CENTRALIZERS ON SEMIPRIME GAMMA RINGS

M.F. Hoque
Department of Mathematics
Pabna Science and Technology University
Pabna-6600
Bangladesh
e-mail: fazlul_math@yahoo.co.in

A.C. Paul

Department of Mathematics
Rajshahi University
Rajshahi-6205
Bangladesh
e-mail: acpaulru_math@yahoo.com

$$
\begin{aligned}
& \text { Abstract. Let } M \text { be a } 2 \text {-torsion free semiprime } \Gamma \text {-ring satisfying a certain assumption } \\
& \text { and let } T: M \rightarrow M \text { be an additive mapping such that } \\
& \qquad T(x \alpha y \beta x)=x \alpha T(y) \beta x \\
& \text { holds for all } x, y \in M \text {, and } \alpha, \beta \in \Gamma \text {. Then we prove that } T \text { is a centralizer. We also } \\
& \text { show that } T \text { is a centralizer if } M \text { contains a multiplicative identity } 1 \text {. }
\end{aligned}
$$

2000 Mathematics Subject Classification: 16N60, 16W25, 16Y99.
Keywords: semiprime Γ-ring, left centralizer, centralizer, Jordan centralizer.

1. Introduction

Let M and Γ be additive abelian groups. If there exists a mapping $(x, \alpha, y) \rightarrow x \alpha y$ of $M \times \Gamma \times M \rightarrow M$, which satisfies the conditions
(i) $x \alpha y \in M$
(ii) $(x+y) \alpha z=x \alpha z+y \alpha z, x(\alpha+\beta) z=x \alpha z+x \beta z, x \alpha(y+z)=x \alpha y+x \alpha z$
(iii) $(x \alpha y) \beta z=x \alpha(y \beta z)$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$,
then M is called a Γ-ring.
Every ring M is a Γ-ring with $M=\Gamma$. However a Γ-ring need not be a ring. Gamma rings, more general than rings, were introduced by Nobusawa [11]. Bernes [1] weakened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa.

Let M be a Γ-ring. Then an additive subgroup U of M is called a left (right) ideal of M if $M \Gamma U \subset U(U \Gamma M \subset U)$. If U is both a left and a right ideal, then we say U is an ideal of M. Suppose again that M is a Γ-ring. Then M is said to be a 2 -torsion free if $2 x=0$ implies $x=0$ for all $x \in M$. An ideal P_{1} of a Γ-ring M is said to be prime if for any ideals A and B of $M, A \Gamma B \subseteq P_{1}$ implies $A \subseteq P_{1}$ or $B \subseteq P_{1}$. An ideal P_{2} of a Γ-ring M is said to be semiprime if for any ideal U of $M, U \Gamma U \subseteq P_{2}$ implies $U \subseteq P_{2}$. A Γ-ring M is said to be prime if $a \Gamma M \Gamma b=(0)$ with $a, b \in M$, implies $a=0$ or $b=0$ and semiprime if $a \Gamma M \Gamma a=(0)$ with $a \in M$ implies $a=0$. Furthermore, M is said to be commutative Γ-ring if $x \alpha y=y \alpha x$ for all $x, y \in M$ and $\alpha \in \Gamma$. Moreover, the set $Z(M)=\{x \in M: x \alpha y=y \alpha x$ for all $\alpha \in \Gamma, y \in M\}$ is called the centre of the Γ-ring M.

If M is a Γ-ring, then $[x, y]_{\alpha}=x \alpha y-y \alpha x$ is known as the commutator of x and y with respect to α, where $x, y \in M$ and $\alpha \in \Gamma$. We make the basic commutator identities:

$$
\begin{aligned}
& {[x \alpha y, z]_{\beta}=[x, z]_{\beta} \alpha y+x[\alpha, \beta]_{z} y+x \alpha[y, z]_{\beta} \text { and }} \\
& {[x, y \alpha z]_{\beta}=[x, y]_{\beta} \alpha z+y[\alpha, \beta]_{x} z+y \alpha[x, z]_{\beta}}
\end{aligned}
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.
We consider the following assumption:
(A) $x \alpha y \beta z=x \beta y \alpha z$, for all $x, y, z \in M$, and $\alpha, \beta \in \Gamma$.

According to the assumption (A), the above two identities reduce to

$$
\begin{aligned}
{[x \alpha y, z]_{\beta} } & =[x, z]_{\beta} \alpha y+x \alpha[y, z]_{\beta} \text { and } \\
{[x, y \alpha z]_{\beta} } & =[x, y]_{\beta} \alpha z+y \alpha[x, z]_{\beta},
\end{aligned}
$$

which we extensively used.
An additive mapping $T: M \rightarrow M$ is a left (right) centralizer if

$$
T(x \alpha y)=T(x) \alpha y \quad(T(x \alpha y)=x \alpha T(y))
$$

holds for all $x, y \in M$ and $\alpha \in \Gamma$. A centralizer is an additive mapping which is both a left and a right centralizer. For any fixed $a \in M$ and $\alpha \in \Gamma$, the mapping $T(x)=a \alpha x$ is a left centralizer and $T(x)=x \alpha a$ is a right centralizer. We shall restrict our attention on left centralizer, since all results of right centralizers are the same as left centralizers.

An additive mapping $D: M \rightarrow M$ is called a derivation if

$$
D(x \alpha y)=D(x) \alpha y+x \alpha D(y)
$$

holds for all $x, y \in M$, and $\alpha \in \Gamma$ and is called a Jordan derivation if

$$
D(x \alpha x)=D(x) \alpha x+x \alpha D(x)
$$

for all $x \in M$ and $\alpha \in \Gamma$.

An additive mapping $T: M \rightarrow M$ is Jordan left(right) centralizer if

$$
T(x \alpha x)=T(x) \alpha x(T(x \alpha x)=x \alpha T(x))
$$

for all $x \in M$, and $\alpha \in \Gamma$.
Every left centralizer is a Jordan left centralizer but the converse is not in general true.

An additive mappings $T: M \rightarrow M$ is called a Jordan centralizer if

$$
T(x \alpha y+y \alpha x)=T(x) \alpha y+y \alpha T(x)
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Every centralizer is a Jordan centralizer but Jordan centralizer is not in general a centralizer.

Bernes [1], Luh [9] and Kyuno [8] studied the structure of Γ-rings and obtained various generalizations of corresponding parts in ring theory.

Borut Zalar [15] worked on centralizers of semiprime rings and prove that Jordan centralizers and centralizers of this rings coincide. Joso Vukman [12], [13], 14] developed some remarkable results using centralizers on prime and semiprime rings.
Y. Ceven [5] worked on Jordan left derivations on completely prime Γ-rings. He investigated the existence of a nonzero Jordan left derivation on a completely prime Γ-ring that makes the Γ-ring commutative with an assumption. With the same assumption, he showed that every Jordan left derivation on a completely prime Γ-ring is a left derivation on it.

In [6], Fazlul Hoque and A.C. Paul proved that every Jordan centralizer of a 2 -torsion free semiprime Γ-ring is a centralizer. Here they also gave an example of a Jordan centralizer which is not a centralizer.

In this paper, we develop some results of J. Vukman [14] in Γ-rings. If M is a 2-torsion free semiprime Γ-ring satisfying the assumption (A) and if $T: M \rightarrow M$ is an additive mapping such that

$$
\begin{equation*}
T(x \alpha y \beta x)=x \alpha T(y) \beta x \tag{1}
\end{equation*}
$$

for all $x, y \in M$ and $\alpha, \beta \in \Gamma$, then T is a centralizer. Also, we prove that T is a centralizer if M contains a multiplicative identity 1 .

2. Centralizers of Semiprime Gamma Rings

For proving our main results, we need the following Lemmas:
Lemma 2.1 Suppose M is a semiprime Γ-ring satisfying the assumption (A). Suppose that the relation $a \alpha x \beta b+b \alpha x \beta c=0$ holds for all $x \in M$, some $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. Then $(a+c) \alpha x \beta b=0$ is satisfied for all $x \in M$ and $\alpha, \beta \in \Gamma$.

Proof. Putting $x=x \beta b \alpha y$ in the relation

$$
\begin{equation*}
a \alpha x \beta b+b \alpha x \beta c=0 \tag{2}
\end{equation*}
$$

We have

$$
\begin{equation*}
a \alpha x \beta b \alpha y \beta b+b \alpha x \beta b \alpha y \beta c=0 \tag{3}
\end{equation*}
$$

On the other hand, a right multiplication by $\alpha y \beta b$ of (2) gives

$$
\begin{equation*}
a \alpha x \beta b \alpha y \beta b+b \alpha x \beta c \alpha y \beta b=0 . \tag{4}
\end{equation*}
$$

Subtracting (4) from (3), we have

$$
\begin{equation*}
b \alpha x \beta(b \alpha y \beta c-c \alpha y \beta b)=0 \tag{5}
\end{equation*}
$$

Putting $x=y \beta c \alpha x$ in (5) gives

$$
\begin{equation*}
b \alpha y \beta c \alpha x \beta(b \alpha y \beta c-c \alpha y \beta b)=0 \tag{6}
\end{equation*}
$$

Left multiplication by cay β of (5) gives

$$
\begin{equation*}
c \alpha y \beta b \alpha x \beta(b \alpha y \beta c-c \alpha y \beta b)=0 \tag{7}
\end{equation*}
$$

Subtracting (7) from (6), we obtain

$$
(b \alpha y \beta c-c \alpha y \beta b) \alpha x \beta(b \alpha y \beta c-c \alpha y \beta b)=0
$$

which gives

$$
\begin{equation*}
b \alpha y \beta c=c \alpha y \beta b, \tag{8}
\end{equation*}
$$

$y \in M$ and $\alpha, \beta \in \Gamma$. Therefore, $b \alpha x \beta c$ can be replaced by $c \alpha x \beta b$ in (2), which gives

$$
a \alpha x \beta b+c \alpha x \beta b=0
$$

i.e.

$$
(a+c) \alpha x \beta b=0
$$

Hence, the proof is complete.
Lemma 2.2 Let M be a 2-torsion free semiprime Γ-ring satisfying the assumption (A) and let $T: M \rightarrow M$ be an additive mapping. Suppose that

$$
T(x \alpha y \beta x)=x \alpha T(y) \beta x
$$

holds for all $x, y \in M$ and $\alpha, \beta \in \Gamma$. Then
(i) $\left[[T(x), x]_{\alpha}, x\right]_{\beta}=0$
(ii) $x \beta[T(x), x]_{\alpha} \gamma x=0$
(iii) $x \beta[T(x), x]_{\alpha}=0$
(iv) $[T(x), x]_{\alpha} \beta x=0$
(v) $[T(x), x]_{\alpha}=0$.

Proof. We prove that (i)

$$
\begin{equation*}
\left[[T(x), x]_{\alpha}, x\right]_{\beta}=0 . \tag{9}
\end{equation*}
$$

For linearization, we put $x+z$ for x in relation (1), we obtain

$$
\begin{equation*}
T(x \alpha y \beta z+z \alpha y \beta x)=x \alpha T(y) \beta z+z \alpha T(y) \beta x . \tag{10}
\end{equation*}
$$

Replacing y for x and z for y in (10), we have

$$
\begin{equation*}
T(x \alpha x \beta y+y \alpha x \beta x)=x \alpha T(x) \beta y+y \alpha T(x) \beta x . \tag{11}
\end{equation*}
$$

For $z=(x \alpha)^{2} x$ relation (10) reduces to

$$
\begin{align*}
& T\left(x \alpha y \beta(x \alpha)^{2} x+(x \alpha)^{2} x \alpha y \beta x\right) \\
& \quad=x \alpha T(y) \beta(x \alpha)^{2} x+(x \alpha)^{2} x \alpha T(y) \beta x \tag{12}
\end{align*}
$$

Putting $y=x \alpha y \beta x$ in (11), we obtain

$$
\begin{align*}
& T\left((x \alpha)^{2} x \beta y \beta x+x \beta y \beta(x \alpha)^{2} x\right) \\
& \quad=x \alpha T(x) \beta x \alpha y \beta x+x \alpha y \beta x \alpha T(x) \beta x . \tag{13}
\end{align*}
$$

The substitution $x \alpha x \beta y+y \alpha x \beta x$ for y in the relation (1) gives

$$
T\left((x \alpha)^{2} x \beta y \beta x+(x \alpha)^{2} x \beta y \beta x\right)=x \alpha T(x \alpha x \beta y+y \beta x \alpha x) \beta x
$$

which gives because of (11),

$$
\begin{align*}
& T\left((x \alpha)^{2} x \beta y \beta x+x \beta y \beta(x \alpha)^{2} x\right) \\
& \quad=(x \alpha)^{2} T(x) \beta y \beta x+x \alpha y \beta T(x) \alpha x \beta x . \tag{14}
\end{align*}
$$

Combining (13) with (14), we arrive at

$$
\begin{equation*}
x \alpha[T(x), x]_{\alpha} \beta y \beta x-x \alpha y \beta[T(x), x]_{\alpha} \beta x=0 . \tag{15}
\end{equation*}
$$

Using (8) in the above relation, we have

$$
\begin{gather*}
x \alpha y \beta T(x) \alpha x \beta x-x \alpha y \beta x \alpha T(x) \beta x-x \alpha[T(x), x]_{\alpha} \beta y \beta x=0 \\
T(x) \alpha x \alpha y \beta x \beta x-x \alpha T(x) \beta x \alpha y \beta x-x \alpha[T(x), x]_{\alpha} \beta y \beta x=0 \\
T(x) \alpha x \beta x \alpha y \beta x-x \alpha T(x) \beta x \alpha y \beta x-x \alpha[T(x), x]_{\alpha} \beta y \beta x=0 \\
(T(x) \alpha x-x \alpha T(x)) \beta x \alpha y \beta x-x \alpha[T(x), x]_{\alpha} \beta y \beta x=0 \tag{16}\\
{[T(x), x]_{\alpha} \beta x \alpha y \beta x-x \beta[T(x), x]_{\alpha} \alpha y \beta x=0} \\
\left([T(x), x]_{\alpha} \beta x-x \beta[T(x), x]_{\alpha}\right) \alpha y \beta x=0 \\
{\left[[T(x), x]_{\alpha}, x\right]_{\beta} \alpha y \beta x=0 .}
\end{gather*}
$$

Let $y=y \alpha[T(x), x]_{\alpha}$ in (16), we have

$$
\begin{equation*}
\left[[T(x), x]_{\alpha}, x\right]_{\beta} \alpha y \alpha[T(x), x]_{\alpha} \beta x=0 . \tag{17}
\end{equation*}
$$

Right multiplication of (16) by $\alpha[T(x), x]_{\alpha}$ gives

$$
\begin{equation*}
\left[[T(x), x]_{\alpha}, x\right]_{\beta} \alpha y \beta x \alpha[T(x), x]_{\alpha}=0 . \tag{18}
\end{equation*}
$$

Subtracting (18) from (17) one obtains

$$
\left[[T(x), x]_{\alpha}, x\right]_{\beta} \alpha y \alpha\left[[T(x), x]_{\alpha}, x\right]_{\beta}=0 .
$$

Since M is semiprime, so (9) follows i.e.

$$
\left[[T(x), x]_{\alpha}, x\right]_{\beta}=0 .
$$

Now, we prove the relation (ii):

$$
\begin{equation*}
x \beta[T(x), x]_{\alpha} \gamma x=0 . \tag{19}
\end{equation*}
$$

The linearization of (9) gives

$$
\begin{aligned}
{\left[[T(x), x]_{\alpha}, y\right]_{\beta} } & +\left[[T(y), x]_{\alpha}, x\right]_{\beta}+\left[[T(y), x]_{\alpha}, y\right]_{\beta}+\left[[T(x), y]_{\alpha}, x\right]_{\beta} \\
& +\left[[T(x), y]_{\alpha}, y\right]_{\beta}+\left[[T(y), y]_{\alpha}, x\right]_{\beta}=0 .
\end{aligned}
$$

Putting $x=-x$ in the above relation, we have

$$
\begin{aligned}
{\left[[T(x), x]_{\alpha}, y\right]_{\beta}+\left[[T(y), x]_{\alpha}, x\right]_{\beta} } & -\left[[T(y), x]_{\alpha}, y\right]_{\beta}+\left[[T(x), y]_{\alpha}, x\right]_{\beta} \\
& -\left[[T(x), y]_{\alpha}, y\right]_{\beta}-\left[[T(y), y]_{\alpha}, x\right]_{\beta}=0 .
\end{aligned}
$$

Adding the above two relations, we have

$$
2\left[[T(x), x]_{\alpha}, y\right]_{\beta}+2\left[[T(x), y]_{\alpha}, x\right]_{\beta}+2\left[[T(y), x]_{\alpha}, x\right]_{\beta}=0 .
$$

Since M is 2 -torsion free semiprime Γ-ring, so, we have

$$
\begin{equation*}
\left[[T(x), x]_{\alpha}, y\right]_{\beta}+\left[[T(x), y]_{\alpha}, x\right]_{\beta}+\left[[T(y), x]_{\alpha}, x\right]_{\beta}=0 . \tag{20}
\end{equation*}
$$

Putting $x \beta y \gamma x$ for y in (20) and using (1), (9),(20) and assumption (A), we have

$$
\begin{aligned}
0= & {\left[[T(x), x]_{\alpha}, x \beta y \gamma x\right]_{\beta}+\left[[T(x), x \beta y \gamma x]_{\alpha}, x\right]_{\beta}+\left[[x \beta T(y) \gamma x, x]_{\alpha}, x\right]_{\beta} } \\
= & x \beta\left[[T(x), x]_{\alpha}, y\right]_{\beta} \gamma x \\
& +\left[[T(x), x]_{\alpha} \beta y \gamma x+x \beta[T(x), y]_{\alpha} \gamma x+x \beta y \gamma[T(x), x]_{\alpha}, x\right]_{\beta} \\
& +\left[x \beta[T(y), x]_{\alpha} \gamma x, x\right]_{\beta} \\
= & x \beta\left[[T(x), x]_{\alpha}, y\right]_{\beta} \gamma x+[T(x), x]_{\alpha} \beta[y, x]_{\beta} \gamma x+x \beta\left[[T(x), y]_{\alpha}, x\right]_{\beta} \gamma x \\
& +x \gamma[y, x]_{\beta} \beta[T(x), x]_{\alpha}+x \beta\left[[T(y), x]_{\alpha}, x\right]_{\beta} \gamma x \\
= & {[T(x), x]_{\alpha} \beta[y, x]_{\beta} \gamma x+x \gamma[y, x]_{\beta} \beta[T(x), x]_{\alpha} } \\
= & {[T(x), x]_{\alpha} \beta y \beta x \gamma x-x \gamma x \beta y \beta[T(x), x]_{\alpha} } \\
& +x \gamma y \beta x \beta[T(x), x]_{\alpha}-[T(x), x]_{\alpha} \beta x \beta y \gamma x .
\end{aligned}
$$

Therefore, we have

$$
\begin{array}{r}
{[T(x), x]_{\alpha} \beta y \beta x \gamma x-x \gamma x \beta y \beta[T(x), x]_{\alpha}+x \gamma y \beta x \beta[T(x), x]_{\alpha}} \\
-[T(x), x]_{\alpha} \beta x \beta y \gamma x=0,
\end{array}
$$

for all $x, y \in M, \alpha, \beta \in \Gamma$, which reduces because of (10) and (15) to

$$
[T(x), x]_{\alpha} \beta y \beta x \gamma x-x \gamma x \beta y \beta[T(x), x]_{\alpha}=0 .
$$

Left multiplication of the above relation by $x \beta$ gives

$$
x \beta[T(x), x]_{\alpha} \beta y \beta x \gamma x-x \beta x \gamma x \beta y \beta[T(x), x]_{\alpha}=0 .
$$

One can replace in the above relation according to (15), $x \beta[T(x), x]_{\alpha} \beta y \beta x$ by $x \beta y \beta[T(x), x]_{\alpha} \beta x$ which gives

$$
\begin{equation*}
x \beta y \beta[T(x), x]_{\alpha} \beta x \gamma x-x \beta x \beta x \gamma y \beta[T(x), x]_{\alpha}=0 . \tag{21}
\end{equation*}
$$

Left multiplication of the above relation by $T(x) \alpha$ gives

$$
\begin{equation*}
T(x) \alpha x \beta y \beta[T(x), x]_{\alpha} \beta x \gamma x-T(x) \alpha x \beta x \beta x \gamma y \beta[T(x), x]_{\alpha}=0 . \tag{22}
\end{equation*}
$$

The substitution $T(x) \alpha y$ for y in (21), we have

$$
\begin{equation*}
x \beta T(x) \alpha y \beta[T(x), x]_{\alpha} \beta x \gamma x-x \beta x \beta x \gamma T(x) \alpha y \beta[T(x), x]_{\alpha}=0 . \tag{23}
\end{equation*}
$$

Subtracting (23) from (22), we obtain

$$
[T(x), x]_{\alpha} \beta y \beta[T(x), x]_{\alpha} \beta x \gamma x-[T(x), x \beta x \gamma x]_{\alpha} \beta y \beta[T(x), x]_{\alpha}=0 .
$$

From the above relation and Lemma 2.1, it follows that

$$
\left([T(x), x \beta x \gamma x]_{\alpha}-[T(x), x]_{\alpha} \beta x \gamma x\right) \beta y \beta[T(x), x]_{\alpha}=0,
$$

which reduces to

$$
\left(x \beta[T(x), x]_{\alpha} \gamma x+x \beta x \gamma[T(x), x]_{\alpha}\right) \beta y \beta[T(x), x]_{\alpha}=0 .
$$

Relation (9) makes it possible to write $[T(x), x]_{\alpha} \gamma x$ instead of $x \gamma[T(x), x]_{\alpha}$, which means that $x \beta x \gamma[T(x), x]_{\alpha}$ can be replaced by $x \beta[T(x), x]_{\alpha} \gamma x$ in the above relation. Thus we have

$$
x \beta[T(x), x]_{\alpha} \gamma x \beta y \beta[T(x), x]_{\alpha}=0 .
$$

Right multiplication of the above relation by γx and substitution $y \beta x$ for y gives finally,

$$
x \beta[T(x), x]_{\alpha} \gamma x \beta y \beta x \beta[T(x), x]_{\alpha} \gamma x=0 .
$$

Hence, by semiprimeness of M, we have

$$
x \beta[T(x), x]_{\alpha} \gamma x=0 .
$$

Next, we prove the relation (iii):

$$
\begin{equation*}
x \beta[T(x), x]_{\alpha}=0, x \in M, \alpha \in \Gamma . \tag{24}
\end{equation*}
$$

First, putting yox for y in (15), gives because of (19)

$$
\begin{equation*}
x \alpha[T(x), x]_{\alpha} \beta y \alpha x \beta x=0 . \tag{25}
\end{equation*}
$$

The substitution $y \alpha T(x)$ for y in (25), we have

$$
\begin{equation*}
x \alpha[T(x), x]_{\alpha} \beta y \alpha T(x) \alpha x \beta x=0 . \tag{26}
\end{equation*}
$$

Right multiplication of (25) by $\alpha T(x)$,

$$
\begin{equation*}
x \alpha[T(x), x]_{\alpha} \beta y \alpha x \beta x \alpha T(x)=0 . \tag{27}
\end{equation*}
$$

Subtracting (27) from (26) we have

$$
\begin{aligned}
x \alpha[T(x) & , x]_{\alpha} \beta y \alpha(T(x) \alpha x \beta x-x \beta x \alpha T(x))=0 \\
& \Rightarrow x \alpha[T(x), x]_{\alpha} \beta y \alpha[T(x), x \beta x]_{\alpha}=0 \\
& \Rightarrow x \alpha[T(x), x]_{\alpha} \beta y \alpha\left([T(x), x]_{\alpha} \beta x+x \beta[T(x), x]_{\alpha}\right)=0 \\
& \Rightarrow x \beta[T(x), x]_{\alpha} \alpha y \alpha\left([T(x), x]_{\alpha} \beta x+x \beta[T(x), x]_{\alpha}\right)=0 .
\end{aligned}
$$

According to (9), one can replace $[T(x), x]_{\alpha} \beta x$ by $x \beta[T(x), x]_{\alpha}$, which gives

$$
\left.x \beta[T(x), x]_{\alpha} \alpha y \alpha x \beta[T(x), x]_{\alpha}\right)=0, x, y \in M, \alpha, \beta \in \Gamma .
$$

Hence, by semiprimeness of M,

$$
x \beta[T(x), x]_{\alpha}=0, x, y \in M, \alpha, \beta \in \Gamma .
$$

Finally, we prove the relation (v):

$$
\begin{equation*}
[T(x), x]_{\alpha}=0 \tag{28}
\end{equation*}
$$

From (9) and (24), it follows that

$$
[T(x), x]_{\alpha} \beta x=0, x \in M, \alpha, \beta \in \Gamma .
$$

The linearization of the above relation gives(see how relation (20) was obtained from (9)),

$$
[T(x), x]_{\alpha} \beta y+[T(x), y]_{\alpha} \beta x+[T(y), x]_{\alpha} \beta x=0 .
$$

Right multiplication of the above relation by $\beta[T(x), x]_{\alpha}$ gives because of (24),

$$
[T(x), x]_{\alpha} \beta y \beta[T(x), x]_{\alpha}=0,
$$

which implies

$$
[T(x), x]_{\alpha}=0 .
$$

Lemma 2.3 Let M be Γ-ring satisfying the assumption (A) and let $T: M \rightarrow M$ be an additive mapping such that $T(x \alpha y \beta x)=x \alpha T(y) \beta x$ holds for all $x, y \in M$ and $\alpha, \beta \in \Gamma$. Then

$$
\begin{equation*}
x \alpha(T(x \alpha y+y \alpha x)-T(y) \alpha x-x \alpha T(y)) \beta x=0 . \tag{29}
\end{equation*}
$$

Proof. The substitution $x \alpha y+y \alpha x$ for y in (1) gives

$$
\begin{equation*}
T(x \alpha x \alpha y \beta x+x \alpha y \alpha x \beta x)=x \alpha T(x \alpha y+y \alpha x) \beta x . \tag{30}
\end{equation*}
$$

On the other hand, we obtain by putting $z=x \alpha x$ in (10), we have

$$
T(x \alpha x \alpha y \beta x+x \alpha y \beta x \alpha x)=x \alpha T(y) \alpha x \beta x+x \alpha x \alpha T(y) \beta x
$$

i.e.,

$$
\begin{equation*}
T(x \alpha x \alpha y \beta x+x \alpha y \alpha x \beta x)=x \alpha T(y) \alpha x \beta x+x \alpha x \alpha T(y) \beta x . \tag{31}
\end{equation*}
$$

By comparing (30) and (31), we have

$$
x \alpha(T(x \alpha y+y \alpha x)-T(y) \alpha x-x \alpha T(y)) \beta x=0 .
$$

Let $G_{\alpha}(x, y)=T(x \alpha y+y \alpha x)-T(y) \alpha x-x \alpha T(y)$. Then, it is clear that

$$
x \alpha G_{\alpha}(x, y) \beta x=0 \text { and } G_{\alpha}(x, y)=G_{\alpha}(y, x) .
$$

Replacing x for y and using (29), we have

$$
y \alpha G_{\alpha}(x, y) \beta y=0
$$

We can also prove easily the following results:
(i) $G_{\alpha}(x+z, y)=G_{\alpha}(x, y)+G_{\alpha}(z, y)$
(ii) $G_{\alpha}(x, y+z)=G_{\alpha}(x, y)+G_{\alpha}(x, z)$
(iii) $G_{\alpha+\beta}(x, y)=G_{\alpha}(x, y)+G_{\beta}(x, y)$
(iv) $G_{\alpha}(-x, y)=-G_{\alpha}(x, y)$
(v) $G_{\alpha}(x,-y)=-G_{\alpha}(x, y)$.

Lemma 2.4 Let M be a 2-torsion free semiprime Γ-ring satisfying the assumption (A) and let $T: M \rightarrow M$ be an additive mapping. Suppose that

$$
T(x \alpha y \beta x)=x \alpha T(y) \beta x
$$

holds for all $x, y \in M$ and $\alpha, \beta \in \Gamma$. Then
(a) $\left[G_{\alpha}(x, y), x\right]_{\alpha}=0$
(b) $G_{\alpha}(x, y)=0$.

Proof. First we prove the relation (a):

$$
\begin{equation*}
\left[G_{\alpha}(x, y), x\right]_{\alpha}=0 \tag{32}
\end{equation*}
$$

The linearization of (28) gives

$$
\begin{equation*}
[T(x), y]_{\alpha}+[T(y), x]_{\alpha}=0, x, y \in M, \alpha \in \Gamma \tag{33}
\end{equation*}
$$

Putting $x \alpha y+y \alpha x$ for y in the above relation and using (28), we obtain

$$
\begin{aligned}
& {[T(x), x \alpha y+y \alpha x]_{\alpha}+[T(x \alpha y+y \alpha x), x]_{\alpha}=0} \\
& \quad \Rightarrow x \alpha[T(x), y]_{\alpha}+[T(x), y]_{\alpha} \alpha x+[T(x \alpha y+y \alpha x), x]_{\alpha}=0 \\
& \quad \Rightarrow[T(x \alpha y+y \alpha x), x]_{\alpha}+x \alpha[T(x), y]_{\alpha}+\left[T(x, y]_{\alpha} \alpha x=0 .\right.
\end{aligned}
$$

According to (33), one can replace $[T(x), y]_{\alpha}$ by $-[T(y), x]_{\alpha}$ in the above relation. We have, therefore,

$$
[T(x \alpha y+y \alpha x), x]_{\alpha}-x \alpha[T(y), x]_{\alpha}-[T(y), x]_{\alpha} \alpha x=0,
$$

which can be written in the form

$$
[T(x \alpha y+y \alpha x)-T(y) \alpha x-x \alpha T(y), x]_{\alpha}=0,
$$

i.e.,

$$
\left[G_{\alpha}(x, y), x\right]_{\alpha}=0
$$

The proof is, therefore, complete.
Finally, we prove the relation (b):

$$
\begin{equation*}
G_{\alpha}(x, y)=0 \tag{34}
\end{equation*}
$$

From (29) one obtains (see how (20) was obtained from (9))

$$
x \alpha G_{\alpha}(x, y) \beta z+x \alpha G_{\alpha}(z, y) \beta x+z \alpha G_{\alpha}(x, y)=0
$$

Right multiplication of the above relation by $G_{\alpha}(x, y) \alpha x$ gives because of (29),

$$
\begin{equation*}
x \alpha G_{\alpha}(x, y) \beta z \beta G_{\alpha}(x, y) \alpha x=0 \tag{35}
\end{equation*}
$$

Relation (32) makes it possible to replace in (35), $x \alpha G_{\alpha}(x, y)$ by $G_{\alpha}(x, y) \alpha x$. Thus, we have

$$
\begin{equation*}
G_{\alpha}(x, y) \alpha x \beta z \beta G_{\alpha}(x, y) \alpha x=0 . \tag{36}
\end{equation*}
$$

Therefore, by semiprimeness of M,

$$
\begin{equation*}
G_{\alpha}(x, y) \alpha x=0 \tag{37}
\end{equation*}
$$

Of course, we also have

$$
\begin{equation*}
x \alpha G_{\alpha}(x, y)=0 . \tag{38}
\end{equation*}
$$

The linearization of (37) with respect to x gives

$$
G_{\alpha}(x, y) \alpha z+G_{\alpha}(z, y) \alpha x=0
$$

Right multiplication of the above relation by $\alpha G_{\alpha}(x, y)$ gives because of (38),

$$
G_{\alpha}(x, y) \alpha z \alpha G_{\alpha}(x, y)=0,
$$

which gives

$$
G_{\alpha}(x, y)=0
$$

i.e.,

$$
\begin{equation*}
T(x \alpha y+y \alpha x)=T(y) \alpha x+x \alpha T(y) . \tag{39}
\end{equation*}
$$

Hence, the proof is complete.
Theorem 2.1 Let M be a 2-torsion free semiprime Γ-ring satisfying the assumption (A) and let $T: M \rightarrow M$ be an additive mapping. Suppose that

$$
T(x \alpha x \beta x)=x \alpha T(x) \beta x
$$

holds for all $x \in M$ and $\alpha, \beta \in \Gamma$. Then T is a centralizer.
Proof. In particular, for $y=x$, the relation (39) reduces to

$$
2 T(x \alpha x)=T(x) \alpha x+x \alpha T(x)
$$

Combining the above relation with (28), we arrive at

$$
2 T(x \alpha x)=2 T(x) \alpha x, x \in M, \alpha \in \Gamma
$$

and

$$
2 T(x \alpha x)=2 x \alpha T(x), x \in M, \alpha \in \Gamma .
$$

Since M is 2-torsion free, so we have

$$
T(x \alpha x)=T(x) \alpha x, x \in M, \alpha \in \Gamma
$$

and

$$
T(x \alpha x)=x \alpha T(x), x \in M, \alpha \in \Gamma .
$$

By Theorem 2.1 in [6], it follows that T is a left and also right centralizer which completes the proof of the theorem.

Putting $y=x$ in relation (1), we obtain

$$
\begin{equation*}
T(x \alpha x \beta x)=x \alpha T(x) \beta x, x \in M, \alpha, \beta \in \Gamma . \tag{40}
\end{equation*}
$$

The question arises whether in a 2 -torsion free semiprime Γ-ring the above relation implies that T is a centralizer. Unfortunately, we were unable to answer it affirmative if M has an identity element.

Theorem 2.2 Let M be a 2-torsion free semiprime Γ-ring with identity element 1 satisfying the assumption (A) and let $T: M \rightarrow M$ be an additive mapping. Suppose that

$$
T(x \alpha x \beta x)=x \alpha T(x) \beta x
$$

holds for all $x \in M$ and $\alpha, \beta \in \Gamma$. Then T is a centralizer.
Proof. Putting $x+1$ for x in relation (40), one obtains after some calculations

$$
3 T(x \alpha x)+2 T(x)=T(x) \beta x+x \alpha T(x)+x \alpha a \beta x+a \alpha x+x \beta a,
$$

where a stands for $T(1)$.
Putting $-x$ for x in the relation above and comparing the relation so obtained with the above relation we have

$$
\begin{equation*}
6 T(x \alpha x)=2 T(x) \beta x+2 x \alpha T(x)+2 x \alpha a \beta x \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
2 T(x)=a \alpha x+x \beta a . \tag{42}
\end{equation*}
$$

We shall prove that $a \in Z(M)$. According to (42) one can replace $2 T(x)$ on the right side of (41) by $a \alpha x+x \beta a$ and $6 T(x \alpha x)$ on the left side by $3 a \alpha x \beta x+3 x \beta x \alpha a$, which gives, after some calculation,

$$
a \alpha x \beta x+x \beta x \alpha a-2 x \alpha a \beta x=0 .
$$

The above relation can be written in the form

$$
\begin{equation*}
\left[[a, x]_{\alpha}, x\right]_{\beta}=0 ; x \in M, \alpha, \beta \in \Gamma \tag{43}
\end{equation*}
$$

The linearization of the above relation gives

$$
\begin{equation*}
\left[[a, x]_{\alpha}, y\right]_{\beta}+\left[[a, y]_{\alpha}, x\right]_{\beta}=0 \tag{44}
\end{equation*}
$$

Putting $y=x \alpha y$ in (44), we obtain because of (43) and (44),

$$
\begin{aligned}
0 & =\left[[a, x]_{\alpha}, x \alpha y\right]_{\beta}+\left[[a, x \alpha y]_{\alpha}, x\right]_{\beta} \\
& =\left[[a, x]_{\alpha}, x\right]_{\beta} \beta y+x \alpha\left[[a, x]_{\alpha}, y\right]_{\beta}+\left[[a, x]_{\alpha} \alpha y+x \alpha[a, y]_{\alpha}, x\right]_{\beta} \\
& =x \alpha\left[[a, x]_{\alpha}, y\right]_{\beta}+\left[[a, x]_{\alpha} \alpha y, x\right]_{\beta}+\left[x \alpha[a, y]_{\alpha}, x\right]_{\beta} \\
& =x \alpha\left[[a, x]_{\alpha}, y\right]_{\beta}+\left[[a, x]_{\alpha}, x\right]_{\beta} \beta y+[a, x]_{\alpha} \beta[y, x]_{\alpha}+x \alpha\left[[a, y]_{\alpha}, x\right]_{\beta} \\
& =[a, x]_{\alpha} \beta[y, x]_{\alpha} .
\end{aligned}
$$

The substitution $y \beta a$ for y in the above relation gives

$$
[a, x]_{\alpha} \beta y \beta[a, x]_{\alpha}=0,
$$

whence it follows $a \in Z(M)$, which reduces (42) to the form $T(x)=a \alpha x, x \in M$, $\alpha \in \Gamma$. The proof of the theorem is complete.

We conclude with the following conjecture:
Let M be a semiprime Γ-ring with suitable torsion restrictions. Suppose there exists an additive mapping $T: M \rightarrow M$ such that

$$
T\left((x \alpha)^{m}(x \beta)^{n} x\right)=(x \alpha)^{m} T(x)(\beta x)^{n}
$$

holds for all $x \in M, \alpha, \beta \in \Gamma$, where $m \geq 1, n \geq 1$ are some integers. Then T is a centralizer.

References

[1] Barnes, W.E., On the Γ-rings of Nobusawa, Pacific J. Math., 18 (1966), 411-422.
[2] Bresar, M., Vukman, J., Jordan derivations on prime rings, Bull. Austral. Math. Soc., 37 (1988), 321-322.
[3] Bresar, M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104 (1988), 1003-1006.
[4] Bresar, M., Jordan mappings of semiprime rings, J. Algebra, 127 (1989), 218-228.
[5] Ceven, Y., Jordan left derivations on completely prime gamma rings, C.U. Fen-Edebiyat Fakultesi, Fen Bilimleri Dergisi, Cilt 23, Sayi 2 (2002).
[6] Hoque, M.F. and Paul, A.C., On Centralizers of Semiprime Gamma Rings, International Mathematical Forum, vol.6, no. 13 (2011), 627-638.
[7] Kandamar, H., The K-Derivation of a gamma ring, Turk J. Math, 24 (2000), 221-231.
[8] Kyuno, S., On prime Gamma ring, Pacific J. Math., 75 (1978), 185-190.
[9] L. Luh, -it On the theory of simple Gamma rings, Michigan Math. J., 16 (1969), 65-75.
[10] Martindale, W.S., Prime rings satisfying a generalized polynomial identity, Journal of Algebra 12 (1969), 576-584.
[11] sc Nobusawa, N., On the Generalization of the Ring Theory, Osaka J. Math., 1 (1964), 81-89.
[12] sc Vukman, J., Centralizers in prime and semiprime rings, Comment. Math. Univ. Carolinae, 38 (1997), 231-240.
[13] sc Vukman, J., An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolinae, 40, 3 (1999), 447-456.
[14] sc Vukman, J., Centralizers on semiprime rings, Comment. Math. Univ. Carolinae, 42, 2 (2001), 237-245.
[15] Zalar, B., On centralizers of semiprime rings, Comment. Math. Univ. Carolinae, 32 (1991), 609-614.

Accepted: 05.07.2012

