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Abstract. In this paper, author discusses some interesting properties such as Composi-

tion property, Power series expansion, Inverse property, Increasing property, Positivity

and Limiting case of Mittag-Leffler function with argument xα, α > 0.
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1. Introduction

In 1903, a Swedish mathematician Gösta Mittag-Leffler [6] introduced the function
Eα(z) in the form:

(1.1) Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
,

where z is a complex variable, α > 0 and Γ(·) is the well-known gamma function.

The Mittag-Leffler function (1.1) is an entire function of order (Reα)−1 and
is also direct generalization of the exponential function to which it reduces when
α = 1, or in other words, the Mittag-Leffler function is the parameterized expo-
nential function. If 0 < α < 1, then it interpolates between the pure exponential

exp(z) and a hypergeometric function
1

1− z
= 1F0(1;−; z). In recent years, the

Mittag-Leffler function has caused extensive interest among scientist, engineers
and applied mathematicians. The Mittag-Leffler functions naturally occur as the
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solution of fractional order differential equation or fractional order integral equa-
tions. Some applications of the function (1.1) have already been discussed in [4],
[5], [7] and [8].

Few interesting special cases of Eα(z) are as listed below.

(1.2) E0(z) =
1

1− z
; |z| < 1,

(1.3) E 1
2
(z) =

∞∑
n=0

zn

Γ
(
n
2
+ 1
) = exp(z2)erfc(−z)

(1.4) E1(z) =
∞∑
n=0

zn

Γ(n+ 1)
= ez

(1.5) E2(z) = cosh(
√
z)

(1.6) E3(z) =
1

3

[
cos
(
z

1
4

)
+ 2 exp

(
−z

1
3

2

)
cos

(√
3

2
z

1
3

)]

(1.7) E4(z) =
1

2

[
cos
(
z

1
4

)
+ cosh

(
z

1
4

)]

2. Mittag-Leffler function with argument xα and its properties

In this section, the author establishes some interesting properties of the Mittag-
Leffler function xα.

The Mittag-Leffler function does not satisfy the composition property,
Eα(x)Eα(y) ̸= Eα(x + y), but it can be observed that (Jumarie [1], [2], [3]) the
function

(2.1) Eα(x
α) =

∞∑
n=0

xαn

Γ(αn+ 1)
; α > 0,

does satisfy the composition property

(2.2) Eα(x
α)Eα(y

α) = Eα{(x+ y)α}, ∀x ∈ IR.

The function Eα(x
α) defined in (2.1) converges absolutely for

|x| <
(
Γ(αn+ α + 1)

Γ(αn+ 1)

) 1
α

is a Mittag-Leffler function with argument xα, α > 0, and this also can be reduced
in the exponential function for α = 1.
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(i) Power series expansion of Eα(x
α)

(2.3)

Eα(x
α) =

∞∑
n=0

xαn

Γ(αn+ 1)
; α > 0, ∀ x ∈ IR

= 1 +
xα

Γ(α + 1)
+

x2α

Γ(2α + 1)
+

x3α

γ(3α + 1)
+ · · ·

Taking x = 0 in (2.3), we get

(2.4) Eα(0) = 1.

(ii) Inverse Property and its particular cases:

Putting y = −x in (2.2), yields

Eα(0) = Eα(x
α)Eα{(−x)α}.

Using (2.4), the above equation yields

(2.5) Eα{(−x)α} =
1

Eα(xα)
.

If α = 1, then (2.2) and (2.5) becomes

exp(x+ y) = exp(x) exp(y) and exp(−x) =
1

exp(x)
·

(iii) Increasing property:

If x > y > 0 =⇒ −y > −x for odd positive integer α, we can write

(−y)α > (−x)α;

this gives
Eα{(−y)α} > Eα{(−x)α};

using (2.5), this leads to

(2.6)
1

Eα(yα)
>

1

Eα(xα)
i.e. Eα(x

α) > Eα(y
α).

Now, again if x > y > 0, then xα > yα > 0 implies that

(2.7) Eα(x
α) > Eα(y

α).

Equations (2.6) and (2.7) imply that Eα(x
α) is strictly increasing function for odd

positive integer α.
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(iv) Positivity:

For α ∈ N and x ≥ 0, we have

(2.8) Eα(x
α) > 0

again for
x < 0 =⇒ −x > 0.

Therefore, for α ∈ N, we have

(−x)α > 0

=⇒ Eα{(−xα)} > Eα(0) = 1 > 0;

using (2.5), this leads to

1

Eα(xα)
> 0

and hence

(2.9) Eα(x
α) > 0.

Equations (2.8) and (2.9) show that

Eα(x
α) > 0; α ∈ N and ∀ x ∈ IR.

(v) Limiting case:

Equation (2.3), gives

(2.10) Eα(x
α) → ∞ as x → ∞ for α > 0.

Now, consider

lim
x→−∞

Eα(x
α) = lim

y→∞
Eα{(−y)α}

= lim
y→∞

1

Eα(yα)
= 0.

Therefore,

(2.11) Eα(x
α) → 0 as x → −∞ for α > 0.

From (2.5),
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Eα{(−x)α} =
1

Eα(xα)

=
1

1+
xα

Γ(α+1)
+

x2α

G(2α+1)
+

x3a

Γ(3α+1)
+ · · ·+ xα(n+1)

Γ(αn+α+1)
+ · · ·

<
Γ(αn+ α + 1)

xαn+α
.

Therefore,

lim
x→∞

xαnEa{(−x)α} < lim
x→∞

Γ(αn+ α + 1)

xα
= 0, α > 0,

hence

(2.12) xαnEα{(−x)α} → 0 as x → ∞ for α > 0.

3. Concluding remarks

The results established in this paper seem to be new and stimulate the scope of
further research and other computational aspects.
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