradiction. Consequently, C = UC

1 (mx1) for some
m ∈ Z \ {0}.
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If c =
n∑

i=1

βixi, t
2(xi) ̸= t(xi), for all i = 1, 2, ..., n, then we know t(xi) is

maximal and non-idempotent, hence for any ring on A we must have: xixi =
xixj = 0 which yields C is zero subring.

(ii) Let C be a rank k > 1 subgroup of A which is a subring of every ring on
A and let {c1 = α11x1 + · · · + α1nxn, c2 = α21x1 + · · · + α2nxn, ..., ck = αk1x1 +
· · ·+αknxn} be a maximal independent set of C. If there exist i ∈ {1, 2, ..., k} and
j ∈ {1, 2, ..., n} such that αij ̸= 0 and t2(xj) = t(xj), then as in case (i) there exist
a non-zero integer m and a ring on A with 0 ̸= c2i = α2

ijmxj ∈ C. Let α2
ijm = βj,

hence there exist c′2, ..., c
′
k ∈ C such that {βjxj, c

′
2, ..., c

′
k} is an independent set in

C and for all i = 1, 2, ..., k,

c′i = α′
i1x1 + · · ·+ α′

ij−1xj−1 + α′
ij+1xj+1 + · · ·+ α′

inxn.

Repeating this procedure we get a maximal independent set in C

{βj1xj1 , ..., βjlxjl , c
′′
1, ..., c

′′
k−l},

such that t2(xj1) = t(xj1), ..., t
2(xjl) = t(xjl) and c′′1, ..., c

′′
kl

are rational combina-
tions of some elements in S with non-idempotent types.
In fact if C is a rank k subgroup of A which is a non-zero subring of every ring
on A, then there exists an element c =

∑n
i=1 αixi with αi ̸= 0 and t2(xi) = t(xi).

For otherwise, the maximality of types implies that xixj = xjxi = 0 for all
i, j = 1, 2, ..., n. This implies that C is a zero subring, a contradiction.

Now, our final assertion is obvious.

Theorem 4.4 Let A = ⊕i∈IAi be a completely decomposable group and S =
{xi | xi ∈ A, i ∈ I} a maximal independent set of A such that some of t(xi)s are
equal or are not maximal, Then any rank one subgroup C which is a non-zero
subring of every ring on A, is of the form C = UC

i (lxi) for some non-zero integer
l with t(xi) idempotent.

Proof. Let C be any rank one subgroup of A which is a subring of every ring

over A and c =
n∑

i=1

αixi ∈ C. If αi ̸= 0 for some i in which t2(xi) = t(xi), then by

the proof of Theorem 4.1, there exists a non-zero integer m such that

xr ∗ xs =

{
mxi if r = s = i,

0 otherwise,

yields a ring on A such that c2 = mα2
ixi ∈ C. Moreover, by r(C) = 1 we obtain

αj = 0 for all j ̸= i. Consequently, C = UC
i (lxi), for some non-zero integer l.

Now, suppose that C is a subring and any arbitrary element of C is of the

form αc for some α ∈ Q and c =
n∑

j=1

αjxj such that t(xj)s are not idempotent.
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Suppose there exists exactly one index i ∈ J such that αi ̸= 0. If there is a ring on
A with x2

i ̸= 0 then t(xi) < t2(xi) ≤ t(x2
i ) and so x2

i = Σkβkxk, for some βk ∈ Q
and xk ∈ S with t(xk) > t(xi). Hence c2 = α2

ix
2
i = Σkβkα

2
ixk /∈ C which means C

is not a subring of every ring over A.
This yields that if C = ⟨αixi⟩, with t(xi) non-idempotent, then C is a subring

of any ring over A exactly if C be the zero subring. Moreover, if C = ⟨αxi + βxj⟩
and α, β are both non-zero, then for any ring on A we must have

c2 = γc = γ(αxi + βxj). (∗)

But

c2 = α2x2
i + αβxixj + βαxjxi + β2x2

j . (∗∗)

Now if c2 ̸= 0, for a ring on A, then we must have (∗) = (∗∗). Hence if x2
i ̸= 0, it

must be equal to a rational multiple of xj (because t2(xi) ̸= t(xi)) which yields

(1) t(xi) < t(xj).

By the same reason, if x2
j ̸= 0, then it must be a rational multiple of xi, which

yields

(2) t(xj) < t(xi).

Moreover, if xixj ̸= 0 or xjxi ̸= 0, then similarly they must be non-zero multiples
of xi or xj. But in this case if, for example, xixj be a non-zero rational multiples
of xi, then t(xi) = t(xixj) ≥ t(xi)t(xj). Now if t(xi) = t(xj), then t(xi)t(xj) >
t(xi); because t(xi) is not idempotent, and if t(xi) ̸= t(xj) then it is clear that
t(xi)t(xj) > t(xi). This yields t(xi) = t(xixj) ≥ t(xi)t(xj) > t(xi) which is a
contradiction. Thus, xixj = 0. Similarly, xjxi = 0; and so c2 = αx2

i + βx2
j , which

never could be of the form (∗).
Thus, C = ⟨αxi + βxj⟩ with α, β ̸= 0 and t(xi), t(xj) non-idempotent, is a

subring of A iff x2
i = x2

j = 0 for every ring on A and in this case C is a zero
subring. [For example if t(xi) and t(xj) are maximal and non-idempotent, then
for every ring on A we have x2

i = x2
j = 0 and C will be a zero subring of any ring

over A.]
So, by induction we could see that A doesn’t contain any subgroup of the form

C =

⟨
n∑

j=1

αjxj

⟩
with the t(xj)s non-idempotent and C is a non-zero subring of

any ring on A.

5. SR−Groups

We begin with the definition:
A group A is called an SR-group if every subgroup of A is a subring in every

ring over A.
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The class of SR-groups is extensive since every nil group is an SR-group and
a wide range of countable groups are nil; in fact it is even possible to exhibit
a proper class (i.e., not a set) of nil groups. This is achieved by utilizing the
following:

Proposition 5.1

(i) If R is any countable reduced torsion-free ring with identity which has no
zero divisors, then there is a countable reduced torsion-free group A which
is a nil group and End(A) ∼= R.

(ii) If R is a cotorsion-free ring (i.e. R+ is torsion-free and reduced and con-
tains no non-trivial pure-injective subgroup) with identity which has no zero
divisors, then there exist arbitrarily large torsion-free groups A which are nil
and End(A) ∼= R.

Proof. For part (i), we utilize Corner’s famous realization theorem [[2], The-
orem A] to produce a group A with R ≤∗ A ≤∗ R̂, where A = ⟨R, erR⟩∗
for suitable elements er = αr1 + βrr, where αr, βr are algebraically indepen-
dent over a certain subring of Ẑ containing Z. To see that A is nil we compute
Hom(A,End(A)). Since End(A) ∼= R and R ≤ A, we can construe any homomor-
phism φ ∈ Hom(A,End(A)) as an endomorphism of A and hence it is equivalent
to scalar multiplication on A by an element s ∈ R. Consequently ers ∈ R for each
er ∈ A and so (αr1 + βrr)s ∈ R, giving βrrs ∈ R. The algebraic independence
of the βr force rs = 0 for all r, and this in turn, by the assumption on R, forces
s = 0, so that φ = 0. Since φ ∈ Hom(A,End(A)) was arbitrary, we conclude that
Hom(A,End(A)) = 0 and A is nil, as required.

The proof of (ii) is similar except that one uses a more powerful “Black
Box”-type realization theorem (see e.g., [3]) to obtain the group A which is now
sandwiched between a large free R-module B and its natural completion B̂. Spe-
cifically, if λ = λℵ0 is a given cardinal, we chose B to be the direct sum of λ
copies of R so that |A| ≥ λ. The assumption that R has no zero divisors means
that B and B̂ are both torsion-free R-modules and hence so also is A. Thus
every endomorphism of A is monic. That A is nil now follows from Proposition
121.2 of [8] or alternatively the argument in part(i) may be replaced by a support
argument on the “branch” elements used in the construction of A. Finally, since
there exist arbitrary large cardinals λ with λℵ0 = λ, we can construct the desired
group A to have cardinality exceeding an arbitrarily large cardinal; clearly this
results in a proper class of such groups.

Moreover, we have criteria to realize some groups which could not be SR-
group.

Proposition 5.2 Let M be a module over a commutative ring R. Suppose that
R+ = A, and M+ = B. If there exist m ∈ M and r ∈ R such that r2m ̸= 0, then
A⊕B is not an SR-group.
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Proof. For r1, r2 ∈ R, and m1,m2 ∈ M define (r1,m1)(r2,m2) = (r1r2, r1m2 +
r2m1+ r1r2m). This multiplication induces a ring structure S on A⊕B. However
the subgroup T = {(r, 0) | r ∈ R} is not a subring of S, because (r, 0)(r, 0) =
(r2, r2m) /∈ T.

Corollary 5.3 For every torsion-free group B ̸= 0, the group Z ⊕ B is not an
SR-group.

Proposition 5.4 A direct summand of an SR-group is an SR-group.

Proof. Let A = B⊕C is a SR-group and suppose that S = (B, ∗) is a ring on B
such that there exists a subgroup H of B which is not a subring of S. Now define
R = (A, .) by a multiplication (b1, c1).(b2, c2) = (b1 ∗b2, 0). Then {(b, 0) | b ∈ H} is
a subgroup of A which is not a subring of R. This contradiction yields the result.

Corollary 5.5 If Q is a subgroup of an abelian group A, then A is not an SR-
group.

Proof. Follows from Proposition 5.4 and the fact that Q is not a SR-group.

Corollary 5.6 A torsion-free SR-group is reduced.

Proposition 5.7 A non-nil homogeneous completely decomposable group of rank
greater than one is not an SR-group.

Proof. By Theorem 4.1, every subgroup of rank one is not a subring of every
ring on this group.

Lemma 5.8 Let A =
⊕

i∈I Ai be a completely decomposable group with r(Ai) = 1.
Then A is nil if and only if t(Ai)t(Aj) � t(Ak) for all i, j, k ∈ I.

Proof. See [6, Corollary 2.1.3].

Now, we want to show that a non-nil completely decomposable group with
rank greater than one is not SR-group.

So, let A =
⊕

i∈I Ai be a completely decomposable group with r(Ai) = 1 and
|I| > 1. By Lemma 5.8 we know that, if A is non-nil, then there exist i, j, k ∈ I
such that t(Ai)t(Aj) ≤ t(Ak) and so there exists 0 ̸= φ ∈ Hom(Ai ⊗ Aj, Ak).
Therefore, we will have one of the following cases:

(I) i ̸= j ̸= k;

(II) (i = j) ̸= k;

(III) i = j = k;

(IV) i ̸= j, j = k.
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Now, in each case we will find a direct summand of A which is not a SR-group
and then by Proposition 5.4, A is not a SR-group.

(I) For convenience let i = 1, j = 2, k = 3. Then, by Proposition 5.4, it suf-
fices to show that A′ = A1 ⊕ A2 ⊕ A3 is not a SR-group. As we saw there
exist 0 ̸= φ ∈ Hom(A1 ⊗ A2, A3). Let ai ∈ Ai, i = 1, 2, be such that
φ(a1 ⊗ a2) ̸= 0. Now suppose R is a ring on A′ which is defined by the mul-
tiplication (b1, b2, b3)(c1, c2, c3) = (0, 0, φ(b1⊗ c2+ c1⊗ b2)) for all bi, ci ∈ Ai,
i = 1, 2, 3.

Let B be the subgroup of A′ generated by {(a1, 0, 0), (0, a2, 0) | a1 ∈ A1,
a2 ∈ A2}. Then (a1, 0, 0)(0, a2, 0) = (0, 0, φ(a1 ⊗ a2)) /∈ B. Therefore B is a
subgroup of A′ which is not a subring of R. So A′, and therefore A, is not
an SR-group.

(II) (i = j) ̸= k; in this case we have t2(Ai) ≤ t(Ak) and hence there exists
0 ̸= φ ∈ Hom(Ai⊗Ai, Ak). Let a1, a2 ∈ Ai be such that φ(a1⊗a2) ̸= 0. Let R
be a ring on A′ = Ai⊕Ak which is defined by (ai, ak)(a

′
i, a

′
k) = (0, φ(ai⊗a′i)).

Then R ̸= 0 and (ai, 0)(a
′
i, 0) = (0, φ(ai ⊗ a′i)) /∈ Ai. Hence Ai is a subgroup

of A′ which is not subring of A′ and this completes this part.

(III) Let i = j = k = 1. Then t(A1)t(A1) ≤ t(A1), because t(Ai)t(Aj) ≤ t(Ak),
hence t2(A1) = t(A1).
If t(A1) = t(Z), then we have two cases:

(a) there exists some l ∈ I such that l ̸= 1 and t(Al) = t(Z). Then B =
A1 ⊕ Al is a direct summand of A and by Proposition 5.7, B is not
SR-group and so A is not SR-group too.

(b) if there exists some l ̸= 1 such that t(A1) < t(Al), then t2(A1) =
t(A1)t(A1) < t(A1)t(Al) = t(Al), because t(A1) = (0, 0, ...). So,
t2(A1) ≤ t(Al) and by (II), B = A1 ⊕ Al is not SR-group and A will
not be SR-group, too.

If at least one component of t(A1) is∞, for example suppose the p−component
of t(A1) is ∞. In this case, by Theorem 121.1, if R be a ring on A1, then
there exists an integer m such that (m, p) = 1, R2 = mR and R ∼= mZ(p−1).
Now consider the subgroup C = ⟨m/p⟩ of (mZ(p−1))+. Since C is not a
subring of mZ(p−1), the additive group of mZ(p−1) which is isomorphic to
A1 is not an SR-group and this implies that A is not an SR-group.

(IV) Let i ̸= (j = k) and so t(Ai)t(Ak) ≤ t(Ak) which means t(Ai) ≤ t(Ak) and
therefore if A′ = Ai ⊕ Ak, then |T (A′)| = 2.
If t(Ai) = t(Ak) then A′ is homogeneous and is not an SR-group. So consider
t(Ai) < t(Ak), which implies t(Ak) > t(Z).
Now if at least one of the t(Ai) or t(Ak) is idempotent:

(a) t(Ak) is idempotent. By t(Ak) > t(Z), at least one of its component is
∞ and (III) yields the result.
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(b) t(Ai) is idempotent;
If t(Ai) = t(Z), then t2(Ai) = t(Ai)t(Ai) ≤ t(Ai)t(Ak) = t(Ak) and (II)
yields the result.
If t(Ai) ̸= t(Z), then t(Ai) has infinity as a component and (III) yields
the result.

(c) If t(Ai) and t(Ak) are not idempotent then by Proposition 2.2, B =
⟨x+ y⟩; x ∈ Ai, y ∈ Ak is a subgroup of A′ which is not a subring. This
means A′, and therefore A is not an SR-group.

As a result of (I)− (IV ) we are in a position to prove:

Theorem 5.9 Let A =
⊕

i∈I Ai be a completely decomposable torsion-free group
with r(Ai) = 1. Then A is an SR-group exactly if A ∼= Z or A is nil.

Proof. It is clear that if A ∼= Z or A is nil, then A is an SR-group.
Now, suppose that A is an SR-group. If A is a rank 1 group then A is nil or

A ∼= Z; in fact, if A is a rank one non-nil group, and t(A) = (k1, k2, . . . , kn, . . .)
then ki = ∞ or ki = 0 for all i. If there exists an i such that ki = ∞, then A
contains a subgroup which is isomorphic with a subgroup of Q(pi) which is clearly
not a subring of A. Consequently, t(A) = (0, 0, . . . , 0, 0, . . .) hence A ∼= Z.

Moreover, if r(A) > 1, then by (I)− (IV ) it couldn’t be a non-nil SR-group.

It would be interesting to know if there exists a non-nil SR-group other than
the group of integers Z.
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