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1. Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iséki [4] in 1966
as a generalization of the concept of set-theoretic difference and propositional
calculi. The hyperstructure theory (called also multialgebras) was introduced
in 1934 by F. Marty [7] at the 8th Congress of Scandinavian Mathematiciens.
Since then many researchers have worked on algebraic hyperstructures and de-
veloped it. A recent book [3] contains a wealth of applications. Via this book,
Corsini and Leoreanu presented some of the numerous applications of algebraic
hyperstructures, especially those from the last fifteen years, to the following sub-
jects: geometry, hypergraphs, binary relations, lattices, fuzzy sets and rough sets,
automata, cryptography, codes, median algebras, relation algebras, artificial in-
telligence and probabilities. Hyperstructures have many applications to several
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sectors of both pure and applied sciences. In [1], Y.B. Jun et al. applied the
hyper structures to BCK-algebras, and introduced the notion of a hyper BCK-
algebra which is a generalization of BCK-algebra and investigated some related
properties. In [6], X.X. Long applied the hyper structure to BCI-algebras and
introduce the concepts of hyper BCI-algebras which is a generalization of BCI-
algebras. Now, in this note we define the notions of weak hyper BCI-algebras
and strong hyper BCI-algebras and we obtain some related results which have
been mentioned in this paper.

2. Preliminary

Definition 2.1. [6] An algebra (X, ∗, 0) of type (2, 0) is called a BCI-algebra if
it satisfies the following conditions:

(BCI-1): ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(BCI-2): x ∗ 0 = x,
(BCI-3): x ∗ y = 0 and y ∗ x = 0 imply x = y,

for any x, y, z ∈ X. A BCI-algebra X is called p-semisimple BCI-algebra if
0 ∗ (0 ∗ x) = x, for all x ∈ X.

Definition 2.2. [6] Let H be a nonempty set and ” ◦ ” be a hyper operation on
H. Then H is called a hyper BCI-algebra, if it contains a constant 0 and satisfies
the following conditions:

(B1) (x ◦ z) ◦ (y ◦ z) ≪ x ◦ y,
(B2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(B3) x ≪ x,
(B4) x ≪ y and y ≪ x ⇒ x = y,
(B5) 0 ◦ (0 ◦ x) ≪ x, x ̸= 0,

for all x, y, z ∈ H.
By a hyper BCK-algebra we mean a nonempty set H endowed with a hyper

operation ”◦” and a constant 0 which satisfy axioms (B1), (B2), (B4) and x◦H ≪
{x}, for all x ∈ H. It is easy to see that every hyper BCK-algebra is a hyper
BCI-algebra.

Let (H, ◦, 0) be a hyper BCI-algebra. By H+ we mean

H+ = {x ∈ H | 0 ∈ 0 ◦ x}.

We note that 0 ∈ H+, thus H+ ̸= ∅.
Definition 2.3. [5] Let I be a nonempty subset of hyper BCI-algebra H and
0 ∈ I. Then I is called a
(i) weak hyper BCI-ideal of H if xoy ⊆ I and y ∈ I imply that x ∈ I, for all

x, y ∈ H,

(ii) hyper BCI-ideal of H if xoy ≪ I and y ∈ I imply that x ∈ I, for all
x, y ∈ H,

(iii) strong hyper BCI-ideal of H if xoy ≈ I and y ∈ I imply that x ∈ I, for all
x, y ∈ H, where xoy ≈ I means xoy ∩ I ̸= ∅.
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By W (H) we means the class of all weak hyper BCI-ideals, by I(H) we mean the
class of all hyper BCI-ideals and by S(H) we means the class of all strong hyper
BCI-ideals of H.

Theorem 2.4. [2] There are 19 hyper BCK-algebras of order 3 up to isomor-
phism.

Proposition 2.5. [6] In any hyper BCI-algebra, the following hold:

(i) x ≪ x ◦ o,

(ii) A ≪ A,

(iii) y ≪ z implies x ◦ z ≪ x ◦ y,

for all x, y, z ∈ H and for all nonempty subsets A and B of H.

Definition 2.6. [2] Let (H1, ◦1, 01) and (H2, ◦2, 02) be two hyper BCI-algebras
and f : H1 −→ H2 be a function. Then f is said to be a homomorphism if and
only if

f(x ◦1 y) = f(x) ◦2 f(y), for all x, y ∈ H1.

If f is one to one (onto) we say that f is a monomorphism (epimorphism) and if
f is both one to one and onto, we say that f is an isomorphism and (H1, ◦1, 01)
and (H2, ◦2, 02) are isomorphic.

3. Some properties of hyper BCI-algebras

Remark 3.1. We note that if (H, ∗, 0) is a BCI-algebra and we define x ◦ y =
{x ∗ y}, then (H, ◦, 0) is a hyper BCI-algebra. Hence hyper BCI-algebras are a
generalization of BCI-algebras

Theorem 3.2. In any hyper BCI-algebra, the following hold:

(i) if x ≪ 0, then x = 0,

(ii) if A ≪ {0}, then A = {0},

(iii) if A ◦ A = {0}, then A is singleton,

(iv) x ∈ x ◦ 0,

(v) x ∈ 0 ◦ 0 imply that x ∈ H+,

(vi) if H+ = {0}, then 0 ◦ 0 = {0},

(vii) if 0 ◦ 0 = {0}, then 0 ◦ x = {0}, for all x ∈ H+,

for all x ∈ H and for all nonempty subset A of H.
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Proof. (i) Let x ≪ 0. Thus 0 ∈ x ◦ 0. By (B1), 0 ∈ 0 ◦ 0(s)(0 ◦ 0) ◦ (x ◦ 0) ≪
0 ◦ x. Hence there is t ∈ 0 ◦ x such that 0 ≪ t and so 0 ∈ 0 ◦ t. By (B5),
0 ∈ 0 ◦ t(s)0 ◦ (0 ◦ x) ≪ {x}. Hence 0 ≪ x. By (B4), we imply that x = 0.

(ii) Let A ≪ {0}. Then for all a ∈ A, a ≪ 0. By (i), we imply that a = 0.
Hence A = {0}.

(iii) Let A◦A = {0} and x, y ∈ A. Then x◦y = {0} and y◦x = {0}. By (B4),
x = y. Therefore, A is singleton.

(iv) By (B2) and (B3), 0 ∈ 0◦0(s)(x◦x)◦0 = (x◦0)◦x. Thus there is t ∈ x◦0
such that 0 ∈ t ◦ x and so t ≪ x. On the other hands 0 ∈ (x ◦ 0) ◦ t = (x ◦ t) ◦ 0.
Hence there is an element a ∈ x ◦ t such that 0 ∈ a ◦ 0. Thus a ≪ 0. By (i), a = 0
and so 0 ∈ x ◦ t. Hence x ≪ t. By (B4), x = t. Therefore, x ∈ x ◦ 0.

(v) Let x ∈ 0 ◦ 0. By (B3) and (B2), 0 ∈ (0 ◦ 0) ◦ x = (0 ◦ x) ◦ 0. Thus there
exist a ∈ 0 ◦ x such that 0 ∈ a ◦ 0 and so a ≪ 0. By (i), a = 0. Hence 0 ∈ 0 ◦ x.
Therefore, x ∈ H+.

(vi) By (v), the proof is easy.

(vii) Let 0 ◦ 0 = {0} and x ∈ H+. By (B1), (0 ◦ x) ◦ (0 ◦ x) ≪ 0 ◦ 0 = {0}.
By (ii), (0 ◦ x) ◦ (0 ◦ x) = {0}. By (iii), 0 ◦ x is singleton. Since x ∈ H+, 0 ∈ 0 ◦ x.
Thus 0 ◦ x = {0}.

Theorem 3.3. Let H be a hyper BCI-algebra and x ◦ x = {0}, for all x ∈ H.
Then H is a BCI-algebra.

Proof. By Remark 3.1, it is sufficient to prove that x ◦ y is singleton, for all
x, y ∈ H. By (B1),

(x ◦ y) ◦ (x ◦ y) ≪ x ◦ x = {0}.

By Theorem 3.2(iii), x ◦ y is singleton. Therefore, H is a BCI-algebra.

Lemma 3.4. Let H be a hyper BCI-algebra and H+ = {0}. Then the following
hold:

(i) if x ≪ y, then x = y,

(ii) if A ≪ B, then A(s)B,

(iii) 0 ◦ (0 ◦ x) = {x},
(iv) x ◦ x = {0},
for all x, y ∈ H and for all nonempty subsets A,B of H.

Proof. (i) Let H be a hyper BCI-algebra, H+ = {0} and x ≪ y. By Theorem
3.2(vi), 0◦0 = {0}. By 0 ∈ x◦y, (B1) and (B3), {0} = 0◦0(s)(y◦y)◦(x◦y) ≪ y◦x.
Hence there exist a ∈ y ◦x such that 0 ≪ a and so 0 ∈ 0◦a. Thus a ∈ H+ = {0}.
Hence a = 0 and so y ≪ x. By (B4), x = y.

(ii) Let A ≪ B. Then, for all a ∈ A there exist b ∈ B such that a ≪ b.
By (i), a = b. Therefore, A(s)B.

(iii) By (B5) and (ii), the proof is easy.
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(iv) By (iii), 0◦(0◦x) = {x}, for all x ∈ H. Thus 0◦y = {x}, for all y ∈ 0◦x.
By (iii), 0◦x = 0◦ (0◦y) = {y}. Thus 0◦x = {y} and 0◦y = {x}. By 0◦0 = {0}
and by (B1), x ◦ x = (0 ◦ y) ◦ (0 ◦ y) ≪ 0 ◦ 0 = {0}.

Now, by Theorem 3.2(ii), x ◦ x = {0}.

Theorem 3.5. Let H be a hyper BCI-algebra and H+ = {0}. Then H is a
p-semisimple BCI-algebra.

Proof. Let H be a hyper BCI-algebra and H+ = {0}. By Lemma 3.4(iv),
x ◦ x = {0} and so by Theorem 3.3, H is a BCI-algebra. By Lemma 3.4(iii),
0 ◦ (0 ◦ x) = {x}. Therefore, H is a p-semisimple BCI-algebra.

Theorem 3.6. If f : (H1, ◦1, 01) −→ (H2, ◦2, 02) is an isomorphism of hyper
BCI-algebras, then

(i) if 01 ◦1 01 = {01}, then f(01) = 02,

(ii) if x ∈ 01 ◦1 x, for all x ∈ 01 ◦1 01, then f(01) = 02.

Proof. (i) Let (H1, ◦1, 01) and (H2, ◦2, 02) be two hyper BCI-algebras. Then
f(01) = f(01 ◦1 01) = f(01) ◦2 f(01) and 02 ∈ f(01) ◦2 f(01). Thus f(01) = 02.

(ii) Let f(y) = 02 and f(01) = x. By 02 ∈ f(01) ◦2 f(01) = f(01 ◦1 01),
we imply that y ∈ 01 ◦1 01. By hypothesis, y ∈ 01 ◦ y and by Theorem 3.2(iv),
y ∈ y ◦1 01. Thus f(y) ∈ f(01)◦2 f(y) and f(y) ∈ f(y)◦2 f(01). Hence 02 ∈ x◦2 02
and 02 ∈ 02 ◦1 x. By (B4), x = 02. Therefore, f(01) = 02.

In what follows, first we introduce the concepts of weak hyper BCI-algebras
and strong hyper BCI-algebras. Then, we find some results on (strong) weak
hyper BCI-algebras of order 3. Finally, we characterize the hyper BCI-algebras
of order 3.

Definition 3.7. Let H be a hyper BCI-algebra. Then the set Sk = {x ∈ H :
x ◦H ≪ {x}} is defined as hyper BCK-part of H. If H ̸= Sk, then H is known
as a proper hyper BCI-algebra.

A hyper BCI-algebra H is called a

(i) weak proper hyper BCI-algebra if H is proper and H+ = H. In other word
if 0 is the smallest element of H,

(ii) strong proper hyper BCI-algebra if H+ ̸= H. We note that if x ̸∈ H+, then
0 ̸∈ 0 ◦x. Thus 0 ◦x ̸≪ {0}. Therefore, 0 ◦H ̸≪ {0} and (H, ◦, 0) is proper.

4. Characterization of weak proper hyper BCI-algebra of order 3

Lemma 4.1. Let H = {0, a, b} be a weak proper hyper BCI-algebra. Then, the
following hold:

(i) 0 ◦ 0 ̸= {0, a, b},
(ii) if 0 ◦ 0 = {0, a}, then a ≪ b,

(iii) if 0 ◦ a = {0}, then 0 ◦ 0 = {0}.
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Proof. (i) Let 0 ◦ 0 = {0, a, b}. Since H is a weak proper hyper BCI-algebra,
then 0 ∈ 0 ◦ b. By (B5),

{0, a, b} = 0 ◦ 0(s)0 ◦ (0 ◦ b) ≪ {b}.

Thus a ≪ b. By the similar way, b ≪ a. By (B4), a = b, which is a contradiction.

(ii) Let 0 ◦ 0 = {0, a}. By b ∈ H+ and (B5), {0, a} = 0 ◦ 0(s)0 ◦ (0 ◦ b) ≪ {b}.
Therefore, a ≪ b.

(iii) Let 0 ◦ a = {0}. By (B1), 0 ◦ 0(s)(0 ◦ a) ◦ (0 ◦ a) ≪ a ◦ a = {0}. Now, by
Theorem 3.2(ii), 0 ◦ 0 = {0}.

Lemma 4.2. Let H = {0, a, b} be a weak proper hyper BCI-algebra. Then the
following hold:

(i) if 0 ◦ 0 ̸≪ {0}, then (H, ◦, 0) is a chain,

(ii) if 0 ◦ a ̸≪ {0}, then 0 ◦ 0 ̸≪ {0},

(iii) if a ◦ 0 ̸≪ {a}, then a ≪ b,

(iv) if a ◦ a ̸≪ {a}, then a ◦ 0 ̸≪ {a},

(v) if a ◦ b ̸≪ {a}, then a ◦ 0 ̸≪ {a}.

Proof. (i) Let H = {0, a, b} be a weak proper hyper BCI-algebra. Then 0 ≪ a
and 0 ≪ b. It is remind to prove that a and b are comparable. If 0 ◦ 0 ̸≪ 0,
then 0 ◦ 0 = {0, a} or {0, b} or {0, a, b}. By Lemma 4.1(i), 0 ◦ 0 ̸= {0, a, b}. Thus
0 ◦ 0 = {0, a} or {0, b}. If 0 ◦ 0 = {0, a}, then by Lemma 4.1(ii), a ≪ b and if
0 ◦ 0 = {0, b}, b ≪ a. Therefore, H is a chain.

(ii) If 0 ◦ a ̸≪ {0}, then 0 ◦ a ̸= {0}. By Theorem 3.2(vii), 0 ◦ 0 ̸= {0} and so
0 ◦ 0 ̸≪ {0}.

(iii) If a◦0 ̸≪ {a}, then b ∈ a◦0 and b ̸≪ a. By Theorems 3.2(i),(iv), a ∈ a◦0
and 0 ̸∈ a ◦ 0. Thus a ◦ 0 = {a, b}. By (B2), 0 ∈ b ◦ b(s)(a ◦ 0) ◦ b = (a ◦ b) ◦ 0.
Hence 0 ∈ (a◦b)◦0. It means that there is an element x ∈ a◦b such that 0 ∈ x◦0
and so x ≪ 0. By Theorem 3.2(i), x = 0 and so 0 ∈ a ◦ b. Therefore, a ≪ b.

(iv) If a ◦ a ̸≪ {a}, then b ∈ a ◦ a and b ̸≪ a. By Theorem 3.2(iv) and (B1),

b ∈ b ◦ 0(s)(a ◦ a) ◦ (0 ◦ a) ≪ a ◦ 0.

Thus there is an element t ∈ a ◦ 0 such that b ≪ t. From b ̸≪ a and b ̸≪ 0 we
imply that t = b. Hence b ∈ a ◦ 0 and b ̸≪ a. Therefore, a ◦ 0 ̸≪ {a}.

(v) If a◦b ̸≪ a, then b ∈ a◦b and b ̸≪ a. We have b ∈ b◦0(s)(a◦b)◦ (0◦b) ≪
a ◦ 0. Thus there is an element t ∈ a ◦ 0 such that b ≪ t. From b ̸≪ a and b ̸≪ 0
we imply that t = b. Hence b ∈ a ◦ 0 and b ̸≪ a. Therefore, a ◦ 0 ̸≪ a.

Theorem 4.3. Every weak proper hyper BCI-algebra of order three is a chain.
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Proof. Let H = {0, a, b} be a weak proper hyper BCI-algebra. It is clear that
0 ≪ a and 0 ≪ b. It is remind to prove that a and b are comparable. Since H is
proper, then

0 ◦H ̸≪ {0} or a ◦H ̸≪ {a} or b ◦H ̸≪ {b}.

So we will investigate three cases.

Case 1. If 0 ◦ H ̸≪ {0}, then 0 ◦ 0 ̸≪ {0} or 0 ◦ a ̸≪ {0} or 0 ◦ b ̸≪ {0}. By
Lemma 4.2(i) and (ii), we imply that H is a chain.

Case 2. If a ◦ H ̸≪ {a}, then a ◦ o ̸≪ {a} or a ◦ a ̸≪ {a} or a ◦ b ̸≪ {a}. By
Lemma 4.2(iii),(iv) and (v), we imply that H is a chain.

Case 3. b ◦H ̸≪ {b} is similar to the case two.
Therefore, in every case H is a chain.

Proposition 4.4. Let H = {0, a, b} be a weak proper hyper BCI-algebra. Then,
the following hold:

(i) if 0 ◦ 0 = {0, a}, then 0 ◦ a = 0 ◦ b = {0, a},

(ii) 0 ◦ 0 = 0 ◦ a = 0 ◦ b = {0} or {0, a} or {0, b}.

Proof. (i) Let 0 ◦ 0 = {0, a}. By Lemma 4.1(ii), a ≪ b. If 0 ◦ a = {0}, then by
Lemma 4.1, 0 ◦ 0 = {0} which is a contradiction. By the similar way 0 ◦ b ̸= {0}.
Thus a ∈ 0 ◦ a or b ∈ 0 ◦ a and a ∈ 0 ◦ b or b ∈ 0 ◦ b. If b ∈ 0 ◦ a, then
0 ◦ b(s)0 ◦ (0 ◦ a) ≪ {a}. From a ≪ b we imply that a ∈ 0 ◦ b and b ̸∈ 0 ◦ b. Hence
0◦b = {0, a}. Thus b ∈ 0◦a(s)(0◦b)◦(0◦b) ≪ 0◦0 = {0, a}. It means that b ≪ 0
or b ≪ a which is a contradiction. Thus b ̸∈ 0◦a. By 0◦a ̸= {0} we conclude that
0 ◦ a = {0, a}. If b ∈ 0 ◦ b, then b ∈ 0 ◦ b(s)(0 ◦ b) ◦ (0 ◦ b) ≪ 0 ◦ 0 = {0, a}. Hence
b ≪ 0 or b ≪ a which both of them are contradiction. Therefore, 0 ◦ b = {0, a}.

(ii) By (i) and Lemma 4.1(i),(iii), the proof is easy.

Theorem 4.5. Let H = {0, a, b} be a weak proper hyper BCI-algebra. Then the
following hold:

(i) if 0 ◦ 0 = {0}, then a ◦ 0 = {a, b} and b ◦ 0 = {b} or a ◦ 0 = {a} and
b ◦ 0 = {a, b},

(ii) if 0 ◦ 0 = {0, a}, then a ◦ 0 = {a} and b ◦ 0 = {b}.

Proof. (i) Let 0 ◦ 0 = {0}. Then, by Proposition 4.4, 0 ◦ a = 0 ◦ b = 0 ◦ 0 = {0}.
Thus 0◦H ≪ {0}. Since H is proper, then a◦H ̸≪ {a} or b◦H ̸≪ {b}. Without
loss of generality, let a ◦ H ̸≪ {a}. By Lemma 4.2(iii),(iv),(v), we imply that
a ◦ 0 ̸≪ {a} and a ≪ b and so a ◦ 0 = {a, b}. By Theorem 3.2, b ∈ b ◦ 0 and from
0 ≪ b we conclude that 0 ̸∈ b◦0. If a ∈ b◦0, then 0 ∈ a◦a(s)(b◦0)◦a = (b◦a)◦0.
Hence 0 ∈ (b◦a)◦0. Since 0 ̸∈ a◦0 and 0 ̸∈ b◦0, 0 ∈ b◦a and so b ≪ a which is a
contradiction. Thus a ̸∈ b◦0 and so b◦0 = {b}. By the similar way if b◦H ̸≪ {b},
then a ◦ 0 = {a} and b ◦ 0 = {a, b}.
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(ii) Let 0 ◦ 0 = {0, a}. By Lemma 4.4, 0 ◦ b = 0 ◦ a = {0, a} and by Lemma
4.1, a ≪ b. By Theorem 3.2, a ∈ a ◦ 0 and b ∈ b ◦ 0. If b ∈ a ◦ 0, then

b ∈ a ◦ 0(s)(0 ◦ a) ◦ (0 ◦ a) ≪ 0 ◦ 0 = {0, a}.

Hence b ≪ 0 or b ≪ a which is a contradiction. Thus b ̸∈ a ◦ 0 and so a ◦ 0 = {a}.
If a ∈ b ◦ 0, then

0 ∈ a ◦ a(s)(b ◦ 0) ◦ a = (b ◦ a) ◦ 0.

Thus there is an element x ∈ b ◦ a such that 0 ∈ x ◦ 0 and so x ≪ 0. By Theorem
3.2, x = 0 and so 0 ∈ b ◦ a. Hence b ≪ a which is a contradiction. Therefore,
0 ◦ b = {b}.

Theorem 4.6. Let H = {0, a, b} be a weak proper hyper BCI-algebra, 0◦0 = {0}
and a ◦ 0 = {a, b}. Then b ∈ a ◦ a, b ∈ b ◦ a, a ◦ b ̸= {0, a} and b ◦ b ̸= {0, a}.

Proof. By Propositions 4.5 and 4.4,

0 ◦ a = 0 ◦ b = 0 ◦ 0 = {0}, a ◦ 0 = {a, b}, b ◦ 0 = {b} and a ≪ b.

Thus b ∈ a ◦ 0(s)(b ◦ a) ◦ (a ◦ a) ≪ b ◦ a. From a ≪ b and 0 ≪ b we imply that
b ∈ b ◦ a. By (B1), b ∈ b ◦ a(s)(a ◦ 0) ◦ (a ◦ 0) ≪ a ◦ a. Therefore, b ∈ a ◦ a. To
prove a ◦ b ̸= {0, a} and b ◦ b ̸= {0, a} we will prove that if a ∈ a ◦ b, then b ∈ a ◦ b
and if a ∈ b ◦ b, then b ∈ b ◦ b. Let a ∈ a ◦ b, then

(1) b ∈ a ◦ 0(s)(a ◦ b) ◦ (b ◦ b) ≪ a ◦ b.

Since a ≪ b and 0 ≪ b, then by (1), b ∈ a ◦ b.
Let a ∈ b ◦ b, then b ∈ a ◦ 0(s)(b ◦ b) ◦ (b ◦ b) ≪ b ◦ b. Hence b ∈ b ◦ b.

Theorem 4.7. Let H = {0, a, b} be a weak proper hyper BCI-algebra and 0◦0 =
{0, a}. Then

(i) a ◦ a = a ◦ b = {0, a},

(ii) a ∈ b ◦ b,

(iii) if b ∈ b ◦ b, then b ∈ b ◦ a.

Proof. (i) By Propositions 4.5 and 4.4 we conclude that

0 ◦ a = 0 ◦ b = 0 ◦ 0 = {0, a}, a ◦ 0 = {a}, b ◦ 0 = {b} and a ≪ b.

By (B1), a ∈ 0 ◦ 0(s)(a ◦ b) ◦ (a ◦ b) ≪ a ◦ a. Hence a ≪ a ◦ a and so a ∈ a ◦ a or
b ∈ a ◦ a. If b ∈ a ◦ a, then

b ∈ a ◦ a(s)(0 ◦ 0) ◦ (0 ◦ 0) ≪ 0 ◦ 0 = {0, a}.

Thus b ≪ 0 or b ≪ a which both of them are contradiction. Hence b ̸∈ a ◦ a and
so a ◦ a = {0, a}. Also by (B1), {0, a} = 0 ◦ (b ◦ a)(s)(a ◦ a) ◦ (b ◦ a) ≪ a ◦ b.
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Hence a ≪ a ◦ b. Therefore, a ∈ a ◦ b or b ∈ a ◦ b. If b ∈ a ◦ b, then b ∈
b◦0(s)(a◦ b)◦ (0◦ b) ≪ a◦0 = {a}. It means that b ≪ a which is a contradiction.
Thus b ̸∈ a ◦ b. Since a ∈ a ◦ b and a ≪ b, a ◦ b = {0, a}.

(ii) By (B2), a ∈ 0 ◦ 0(s)(b ◦ b) ◦ 0 = (b ◦ 0) ◦ b = b ◦ b. Thus a ∈ b ◦ b.
(iii) If b ∈ b ◦ b, then b ∈ b ◦ b(s)(b ◦ 0) ◦ (a ◦ 0) ≪ b ◦ a. Therefore, b ∈ b ◦ a.

Theorem 4.8. Let H = {0, a, b} and f : (H, ◦1, 0) −→ (H, ◦2, 0) be a non identity
isomorphism of weak proper hyper BCI-algebras, then

(i) f(0) = 0,

(ii) if a ≪1 b, then b ≪2 a.

Proof. (i) By Lemma 4.4 and Theorem 3.6, the proof is clear.

(ii) Let a ≪1 b. Since f(0) = 0 and f is not identity, then f(a) = b and
f(b) = a. By 0 ∈ a ◦1 b, f(0) ∈ f(a) ◦2 f(b) and so 0 ∈ b ◦2 a. Therefore, b ≪2 a.

By Theorems 4.8 and 4.3 any weak proper hyper BCI-algebra is a chain and
any chain 0 ≪ a ≪ b is isomorph by a chain 0 ≪ b ≪ a. So if we let H = {0, a, b}
and 0 ≪ a ≪ b, then we can find all weak proper hyper BCI-algebra of order 3
up to isomorphism.

According Theorems 4.4, 4.5, 4.6 and 4.7 we have two following structures:

◦ 0 a b

0 {0} {0} {0}
a {a, b} {0, b} or {0, a, b} {0}, {0, b} or {0, a, b}
b {b} {b} or {a, b} {0}, {0, b} or {0, a, b}

◦ 0 a b

0 {0, a} {0, a} {0, a}
a {a} {0, a} {0, a}
b {b} {a}, {b} or {a, b} {0, a} or {0, a, b}

Case 1. Let 0 ◦ 0 = 0 ◦ a = 0 ◦ b = {0}, a ◦ 0 = {a, b}, b ◦ 0 = {b}.
Let a ◦ a = {0, b}. If a ∈ b ◦ a, then

a ∈ b ◦ a(s)(a ◦ 0) ◦ a = (a ◦ a) ◦ 0 = 0 ◦ 0 ∪ b ◦ 0 = {0, b}.

which is a contradiction. Hence b ◦ a = {b}. If a ◦ b = {0}, then

b ◦ b(s)(a ◦ a) ◦ (b ◦ a) ≪ a ◦ b = {0}.

By Theorem 3.2, b ◦ b = {0} and we get the following Cayley table which is a
weak proper hyper BCI-algebra.

◦1 0 a b

0 {0} {0} {0}
a {a, b} {0, b} {0}
b {b} {b} {0}
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W (H) = I(H) = S(H) = {{0}, {0, a}, H}.

If a ◦ b = {0, b}, then by {0} = 0 ◦ b(s)b ◦ b and (B3),

b ◦ b = 0 ◦ b ∪ b ◦ b = {0, b} ◦ b = (a ◦ a) ◦ b = (a ◦ b) ◦ a = {0, b} ◦ a = {0, b}.

Thus b ◦ b = {0, b} and we get the following weak proper hyper BCI-algebra.

◦2 0 a b

0 {0} {0} {0}
a {a, b} {0, b} {0, b}
b {b} {b} {0, b}

W (H) = I(H) = S(H) = {{0}, {0, a}, H}.

If a ◦ b = {0, a, b}, then

b ◦ b = 0 ◦ b ∪ b ◦ b = {0, b} ◦ b = (a ◦ a) ◦ b = (a ◦ b) ◦ a = {0, a, b} ◦ a = {0, b}.

Thus b ◦ b = {0, b} and we get the following weak proper hyper BCI-algebra.

◦3 0 a b

0 {0} {0} {0}
a {a, b} {0, b} {0, a, b}
b {b} {b} {0, b}

I(H) = S(H) = {{0}, {0, a}, H} and W (H) = {{0}, {0, b}, {0, a}, H}.

Let a ◦ a = {0, a, b} and b ◦ a = {b}. If a ◦ b = {0}, then b ◦ b(s)(a ◦ 0) ◦ (b ◦ 0) ≪
a ◦ b = {0}. By Theorem 3.2, b ◦ b = {0} and we get the next weak proper hyper
BCI-algebra.

◦4 0 a b

0 {0} {0} {0}
a {a, b} {0, a, b} {0}
b {b} {b} {0}

W (H) = I(H) = S(H) = {{0}, {0, a}, H}.

If a ◦ b = {0, b}, then a ◦ b ∪ b ◦ b = {a, b} ◦ b = (a ◦ 0) ◦ b = (a ◦ b) ◦ 0 = {0, b}.
Hence {0, b} ∪ b ◦ b = {0, b}. which means that b ◦ b = {0} or b ◦ b = {0, b} which
both of them are weak proper hyper BCI-algebras.

◦5 0 a b

0 {0} {0} {0}
a {a, b} {0, a, b} {0, b}
b {b} {b} {0}

◦6 0 a b

0 {0} {0} {0}
a {a, b} {0, a, b} {0, b}
b {b} {b} {0, b}
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W (H, ◦5)=I(H, ◦5)=S(H, ◦5)=W (H, ◦6)=I(H, ◦6)=S(H, ◦6)={{0}, {0, a}, H}.

If a ◦ b = {0, a, b}, then b ◦ b = {0}, {0, b}or {0, a, b} which all of them are weak
proper hyper BCI-algebras.

◦7 0 a b

0 {0} {0} {0}
a {a, b} {0, a, b} {0, a, b}
b {b} {b} {0}

◦8 0 a b

0 {0} {0} {0}
a {a, b} {0, a, b} {0, a, b}
b {b} {b} {0, b}

I(H, ◦7) = S(H, ◦7) = I(H, ◦8) = S(H, ◦8) = {{0}, {0, a}, H},

W (H, ◦7) = W (H, ◦8) = {{0}, {0, b}, {0, a}, H}.

◦9 0 a b

0 {0} {0} {0}
a {a, b} {0, a, b} {0, a, b}
b {b} {b} {0, a, b}

I(H) = S(H) = {{0}, {0, a}, H} and W (H) = {{0}, {0, b}, {0, a}, H}.

Let a ◦ a = {0, a, b} and b ◦ a = {a, b}. By (B1), (a ◦ a) ◦ (b ◦ a) ≪ a ◦ b.
Hence {0, a, b} ≪ a ◦ b. We imply that b ∈ a ◦ b. Thus a ◦ b = {0, b} or
{0, a, b}. If a ◦ b = {0, b}, then by (a ◦ a) ◦ b = (a ◦ b) ◦ a we conclude that
{0, b} ∪ b ◦ b = {0, a, b}. Hence a ∈ b ◦ b. By Theorem 4.7(iii), b ◦ b = {0, a, b}.
But in this case (a ◦ 0) ◦ b ̸= (a ◦ b) ◦ 0. Hence a ◦ b ̸= {0, b}.

If a ◦ b = {0, a, b}, then b ◦ b = {0}, {0, b} or {0, a, b}. If b ◦ b = {0}, then
(b ◦ a) ◦ b ̸= (b ◦ b) ◦ a. If b ◦ b = {0, b} or {0, a, b}, then we get two following weak
proper hyper BCI-algebras.

◦10 0 a b

0 {0} {0} {0}
a {a, b} {0, a, b} {0, a, b}
b {b} {a, b} {0, b}

◦11 0 a b

0 {0} {0} {0}
a {a, b} {0, a, b} {0, a, b}
b {b} {a, b} {0, a, b}

I(H, ◦10) = S(H, ◦10) = I(H, ◦11) = S(H, ◦11) = {{0}, {0, a}, H},

W (H, ◦10) = W (H, ◦11) = {{0}, {0, b}, {0, a}, H}.

Case 2. Let 0 ◦ 0 = 0 ◦ a = 0 ◦ b = {0, a}, a ◦ 0 = {a}, b ◦ 0 = {b} and
a ◦ a = a ◦ b = {0, a}.

If b ◦ b = {0, a}, then b ◦ a = {b}, {a} or {a, b}. If b ◦ a = {a, b}, then
(b ◦ a) ◦ (b ◦ a) ̸≪ b ◦ b. The other cases are weak proper hyper BCI-algebras with
the following Cayley tables.

◦12 0 a b

0 {0, a} {0, a} {0, a}
a {a} {0, a} {0, a}
b {b} {b} {0, a}

◦13 0 a b

0 {0, a} {0, a} {0, a}
a {a} {0, a} {0, a}
b {b} {a} {0, a}
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I(H, ◦12) = S(H, ◦12) = {{0}, {0, a}, H}, I(H, ◦13) = S(H, ◦13) = {{0}, H},
W (H, ◦12) = {{0}, {0, b}, {0, a}, H} and W (H, ◦13) = {{0}, {0, b}, H}.

If b ◦ b={0, a, b}, then by Theorem 4.7, b ∈ b ◦ a. Thus b ◦ a={b} or {a, b}, which
both of them are weak proper hyper BCI-algebra with the following Cyley tables:

◦14 0 a b

0 {0, a} {0, a} {0, a}
a {a} {0, a} {0, a}
b {b} {b} {0, a, b}

◦15 0 a b

0 {0, a} {0, a} {0, a}
a {a} {0, a} {0, a}
b {b} {a, b} {0, a, b}

I(H, ◦14) = S(H, ◦14) = I(H, ◦15) = {{0}, {0, a}, H}, S(H, ◦15) = {{0}, H},
W (H, ◦14) = W (H, ◦15) = {{0}, {0, b}, {0, a}, H}.

5. Characterization of strong proper hyper BCI-algebra of order 3

Let H = {0, a, b} and (H, ◦, 0) be a strong proper hyper BCI-algebra. By
definition of strong proper hyper BCI-algebra, H+ ̸= H. Thus H+ = {0} or
H+ = {0, a}.

Theorem 5.1. Let H = {0, a, b} be a strong proper hyper BCI-algebra and H+ =
{0, a}. Then, the following hold:

(i) 0 ◦ b = {b},

(ii) 0 ◦ 0 = {0} or {0, a},

(iii) if 0 ◦ 0 = {0}, then 0 ◦ a = {0},

(iv) if 0 ◦ 0 = {0, a}, then 0 ◦ a = {0, a},

(v) 0 ◦ a = 0 ◦ 0 = {0} or {0, a},

(vi) if 0 ◦ 0 = {0, a}, then a ∈ b ◦ b and a ∈ a ◦ a.

Proof. (i) Since b ̸∈ H+, 0 ̸∈ 0 ◦ b. If a ∈ 0 ◦ b, then by a ∈ H+ and (B5),
0 ∈ 0 ◦ a(s)0 ◦ (0 ◦ b) ≪ {b}, which is a contradiction. Hence a ̸∈ 0 ◦ b. Since
b ̸∈ H+, 0 ̸∈ 0 ◦ b. Therefore, 0 ◦ b = {b}.

(ii) If b ∈ 0 ◦ 0, then by Theorem 3.2(i) and (B2),

0 ̸∈ b ◦ 0 = (0 ◦ b) ◦ 0 = (0 ◦ 0) ◦ b ⊇ b ◦ b ∋ 0,

which is a contradiction. Thus b ̸∈ 0 ◦ 0 and so 0 ◦ 0 = {0} or 0 ◦ 0 = {0, a}.
(iii) By Theorem 3.2(vii), the proof is easy.

(iv) Let 0 ◦ 0 = {0, a}. If 0 ◦ a = {0}, then by (iv), 0 ◦ 0 = {0} which is a
contradiction. Since a ∈ H+, 0 ∈ 0 ◦ a. It is sufficient to prove that b ̸∈ 0 ◦ a. On
the contrary let b ∈ 0 ◦ a. By (i) and (B2),

b ◦ a = (0 ◦ b) ◦ a = (0 ◦ a) ◦ b ⊇ 0 ◦ b ∪ b ◦ b ∋ {0, b}.
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Thus b ∈ b ◦ a and 0 ∈ b ◦ a. Hence b ≪ a and so a ̸≪ b.
By (B1) and (B3),

a ∈ 0 ◦ 0(s)(a ◦ a) ◦ (b ◦ a) ≪ a ◦ b.

Thus a ∈ a ◦ b. On the other hand,

{0, a} = 0 ◦ 0(s)(b ◦ b) ◦ (b ◦ b) ≪ b ◦ b.

Hence a ∈ b ◦ b. By (B1),

a ∈ a ◦ b(s)(b ◦ b) ◦ (0 ◦ b) ≪ b ◦ 0.

Since b ≪ a, then a ∈ b ◦ 0. By Theorem 3.2, b ◦ 0 = {a, b}. By (B1) and (i),

0 ∈ a ◦ a(s)(0 ◦ 0) ◦ (b ◦ 0) ≪ 0 ◦ b = {b}.

Thus 0 ≪ b, which is a contradiction. Hence b ̸∈ 0 ◦ a. Therefore, 0 ◦ a = {0, a}.
(v) By (iii) and (iv), the proof is easy.

(vi) Let 0 ◦ 0 = {0, a}. By (v), 0 ◦ a = {0, a}. By (B1),

{0, a} = 0 ◦ 0(s)(a ◦ a) ◦ (a ◦ a) ≪ a ◦ a.

Hence there is t ∈ a ◦ a such that a ≪ t.
Let t = b and so b ∈ a ◦ a and a ≪ b. Thus b ̸≪ a. By (B2),

0 ̸∈ b ◦ a = (0 ◦ b) ◦ a = (0 ◦ a) ◦ b ⊇ a ◦ b ∋ 0,

which is a contradiction. Thus t = a and so a ∈ a ◦ a. By similar way from

{0, a} = 0 ◦ 0(s)(b ◦ b) ◦ (b ◦ b) ≪ b ◦ b,

we imply that a ∈ b ◦ b.

Theorem 5.2. Let H = {0, a, b} be a strong proper hyper BCI-algebra and H+ =
{0, a}. If 0 ◦ 0 = {0, a}, then the following hold:

(i) b ◦ a = {b},

(ii) a ◦ b = {b},

(iii) b ◦ 0 = {b},

(iv) a ◦ 0 = {a},

(v) a ◦ a = {0, a},

(vi) b ◦ b = {0, a}.
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Proof. If 0 ◦ 0 = {0, a}, then by Theorem 5.1, 0 ◦ a = {0, a}, 0 ◦ b = {b}, a ∈ b ◦ b
and a ∈ a ◦ a.

(i) By (B2),

(1) b ◦ a = (0 ◦ b) ◦ a = (0 ◦ a) ◦ b = {0, a} ◦ b = {b} ∪ a ◦ b.

Thus b ∈ b ◦ a. If 0 ∈ a ◦ b, then by (1), 0 ∈ b ◦ a. It means that a ≪ b and
b ≪ a. Therefore, a = b which is a contradiction. Hence 0 ̸∈ a ◦ b and 0 ̸∈ b ◦ a. If
b ◦ a = {a, b}, then a ◦ a(s)(0 ◦ a) ◦ (b ◦ a) ≪ 0 ◦ b = {b}. Hence a ◦ a = {b} which
is a contradiction. Therefore, b ◦ a = {b}.

(ii) By b ◦ a = {b} and (1), a ◦ b = {b}.
(iii) By Theorem 3.2(i),(iii), b ∈ b ◦ 0 and 0 ̸∈ b ◦ 0. By (B2),

b ◦ 0 = (b ◦ a) ◦ 0 = (b ◦ 0) ◦ a.

If a ∈ b ◦ 0, then we conclude that 0 ∈ b ◦ 0 which is a contradiction. Hence
b ◦ 0 = {b}.

(iv) By Theorem 3.2, a ∈ a ◦ 0 and 0 ̸∈ a ◦ 0. If b ∈ a ◦ 0, then

b = 0 ◦ b(s)(0 ◦ 0) ◦ (a ◦ 0) ≪ 0 ◦ a = {0, a}.

Thus b ≪ a. But in (1) we proved that a ̸≪ b and b ̸≪ a. Thus b ̸∈ a ◦ 0 and
a ◦ 0 = {a}.

(v) By Theorem 5.1(vii), a ∈ a ◦ a. If b ∈ a ◦ a, then

b ∈ a ◦ a(s)(0 ◦ a) ◦ (0 ◦ a) ≪ 0 ◦ 0 = {0, a},

which is a contradiction. Thus a ◦ a = {0, a}.
(vi) By Theorem 5.1(vii), a ∈ b ◦ b. If b ∈ b ◦ b, then

b ∈ b ◦ b(s)(0 ◦ b) ◦ (0 ◦ b) ≪ 0 ◦ 0 = {0, a},

which is a contradiction. Thus b ◦ b = {0, a}.

By Theorem 5.2, if 0 ◦ 0 = {0, a} we just have one weak proper hyper BCI-
algebra with the following Cayley table:

◦16 0 a b

0 {0, a} {0, a} {b}
a {a} {0, a} {b}
b {b} {b} {0, a}

W (H) = I(H) = S(H) = {{0}, {0, a}, H}.

Theorem 5.3. Let H = {0, a, b} and (H, ◦, 0) be a strong proper hyper BCI-
algebra and H+ = {0, a}. If 0 ◦ 0 = {0}, then the following hold:
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(i) b ◦ a = {b},

(ii) b ◦ b = {0},

(iii) b ◦ 0 = {b},

(iv) a ◦ 0 = {a},

(v) a ◦ b = {b},

(vi) a ◦ a = {0, a} or {0}.

Proof. If 0 ◦ 0 = {0}, then by Theorem 5.1, 0 ◦ a = {0} and 0 ◦ b = {b}.
(i) By (B2), b ◦ a = (0 ◦ b) ◦ a = (0 ◦ a) ◦ b = 0 ◦ b = {b}. Thus b ◦ a = {b}.
(ii) By (B1), b ◦ b(s)(0 ◦ b) ◦ (0 ◦ b) ≪ 0 ◦ 0 = {0}. By Theorem 3.2(ii),

b ◦ b = {0}.
(iii) By Theorem 3.2, b ∈ b ◦ 0 and we have (b ◦ 0) ◦ (b ◦ 0) ≪ b ◦ b = {0}. By

Theorem 3.2(ii), (b◦0)◦ (b◦0) = {0} and so by Theorem 3.2(iii), b◦0 is singleton.
By Theorem 3.2(iv), we imply that b ◦ 0 = {b}.

(iv) By Theorem 3.2, a ∈ a ◦ 0. If b ∈ a ◦ 0, then b = 0 ◦ b(s)(0 ◦ 0) ◦ (a ◦ 0) ≪
0 ◦ a = {0}. It means that b ≪ 0 which is a contradiction. Hence a ◦ 0 = {a}.

(v) By (B1), (i) and (ii), 0 ◦ (a ◦ b) = (b ◦ b) ◦ (a ◦ b) ≪ b ◦ a = {b}. Thus
0 ◦ (a ◦ b) = {b} or {a}. From 0 ◦ 0 = 0 ◦ a = {0} and 0 ◦ b = {b} we conclude
that a ◦ b = {b}.

(vi) By (B1), (ii) and (v), 0 = b ◦ b = (a ◦ b) ◦ (a ◦ b) ≪ a ◦ a. Since b ̸∈ H+,
a ◦ a = {0} or {0, a}.

By Theorem 5.3, if 0 ◦ 0 = {0} we can have two strong proper hyper BCI-
algebras and we get two following strong proper hyper BCI-algebras.

◦17 0 a b

0 {0} {0} {b}
a {a} {0} {b}
b {b} {b} {0}

◦18 0 a b

0 {0} {0} {b}
a {a} {0, a} {b}
b {b} {b} {0}

W (H, ◦17)=I(H, ◦17)=S(H, ◦17)=W (H, ◦18)=I(H, ◦18)=S(H, ◦18)={{0}, {0, a}, H}.

Theorem 5.4. Let H = {0, a, b} and f : (H, ◦1, 0) −→ (H, ◦2, 0) be a non identity
isomorphism of strong proper hyper BCI-algebras, then

(i) f(0) = 0,

(ii) if (H, ◦1)+ = {0, a}, then (H, ◦2)+ = {0, b}.

Proof. (i) By Theorems 5.2, 5.3, 3.5 and 3.6, the proof is routine and we are
omitted.

(ii) Let (H, ◦1)+ = {0, a}. Since f(0) = 0 and f is not identity, f(a) = b
and f(b) = a. By 0 ∈ 0 ◦1 a, f(0) ∈ f(0) ◦2 f(a) and so 0 ∈ 0 ◦2 b. Therefore,
(H, ◦2)+ = {0, b}.
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Let H = {0, a, b} and H be a strong proper hyper BCI-algebra. Then
H+ = {0} or {0, a} or {0, b}. If (H, ◦1)+ = {0, a}, then by Theorem 5.4, (H, ◦1)
is isomorph by a strong proper hyper BCI-algebra (H, ◦2) (H, ◦2)+ = {0, b}.

Let (H, ◦, 0) be a strong proper hyper BCI-algebra and H+ = {0}. Then by
Theorem 3.5, H is p-semisimple BCI-algebra and we get the only p-semisimple
BCI-algebra of order 3 with the following Cayley table:

◦19 0 a b

0 {0} {b} {a}
a {a} {0} {b}
b {b} {a} {0}

W (H) = I(H) = S(H) = {{0}, H}.

6. Characterization of hyper BCI-algebra of order 3

Theorem 6.1. The number of proper hyper BCI-algebra of order 3 is 19.

Theorem 6.2. The number of hyper BCI-algebra of order 3 is 38.

Proof. By Theorem 2.4, there are 19 hyper BCK-algebra of order 3 up to iso-
morphism. In this note we proved that there are 19 proper hyper BCI-algebra of
order 3 up to isomorphism. Also every hyper BCK-algebra is hyper BCI-algebra.
Thus there are 38 hyper BCI-algebra of order 3.
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