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Abstract. In this note, we establish a common fixed point theorem for a quadruple of

self mappings on a complete metric space satisfying weak compatibility and a generalized

Φ-contraction. Our main result improves and extends some known results. As an

application, we use our main result to obtain common solutions of certain functional

equations arising in dynamic programming. We also discuss an illustrative example to

validate all the conditions of the main result in dynamic programming.
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1. Introduction

In 1986, the notion of compatible mappings which generalizes commuting map-
pings, was introduced by Jungck [6]. Further, in 1998, the more general class
of mappings called weakly compatible mappings was introduced by Jungck and
Rhoades [7]. Recall that self mappings S and T of a metric space (X, d) are called
weakly compatible if Sx = Tx for some x ∈ X implies that STx = TSx.

Bellman and Lee [1] initiated the basic form of the functional equation arising
in dynamic programming as follows:

f(x) = sup
y∈D

{A(x, y, f(a(x, y))}, x ∈ S.

1Corresponding author.
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In 1984, Bhakta and Mitra [2] obtained some existence theorem for the fol-
lowing functional equation which arises in multistage decision process related to
dynamic programming

f(x) = sup
y∈D

{r(x, y) + f(c(x, y))}, x ∈ S.

In 2003, Liu and Ume [8] provided sufficient conditions which insure the
existing and uniqueness for solution for the functional equation

f(x) = opty∈D{u[p(x, y) + f(a(x, y))] + v opt[q(x, y), f(b(x, y))]}, x ∈ S.

Several existence and uniqueness results of solution and common solution
for some functional equations and systems of functional equations in dynamic
programming are discussed by Liu et al. [9].

In 2010, Singh and Mishra[13] established coincidence and fixed point theo-
rems for a new class of contractive, nonexpansive and hybrid contractions map-
pings. Applications regarding the existence of solutions of certain functional equa-
tions are also discussed.

Recently, Jiang et al. [5] studied the properties of solutions of the following
functional equation arising in dynamic programming of multistage decision pro-
cess:

f(x)=opty∈D{p(x, y), q(x, y)f(a(x, y)), r(x, y), f(b(x, y)), s(x, y)f(c(x, y))},∀x∈S.

Bondar et al. [3] proved some common fixed point theorems for two pairs of
mappings and some applications are given in dynamic programming.

Most recently, Pathak et al. [10] introduced the following two functional
equations arising in dynamic programming of multistage decision process:

f(x)=opty∈Dopt{p(x, y) + A(x, y, f(a(x, y))), q(x, y))},∀x ∈ S,

and

f(x)=opty∈Dopt{p1(x, y) + q(x, y)f(a(x, y)), p2(x, y) + r(x, y)f(b(x, y))}, ∀x ∈ S.

In this paper, we prove some common fixed point theorem for a quadruple
of self mappings of a complete metric space satisfying weak compatibility con-
dition and a generalized Φ-contraction. Subsequently, we use our main theorem
to obtain common solutions of certain functional equations arising in dynamic
programming.

2. Preliminaries

In what follows, we denote by Φ the collection of all the functions
φ : [0,∞) → [0,∞) which are upper semicontinuous from the right, non-decreasing
and satisfy lim

s→t+
supφ(s) < t, φ(t) < t, for all t > 0.
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Let X denote a metric space endowed with metric d and let N denote the set
of natural numbers.

Now, let A, B, S and T be self-mappings of X such that

(2.1) A(X) ⊂ T (X) and B(X) ⊂ S(X)

(2.2)

[dp(Ax,By) + a dp(Sx, Ty)]dp(Ax,By)

≤ a max{dp(Ax, Sx)dp(By, Ty), dq(Ax, Ty)dq
′
(By, Sx)}

+max
{
φ1(d

2p(Sx, Ty)), φ2(d
r(Ax, Sx)dr

′
(By, Ty)),

φ3(d
s(Ax, Ty)ds

′
(By, Sx)),

φ4

(1
2
[dl(Ax, Ty)]dl

′
(Ax, Sx) + dl(By, Sx)

)
dl

′
(By, Ty)

}
,

for all x, y ∈ X,φi ∈ Φ (i = 1, 2, 3, 4), a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 and 2p = q+q′ =
r + r′ = s + s′ = l + l′ ≤ 1. Condition (2.2) is commonly called a generalized
Φ-contraction.

Now, we pick x0 ∈ X. Since A(X) ⊂ T (X), we can choose a point x1 ∈ X
such that Ax0 = Tx1. Again, since B(X) ⊂ S(X) for x1 ∈ X, we can choose a
point x2 ∈ X such that Bx1 = Sx2. Continuing in this way, we can construct a
sequence {yn} in X such that

(2.3) y2n = Tx2n+1 = Ax2n and y2n+1 = Sx2n+2 = Bx2n+1 (n ∈ N ∪ {0}).

First, we prove the following lemmas:

Lemma 2.1. Let us suppose dn = d(yn, yn−1), n ∈ N. Then, lim
n→∞

dn = 0.

Proof. In (2.2), putting x = x2n and y = x2n+1 and using (2.3), we get

[dp(Ax2n, Bx2n+1) + a dp(Sx2n, Tx2n+1)]d
p(Ax2n, Bx2n+1)

≤ a max
{
dp(Ax2n, Sx2n)d

p(Bx2n+1, Tx2n+1), d
q(Ax2n, Tx2n+1)

dq
′
(Bx2n+1, Sx2n)}+max{φ1(d

2p(Sx2n, Tx2n+1)), φ2(d
r(Ax2n, Sx2n)

dr
′
(Bx2n+1, Tx2n+1)), φ3(d

s(Ax2n, Tx2n+1)d
s′(Bx2n+1, Sx2n)),

φ4

(1
2
[dl(Ax2n, Tx2n+1)d

l′(Ax2n, Sx2n) + dl(Bx2n+1, Sx2n)d
l′(Bx2n+1, Tx2n+1)]

)}
,

or

[dp2n+1 + adp2n]d
p
2n+1 ≤ a max{dp2n+1d

p
2n, 0}+max

{
φ1(d

2p
2n), φ2(d

r
2nd

r′

2n+1),

φ3(0), φ4

(1
2
[dl2n+1 + dl2nd

l′

2n+1]
)}

≤ adp2n+1d
p
2n +max

{
φ1(d

2p
2n), φ2(d

r
2nd

r′

2n+1),

φ3(0), φ4

(1
2
[dl2n+1d

l′

2n+1 + dl2nd
l′

2n+1]
)}

,
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which implies

(2.4) d2p2n+1 ≤ max
{
φ1(d

2p
2n), φ2(d

r
2nd

r′

2n+1), φ3(0), φ4

(1
2
[dl+l′

2n+1 + dl2nd
l′

2n+1]
)}

.

If d2n+1 > d2n then, we have

d2p2n+1 ≤ max

{
φ1(d

2p
2n+1), φ2(d

r+r′

2n+1), φ3(0), φ4

(1
2
[dl+l′

2n+1 + dl+l′

2n+1]
)}

≤ φi(d
2p
2n+1)

(i = 1, 2, 4).

This, together with a well known result of Chang [4], which states that, if φi ∈ Φ,
where i ∈ I (some indexing set), then there exists a φ ∈ Φ such that max{φi,
i ∈ I} ≤ φ(t), for all t > 0, imply d2p2n+1 < d2p2n+1, a contradiction. Consequently,
we have d2n+1 ≤ d2n, for all n ∈ N, and

(2.5) d2n+1 ≤ φ(d2n) for all n ∈ N and some φ ∈ Φ.

Similarly, for x = x2n+2 and y = x2n+1, we have

(2.6) d2p2n+2 ≤ max

{
φ1(d

2p
2n+1), φ2(0), φ3(0), φ4

(
1

2
[dl+l′

2n+2 + dl2n+1d
l′

2n+2]

)}
.

A similar argument applied to (2.6) will give

(2.7) d2n+2 ≤ φ(d2n+1) for all n ∈ N,

where φ ∈ Φ is assumed to be same as in the previous case. Therefore, for all
n ∈ N, we have dn+1 ≤ φ(dn), and by Lemma 2 of [4], we have lim

n→∞
dn = 0.

Lemma 2.2. The sequence {yn} defined in (2.3) is a Cauchy sequence.

Proof. We prove that the subsequence {y2n} of the sequence {yn} is a Cauchy
sequence. On the contrary, let us suppose that {y2n} is not Cauchy. Then, there
exists an ϵ > 0 such that for each even integer 2k there exist even integers 2m(k),
2n(k) (n ∈ N) with 2m(k) > 2n(k) ≥ 2k, such that

(2.8) d(y2n(k), y2m(k)) > ϵ and d(y2n(k), y2m(k)−2) ≤ ϵ,

that is, 2m(k) is the least positive even integer such that 2m(k) > 2n(k) and

d(y2n(k), y2m(k)−2) ≤ ϵ.

Hence, for each even integer 2k, we have

ϵ < d(y2n(k), y2m(k))

≤ d(y2n(k), y2m(k)−2) + d(y2m(k)−2, y2m(k)−1) + d(y2m(k)−1, y2m(k))

< ϵ+ d2m(k)−1 + d2m(k).



common fixed points for weakly compatible mappings ... 257

Hence, by Lemma 2.1 and (2.8) it follows that

(2.9) lim
n→∞

d(y2n(k), y2m(k)) = ϵ.

By making use of the triangle inequalities, for ρ ∈ [0, 1], we have

dρ(y2m(k)+2, y2n(k)+1) ≤ dρ(y2m(k)+2, y2m(k)+1) + dρ(y2m(k)+1, y2m(k))

+ dρ(y2m(k), y2n(k)) + dρ(y2n(k), y2n(k)+1),

or

dρ(y2m(k)+2, y2n(k)+1)− dρ(y2m(k), y2n(k)) ≤ d2m(k)+2 + d2m(k)+1 + d2n(k)+1.

And

dρ(y2m(k), y2n(k)) ≤ dρ(y2m(k), y2m(k)+1)+dρ(y2m(k)+1, y2m(k)+2)

dρ(y2m(k)+2, y2n(k)+1) + dρ(y2n(k)+1, y2n(k)),

or

dρ(y2m(k), y2n(k))− dρ(y2m(k)+2, y2n(k)+1) ≤ dρ2m(k)+1 + dρ2m(k)+2 + dρ2n(k)+1.

Thus, we obtain

(2.10) |dρ(y2m(k), y2n(k))− dρ(y2m(k)+2, y2n(k)+1)| ≤ dρ2m(k)+1 + dρ2m(k)+2 + dρ2n(k)+1.

Similarly we have

(2.11) |dρ(y2m(k)+1, y2n(k))− dρ(y2n(k), y2m(k))| ≤ dρ2m(k)+1,

(2.12) |dρ(y2m(k)+1, y2n(k)+1)− dρ(y2n(k), y2m(k))| ≤ dρ2n(k)+1 + dρ2m(k)+1,

and

(2.13) |dρ(y2m(k)+2, y2n(k))− dρ(y2n(k), y2m(k))| ≤ dρ2m(k)+1 + dρ2m(k)+2.

By Lemma 2.2 and inequalities (2.10)–(2.13), we have

(2.14)

limk→∞ dρ(y2m(k)+2, y2n(k)+1) = lim
k→∞

dρ(y2m(k)+1, y2n(k))

= lim
k→∞

dρ(y2m(k)+1, y2n(k)+1)

= lim
k→∞

dρ(y2m(k)+2, y2n(k))

= ϵ.

Now, using (2.2) with x = x2m(k)+2 and y = x2n(k)+1 along with (2.3) and a
rearrangement, we obtain
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[dp(Ax2m(k)+2, Bx2n(k)+1) + a dp(Sx2m(k)+2, Tx2n(k)+1)]d
p(Ax2m(k)+2, Bx2n(k)+1)

≤ amax{dp(Ax2m(k)+2, Sx2m(k)+2)d
p(Bx2n(k)+1, Tx2n(k)+1),

dq(Ax2m(k)+2, Tx2n(k)+1)d
q′(Bx2n(k)+1, Sx2m(k)+2)}

+max
{
φ1(d

2p(Sx2m(k)+2, Tx2n(k)+1)),

φ2(d
r(Ax2m(k)+2, Sx2m(k)+2)d

r′(Bx2n(k)+1, Tx2n(k)+1)),

φ3(d
s(Ax2m(k)+2, Tx2n(k)+1)d

s′(Bx2n(k)+1, Sx2m(k)+2)),

φ4

(1
2
[dl(Ax2m(k)+2, Tx2n(k)+1)d

l′(Ax2m(k)+2, Sx2m(k)+2)

+ dl(Bx2n(k)+1, Sx2m(k)+2)d
l′(Bx2n(k)+1, Tx2n(k)+1)]

)}
,

or

[dp(y2m(k)+2, y2n(k)+1) + a dp(y2m(k)+1, y2n(k))]d
p(y2m(k)+2, y2n(k)+1)

≤ amax{dp(y2m(k)+2, y2m(k)+1)d
p(y2n(k)+1, y2n(k)),

dq(y2m(k)+2, y2n(k)+1)d
q′(y2n(k)+1, y2m(k)+1)}

+max
{
φ1(d

2p(y2m(k)+1, y2n(k))),

φ2(d
r(y2m(k)+2, y2m(k)+1)d

r′(y2n(k)+1, y2n(k))),

φ3(d
s(y2m(k)+2, y2n(k))d

s′(y2n(k)+1, y2m(k)+1)),

φ4

(1
2
[dl(y2m(k)+2, y2n(k))d

l′(y2m(k)+2, y2m(k)+1)

+ dl(y2n(k)+1, y2m(k)+1)d
l′(y2n(k)+1, y2n(k))]

)}
.

Letting k → ∞ and using Lemma 2.1, (2.9) and (2.14) and the fact that φi ∈ Φ
(i = 1, 2, 3, 4), we have ϵ2p + aϵ2p ≤ a ϵq+q′ +max{φ1(ϵ

2p), φ2(0), φ3(ϵ
s+s′), φ4(0)},

or ϵ2p ≤ max{φ1(ϵ
2p), φ2(0), φ3(ϵ

s+s′), φ4(0)}, or ϵ2p ≤ φ(ϵ2p) < ϵ2p, a contradic-
tion. Hence, {y2n} is a Cauchy sequence in X. This proves that {yn} is Cauchy
in X.

3. Main results

The following theorems are our main results of this section.

Theorem 3.1. Let A,B, S and T be self mappings of a complete metric space
X satisfying (2.1) and (2.2). If the pairs (A, S) and (B, T ) are weakly compatible
and T (X) or S(X) is closed, then A, B, S and T have a unique common fixed
point in X.

Proof. Since X is complete, it follows from Lemma 2.2 that the sequence {yn}
converges to a point z in X. Consequently, the subsequences {Ax2n}, {Bx2n−1},
{Sx2n}, {Tx2n+1} of {yn} also converge to the same limit z.
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Now, suppose that T (X) is closed. Then, since {Tx2n+1} ⊂ T (X), there
exists a point u ∈ X such that z = Tu. Then, by using (2.2) with x = x2n and
y = u, we have

[dp(Ax2n, Bu) + adp(Sx2n, Tu)]d
p(Ax2n, Bu)

≤ amax
{
dp(Ax2n, Sx2n)d

p(Bu, Tu), dq(Ax2n, Tu)d
q′(Bu, Sx2n)

}
+max

{
φ1(d

2p(Sx2n, Tu)), φ2(d
r(Ax2n, Sx2n)d

r′(Bu, Tu)),

φ3(d
s(Ax2n, Tu)d

s′(Bu, Sx2n)),

φ4

(1
2
[dl(Ax2n, Tu)d

l′(Ax2n, Sx2n) + dl(Bu, Sx2n))d
l′(Bu, Tu)]

)}
,

letting k → ∞, we obtain

[dp(z, Bu) + a dp(z, z)]dp(z,Bu) ≤ amax{dp(z, z)dp(Bu, z), dq(z, z)dq
′
(Bu, z)}

+max
{
φ1(d

2p(z, z)), φ2(d
r(z, z)dr

′
(Bu, z)),

φ3(d
s(z, z)ds

′
(Bu, z)), φ4

(1
2
[dl(z, z)dl

′
(z, z)

+ dl(Bu, z)dl
′
(Bu, z)]

)}
,

or

d2p(z, Bu) ≤ max
{
φ1(0), φ2(0), φ3(0), φ4

(1
2
dl+l′(Bu, z)

)}
,

or

d2p(z, Bu) ≤ max
{
φ1(d

2p(z, Bu)), φ2(d
r+r′(z, Bu)),

φ3(d
s+s′(z, Bu)), φ4

(1
2
dl+l′(Bu, z)

)}
≤ φ(d2p(z, Bu))

< d2p(z, Bu),

a contradiction. This implies that z = Bu. Therefore, Tu = z = Bu. Hence, it
follows by the weak compatibility of the pair (B, T ) that BTu = TBu, that is
Bz = Tz.

Now, we shall show that z is a common fixed point of B and T . For this put
x = x2n and y = z in (2.2), we have

[dp(Ax2n, Bz) + a dp(Sx2n, T z)]d
p(Ax2n, Bz)

≤ amax
{
dp(Ax2n, Sx2n)d

p(Bz, Tz), dq(Ax2n, T z)d
q′(Bz, Sx2n)}

+max{φ1(d
2p(Sx2n, T z)), φ2(d

r(Ax2n, Sx2n)d
r′(Bz, Tz)),

φ3(d
s(Ax2n, T z)d

s′(Bz, Sx2n)),

φ4

(1
2
[dl(Ax2n, T z)d

l′(Ax2n, Sx2n) + dl(Bz, Sx2n))d
l′(Bz, Tz)

)}
.
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Letting n → ∞, we get

[dp(z, Bz) + adp(z, Tz)]dp(z, Bz) ≤ amax{dp(z, z)dp(Bz, Tz), dq(z, Tz)dq
′
(Bz, z)}

+maxBig{φ1(d
2p(z, Tz)), φ2(d

r(z, z)dr
′
(Bz, Tz)), φ3(d

s(z, Tz)ds
′
(Bz, z)),

φ4

(1
2
[dl(z, Tz)dl

′
(z, z) + dl(Bz, z)dl

′
(Bz, Tz)]

)}
,

or

d2p(z, Bz) + a d2p(z,Bz)

≤ a dq+q′(Bz, z) + max{φ1(d
2p(z, Bz)), φ2(0), φ3(d

s+s′(z, Bz)), φ4(0)},

or
(1 + a)d2p(z, Bz) ≤ a dq+q′(Bz, z)}

+max{φ1(d
2p(z, Bz)), φ2(0), φ3(d

s+s′(z, Bz)), φ4(0)},
or

d2p(z, Bz) ≤ a

1 + a
dq+q′(Bz, z)

+
1

1 + a
max{φ1(d

2p(z, Bz)), φ2(0), φ3(d
s+s′(z, Bz)), φ4(0)}

< d2p(z,Bz),

a contradiction. So z = Bz = Tz. Thus z is a common fixed point of B and T .
Similarly, we can prove that z is a common fixed point of A and S. Thus, z

is the common fixed point of A, B, S and T . The uniqueness of z as a common
fixed point of A, B, S and T can easily be verified.

Remark 3.2 If we assume S(X) to be closed then the above theorem also remains
valid. We find the same result if A(X) or B(X) is assumed to be closed by (2.1).

Remark 3.3 Our Theorem 3.1 extends Theorem 2.1 of Pathak et al.[7].

In Theorem 3.1, if we put a = 0 and φi(t) = ht (i=1, 2, 3, 4), where 0 < h < 1,
we get the following corollary:

Corollary 3.4. Let A, B, S and T be self mappings of a complete metric space
X satisfying (2.1) and (2.2′).

(2.2′)
d2p(Ax,By) ≤ h max

{
(d2p(Sx, Ty), dr(Ax, Sx)dr

′
(By, Ty), ds(Ax, Ty)

ds
′
(By, Sx)),

1

2
[dl(Ax, Ty)dl

′
(Ax, Sx) + dl(By, Sx))dl

′
(By, Ty)

}
for all x, y ∈ X,φi ∈ Φ (i = 1, 2, 3, 4), a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 and 2p = q+q′ =
r + r′ = s + s′ = l + l′ ≤ 1. If the pairs (A, S) and (B, T ) are weakly compatible
and T (X) or S(X) is closed, then A, B, S and T have a unique common fixed
point in X.
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Especially, when max{d2p(Sx, Ty), dr(Ax, Sx)dr′(By, Ty), ds(Ax, Ty)ds
′
(By, Sx)),

1
2
[dl(Ax, Ty)dl

′
(Ax, Sx)+dl(By, Sx))dl

′
(By, Ty)} = d2p(Sx, Ty), we get Corollary

3.9 of Pathak et al.[9].
In Theorem 3.1, if we take S =T = IX (the identity mapping on X), then we

have the following corollary:

Corollary 3.5. Let A and B be self mappings of a complete metric space X
satisfying the following condition:

[dp(Ax,By) + a dp(x, y)]dp(Ax,By)

≤ a max{dp(Ax, x)dp(By, y), dq(Ax, y)dq
′
(By, x)}

+max
{
φ1(d

2p(x, y)), φ2(d
r(Ax, x)dr

′
(By, y)), φ3(d

s(Ax, y)ds
′
(By, x)),

φ4

(1
2
[dl(Ax, y)dl

′
(Ax, x) + dl(By, x))dl

′
(By, y)

)}
for all x, y ∈ X,φi ∈ Φ (i = 1, 2, 3, 4), a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 and 2p =
q + q′ = r + r′ = s + s′ = l + l′ ≤ 1, then A and B have a unique common fixed
point in X.

As an immediate consequences of Theorem 3.1 with S = T , we have the
following:

Corollary 3.6. Let A, B, and S be self-mappings of X such that

(2.1)′ A(X) ∪B(X) ⊂ S(X)

(2.2′′)

[dp(Ax,By) + a dp(Sx, Sy)]dp(Ax,By)

≤ amax{dp(Ax, Sx)dp(By, Sy), dq(Ax, Sy)dq
′
(By, Sx)}

+max
{
φ1(d

2p(Sx, Sy)), φ2(d
r(Ax, Sx)dr

′
(By, Sy)),

φ3(d
s(Ax, Sy)ds

′
(By, Sx)), φ4

(1
2
[dl(Ax, Sy)dl

′
(Ax, Sx)

+dl(By, Sx))dl
′
(By, Sy)

)}
for all x, y ∈ X,φi ∈ Φ (i = 1, 2, 3, 4), a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 and 0 ≤ 2p =
q + q′ = r + r′ = s + s′ = l + l′ ≤ 1. If the pairs (A, S) and (B, S) are weakly
compatible and S(X) is closed, then A, B and S have a unique common fixed
point in X.

The following theorem is an immediate consequence of Theorem 3.1.

Theorem 3.7. Let S, T and An (n ∈ N) be self mappings of a complete me-
tric space X. Suppose further that the pairs (A2n−1, S) and (A2n, T ) are weakly
compatible for any n ∈ N and

A2n−1(X) ⊂ T (X) and A2n(X) ⊂ S(X).
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If S(X) or T (X) is closed and that for any i ∈ N , the following condition is
satisfied for all x, y ∈ X

[dp(Aix,Ai+1y)+a dp(Sx, Ty)]dp(Aix,Ai+1y)

≤ amax{dp(Aix, Sx)d
p(Ai+1y, Ty),

dq(Aix, Ty)d
q′(Ai+1y, Sx)}+max

{
φ1(d

2p(Sx, Ty)),

φ2(d
r(Aix, Sx)d

r′(Ai+1y, Ty)), φ3(d
s(Aix, Ty)d

s′(Ai+1y, Sx)),

φ4

(1
2
[dl(Aix, Ty)d

l′(Aix, Sx) + dl(Ai+1y, Sx))d
l′(Ai+1y, Ty)

)}
where φi ∈ Φ (i = 1, 2, 3, 4), a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 and 0 ≤ 2p = q + q′ =
r + r′ = s+ s′ = l + l′ ≤ 1, then S, T and An(n ∈ N) have a common fixed point
in X.

4. Applications to existence theorems for functional equations arising
in dynamic programming

Throughout this section, we assume that X and Y are Banach spaces, S ⊂ X is
the state space and D ⊂ Y is the decision space. Let R = (−∞,∞) and B(S)
denote the set of all bounded real valued functions on S.

The basic form of the functional equation of dynamic programming is given
by Bellman and Lee [1] as follows:

f(x) = optyH(x, y, f(T (x, y))),

where x and y represent the state and decision vectors respectively, T represents
the transformation of the process and f(x) represents the optimal return with
initial state x (where opt denotes max or min).

In this section, we study the existence and uniqueness of a common solution
of the following functional equations arising in dynamic programming.

(4.1) fi(x) = sup
y∈D

Hi(x, y, fi(T (x, y))), x ∈ S,

(4.2) gi(x) = sup
y∈D

Fi(x, y, gi(T (x, y))), x ∈ S,

where T : S ×D → S and Hi, Fi : S ×D × R → R, i =1, 2.
Suppose the mappings Ai and Ti (i =1, 2) are defined by

(4.3)

Aih(x) = sup
y∈D

Hi(x, y, h(T (x, y)),

Tik(x) = sup
y∈D

Fi(x, y, k(T (x, y))),

for all x ∈ S;h, k ∈ B(S), i = 1, 2.
Now, we present our main theorems of this section.

Theorem 4.1. Suppose that the following conditions are satisfied:
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(i) Hi and Fi are bounded for i = 1, 2.

(ii) |H1(x, y, h(t))−H2(x, y, k(t))|≤M−1(amax{|T1h(t)−A1h(t)|.|T2k(t)−A2k(t)|,
|T1h(t)−A2k(t)|.|T2k(t)−A1h(t)|}+max{φ1(|T1h(t)−T2k(t)|), φ2(|T1h(t)−
A1h(t)|), φ3(|T2k(t)−A2k(t)|), φ4(

1
2
[|T1h(t)−A2k(t)|)+(|T2k(t)−A1h(t)|])}),

for all (x, y) ∈ S ×D, k ∈ B(S), t ∈ S, a ≥ 0, where

M = [1 + a sup
t∈S

|T1k(t)− T2h(t)|], φi ∈ Φ (i = 1, 2, 3, 4)

and the mappings Ai and Ti(i = 1, 2) are defined as in (4.3).

(iii) For sequences {hn}, {kn} ⊂ B(S) and h, k ∈ B(S) with

lim
n→∞

sup
x∈S

|hn(x)− h(x)| = 0, lim
n→∞

sup
x∈S

|kn(x)− k(x)| = 0,

there exist hi, ki ∈ B(S) such that k = T2hi and h = T1ki for i = 1 or 2.

(iv) For any h ∈ B(S), there exist k1, k2 ∈ B(S) such that A1h(x) = T2k2(x),
A2h(x) = T1k1(x), x ∈ S.

(v) For any h, k ∈ B(S), with A1h = T1h, we have T1A1h = A1T1h and with
A2k = T2k, we have T2A2k = A2T2k.

Then, the system of functional equations (4.1) and (4.2) have a unique common
solution in B(S).

Proof. Obviously, B(S) endowed with the metric

d(h, k) = sup
x∈D

|h(x)− k(x)| for any h, k ∈ B(S)

is a complete metric space. Moreover, by condition (i), Ai and Ti are self mappings
of B(S) and by condition (iv) it is clear that

A1(B(S)) ⊂ T2(B(S)) and A2(B(S)) ⊂ T1(B(S)).

Also, by condition (v), the pairs (Ai, Ti) are weakly compatible for i = 1, 2.
Moreover, by (4.3) and (i) we have for any η > 0 there exist yi ∈ D (i = 1, 2) such
that

(4.4) Aihi(x) < Hi(xi, yi, hi(x)) + η,

where xi = T (x, yi), i = 1, 2. Also,

(4.5) A1h1(x) ≥ H1(x, y2, h1(x2)),

(4.6) A2h2(x) ≥ H2(x, y2, h2(x1)),
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Then, from (4.4), (4.5), (4.6) and (ii), we have

(4.7)

A1h1(x)− A2h2(x) ≤ H1(x, y1, h1(x1))−H2(x, y1, h2(x1)) + η

≤ |H1(x, y1, h1(x1))−H2(x, y1, h2(x1))|+ η

≤ M−1
(
a max{|T1h1(x1)− A1h1(x1)|.|T2h2(x1)− A2h2(x1)|,

|T1h1(x1)− A2h2(x1)|.|T2h2(x1)− A1h1(x1)|}

+max
{
φ1(|T1h1(x1)− T2h2(x1)|), φ2(|T1h1(x1)− A1h1(x1)|),

φ3(|T2h2(x1)− A2h2(x1)|), φ4

(1
2
[|T1h1(x1)− A2h2(x1)|

+|T2h2(x1)− A1h1(x1)|]
)})

,

≤ M−1
(
a max{d(T1h1, A1h1)d(T2h2, A2h2),

d(T1h1, A2h2)d(T2h2, A1h1)}

+max
{
φ1(d(T1h1, T2h2)), φ2(d(T1h1, A1h1)),

φ3(d(T2h2, A2h2)), φ4

(1
2
[d(T1h1, A2h2) + d(T2h2, A1h1)]

)})
+ η.

From (4.4), (4.5) and (ii), we have

(4.8)

A1h1(x)− A2h2(x)

≥−M−1
(
amax{d(T1h1, A1h1)d(T2h2, A2h2), d(T1h1, A2h2)d(T2h2, A1h1)}

+max
{
φ1(d(T1h1, T2h2)), φ2(d(T1h1, A1h1)),

φ3(d(T2h2, A2h2)), φ4

(1
2
[d(T1h1, A2h2) + d(T2h2, A1h1)]

)})
− η.

Using (4.7) and (4.8), we obtain

(4.9)

|A1h1(x)− A2h2(x)|

≤M−1
(
amax{d(T1h1, A1h1)d(T2h2, A2h2), d(T1h1, A2h2)d(T2h2, A1h1)}

+max
{
φ1(d(T1h1, T2h2)), φ2(d(T1h1, A1h1)), φ3(d(T2h2, A2h2)),

φ4

(1
2
[d(T1h1, A2h2) + (d(T2h2, A1h1))]

)})
+ η.

Since (4.9) is true for any x ∈ S and η > 0 is arbitrary, by taking sup over all
x ∈ S we have,

[1 + a d(T1h1, T2h2)]d(A1h1, A2h2) ≤
(
amax{d(T1h1, A1h1)d(T2h2, A2h2),

d(T1h1, A2h2)d(T2h2, A1h1)}+max
{
φ1(d(T1h1, T2h2)),

φ2(d(T1h1, A1h1)), φ3(d(T2h2, A2h2)), φ4

(1
2
[d(T1h1, A2h2) + (d(T2h2, A1h1))]

)})
.
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Therefore, condition (2.2) is satisfied by mappings A1, A2, T1 and T2 and hence by
Theorem 3.1, they have a common fixed point h∗ ∈ B(S), i.e. h∗(x) is a unique
common solution of the functional equations (4.1) and (4.2).

As an immediate consequence of Theorem 4.1 and Corollary 3.5, we have the
following:

Theorem 4.2. Suppose the following conditions are satisfied:

(i) Hi is bounded for i = 1, 2.

(ii) |H1(x, y, h(t))−H2(x, y, k(t))| ≤ N−1(amax{|h(t)−A1h(t)|.|k(t)−A2k(t)|,
|h(t)−A2k(t)|.|k(t)−A1h(t)|}+max{φ1(|h(t)− k(t)|), φ2(|h(t)−A1h(t)|),
φ3(|k(t)−A2k(t)|), φ4(

1
2
[|h(t)−A2k(t)|+ |k(t)−A1h(t)|]})), for all (x, y) ∈

S × D, h, k ∈ B(S), t ∈ S, a ≥ 0, where N = [1 + a supt∈S|h(t) − k(t)|],
φi ∈ Φ (i = 1, 2, 3, 4) and the mappings Ai are defined as in (4.3).

Then, the functional equations (4.1) and (4.2) have a unique common solution in
B(S).

Now, we furnish an example to validate Theorem 4.1.

Example 4.3. Let X = Y = R be two Banach spaces endowed with the standard
norm ∥ · ∥ defined by ∥x∥ = |x| for all x ∈ R. Let S = [0, 1] ⊂ X be the state
space, D = [1,∞) ⊂ Y the decision space and T represents the transformation of
the process. Define T : S ×D → S by

T (x, y) =
x

y2 + 1
for all x ∈ S, y ∈ D.

For any h, k ∈ B(S), define fi, gi : S → R (i =1, 2) by

fi(x) = gi(x) =
1

4

( x

x+ 1
+ 1
)
.

Define Hi, Fi : S ×D × R → R (i = 1, 2) by

Hi(x, y, t) =
1

4

[
x

x+ 1
sin

(
t · y

y + 1

)
+ 1

]
and

Fi(x, y, t) =
1

4

[
x

x+ 1
cos

(
t · y

y + 1

)
+ 1

]
.

Clearly, ∥Hi∥ ≤ 1
2
and ∥Fi∥ ≤ 1

2
. By varying y over D and taking supremum,

we see that Hi yield fi and Hi yield gi, respectively (i = 1, 2), as defined above.
Define mappings Ai and Ti (i =1, 2) by

A1h(x) = sup
y∈D

H1(x, y, h(T (x, y)), A2k(x) = sup
y∈D

H2(x, y, k(T (x, y))),

T1h(x) = sup
y∈D

F1(x, y, h(T (x, y))), T2k(x) = sup
y∈D

F2(x, y, k(T (x, y)),

for all x ∈ S;h, k ∈ B(S).
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Then, we see that

A1h(x) = sup
y∈D

H1(x, y, h(T (x, y)) = sup
y∈D

H1

(
x, y, h

(
x

y2 + 1

))
= sup

y∈D

1

4

[
x

x+ 1
sin
(
h

(
x

y2 + 1

)
y

y + 1

)
+ 1

]
=

1

4

(
x

x+ 1
+ 1

)
= f1(x),

A2k(x) = sup
y∈D

H2(x, y, k(T (x, y)) = sup
y∈D

H2

(
x, y, k

(
x

y2 + 1

))
= sup

y∈D

1

4

[
x

x+ 1
sin
(
k
( x

y2 + 1

) y

y + 1

)
+ 1

]
=

1

4

(
x

x+ 1
+ 1

)
= f2(x),

T1h(x) = sup
y∈D

F1(x, y, h(T (x, y)) = sup
y∈D

F1

(
x, y, h

(
x

y2 + 1

))
= sup

y∈D

1

4

[
x

x+ 1
cos
(
h
( x

y2 + 1

) y

y + 1

)
+ 1

]
=

1

4

(
x

x+ 1
+ 1

)
= g1(x),

T2k(x) = sup
y∈D

F2(x, y, k(T (x, y)) = sup
y∈D

F2

(
x, y, k

(
x

y2 + 1

))
= sup

y∈D

1

4

[
x

x+ 1
cos
(
k
( x

y2 + 1

) y

y + 1

)
+ 1

]
=

1

4

(
x

x+ 1
+ 1

)
= g2(x),

for all x ∈ S;h, k ∈ B(S). Also, we see that

M =

[
1 + a sup

t∈S
|T1k(t)− T2h(t)|

]
=

[
1 + a sup

t∈S
|g1(x)− g2(x)|

]
= 1.

Further, for any k ∈ B(S), define

hn(x) =

(
1− 1

n

)
h(x) and kn(x) =

(
1− 1

n+ 1

)
k(x)

so that

lim
n→∞

sup
x∈S

|hn(x)− h(x)| = 0 and lim
n→∞

sup
x∈S

|kn(x)− k(x)| = 0.

Now, we observe that, for φ1(t) =
t

2
,

(i) Hi and Fi are bounded for i = 1, 2.

(ii) |H1(x, y, h(t))−H2(x, y, k(t))|

=

∣∣∣∣14
[

x

x+ 1
sin

(
h(t)

y

y + 1

)
+ 1

]
− 1

4

[
x

x+ 1
sin

(
k(t)

y

y + 1

)
+ 1

]∣∣∣∣
=

1

4

∣∣∣∣ x

x+ 1

∣∣∣∣ ∣∣∣∣sin(h(t) y

y + 1

)
− sin

(
k(t)

y

y + 1

)∣∣∣∣
=

1

4

∣∣∣∣ x

x+ 1

∣∣∣∣ · 2
∣∣∣∣∣sin

(
h(t) y

y+1
− k(t) y

y+1

2

)∣∣∣∣∣
∣∣∣∣∣cos

(
h(t) y

y+1
+ k(t) y

y+1

2

)∣∣∣∣∣
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≤ 1

4

∣∣∣∣ x

x+ 1

∣∣∣∣ ∣∣∣∣ y

y + 1

∣∣∣∣ |h(t)− k(t)|

≤ 1

4

∣∣∣∣ x

x+ 1

∣∣∣∣ |h(t)− k(t)| ≤ 1

4
φ1(h(t)− k(t)).

Finally, for any h ∈ B(S), there exist k1, k2 ∈ B(S) such that

A1h(x) = T2k2(x), A2h(x) = T1k1(x), x ∈ S.

Also, for any h, k ∈ B(S), with A1h = T1h, we have T1A1h = A1T1h and, with
A2k = T2k, we have T2A2k = A2T2k. Thus, all the assumption of Theorem 4.1
are satisfied. So, the system of equations (4.1) and (4.2) have a unique common
solution in B(S).
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