RARELY b-CONTINUOUS FUNCTIONS

Saeid Jafari

College of Vestsjaelland South Herrestraede 11, 4200 Slagelse Denmark e-mail: jafari@stofanet.dk

Uğur Şengül

Department of Mathematics Faculty of Science and Letters Marmara University 34722 Göztepe-İstanbul Turkey usengul@marmara.edu.tr

Abstract. In this paper we introduce a new class of functions called rarely *b*-continuous. Some characterizations and several properties concerning rare *b*-continuity are obtained.

Keywords and phrases: rare set, *b*-open, rarely *b*-continuous, rarely almost compact. 2000 Mathematics Subject Classification: 54B05, 54C08.

1. Introduction and preliminaries

In 1979, Popa [15] introduced the notion of rarely continuous functions as a generalization of weak continuity. The function has been further investigated by Long and Herrington in [12] and by various authors [5], [6], [7], [8], [9], [16]. The first author of this article introduced and investigated weak *b*-continuity [17] as a generalization of weak continuity. The purpose of the present paper is to introduce concept of rare *b*-continuity in topological spaces as a generalization of rare continuity and weak *b*-continuity. We investigate several properties of rarely *b*-continuous functions. Rare *b*-continuity. The notion of *I.b*-continuity is also introduced which is weaker than *b*-continuity and stronger than *b*-continuity. It is shown that if *Y* is a regular space, then the function $f: X \to Y$ is *I.b*-continuous on *X* if and only if *f* is rarely *b*-continuous on *X*.

Throughout this paper, X and Y are topological spaces. Recall that a rare set R is a set R such that $int(R) = \emptyset$. A subset S of a space (X, τ) is called regular open [18] (resp. regular closed [18]) if S = int(cl(S)) (resp. S = cl(int(S)).

A subset S of a space (X, τ) is called semi-open [11] (resp.preopen [13], α open [14], semi-preopen [2] or β -open [1], b-open [3] or γ -open [4]) if $S \subset cl(int(S))$ (resp. $S \subset int(cl(S)), S \subset int(cl(int(S))), S \subset cl(int(cl(S))), S \subset cl(int(S)) \cup$ int(cl(S))) The complement of a semi-open (resp.preopen, α -open, β -open, bopen) set is said to be semi-closed (resp., preclosed, α -closed, β -closed, b-closed).

The family of all open (resp., regular open, semi-open, preopen, α -open, β -open, b-open) sets of X denoted by O(X) (resp., RO(X), SO(X), PO(X), $\alpha O(X)$, $\beta O(X)$, BO(X)).

The family of all *b*-closed sets of X is denoted by BC(X) and the family of all *b*-open (resp. open, regular open) sets of X containing a point $x \in X$ is denoted by BO(X, x) (resp., O(X, x), RO(X, x))

If S is a subset of a space X, then the b-closure of S, denoted by bcl(S), is the smallest b-closed set containing S. The b-interior of S, denoted by bint(S) is the largest b-open set contained in S. Our next definition contains some types of functions used throughout this paper.

Definition 1 A function $f : X \to Y$ is called:

- (a) Weakly continuous [10] (resp. weakly b-continuous [17]) if for each $x \in X$ and each open set G containing f(x), there exists $U \in O(X, x)$ (resp., $U \in BO(X, x)$) such that $f(U) \subset cl(G)$.
- (b) b-continuous [4] if $f^{-1}(V)$ is b-open in X for every open set V of Y;
- (c) Rarely continuous [15] (resp., rarely precontinuous [8], rarely quasicontinuous [16], rarely β -continuous [7]) at $x \in X$ if for each $G \in O(Y, f(x))$, there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ and $U \in O(X, x)$ (resp., $U \in PO(X, x)$, $U \in SO(X, x)$, $U \in \beta O(X, x)$) such that $f(U) \subset G \cup R_G$.

2. Rarely *b*-continuous functions

Definition 2 A function $f : X \to Y$ is called rarely *b*-continuous at $x \in X$ if for each open set $G \subset Y$ containing f(x), there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ and $U \in BO(X, x)$ such that $f(U) \subset G \cup R_G$.

Theorem 3 The following statements are equivalent for a function $f: X \to Y$:

- (a) The function is rarely b-continuous at $x \in X$.
- (b) For each $G \in O(Y, f(x))$, there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ such that

$$x \in bint(f^{-1}(G \cup R_G)).$$

(c) For each $G \in O(Y, f(x))$, there exists a rare set R_G with $cl(G) \cap R_G = \emptyset$ such that

$$x \in bint(f^{-1}(cl(G) \cup R_G)).$$

(d) For each $G \in RO(Y, f(x))$, there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ such that

$$x \in bint(f^{-1}(G \cup R_G)).$$

(e) For each $G \in O(Y, f(x))$, there exists $U \in BO(X, x)$ such that

$$int(f(U) \cap (Y - G)) = \varnothing.$$

(f) For each $G \in O(Y, f(x))$, there exists $U \in BO(X, x)$ such that

$$int(f(U)) \subset cl(G).$$

Proof. (a) \Rightarrow (b): Let $x \in X$ and $G \in O(Y, f(x))$. Then, there exists a rare set set R_G with $G \cap cl(R_G) = \emptyset$ and $U \in BO(X, x)$ such that $f(U) \subset G \cup R_G$. It follows that $x \in U \subset f^{-1}(G \cup R_G)$, then we have $x \in bint(f^{-1}(G \cup R_G))$.

(b) \Rightarrow (c): Suppose that $G \in O(Y, f(x))$. Then there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ such that $x \in bint(f^{-1}(G \cup R_G))$. Since $G \cap cl(R_G) = \emptyset$, $R_G \subset Y - G$ where $Y - G = (Y - cl(G)) \cup (cl(G) - G)$. Now, we have $R_G \subset (R_G \cap (Y - cl(G))) \cup (cl(G) - G)$. Set $R^* = R_G \cap (Y - cl(G))$. It follows that R^* is a rare set with $cl(G) \cap R^* = \emptyset$. Therefore, $x \in bint(f^{-1}(G \cup R_G)) \subset bint(f^{-1}(cl(G) \cup R^*))$.

(c) \Rightarrow (d): Assume that $x \in X$ and $G \in RO(Y, f(x))$. Then, there exists a rare set R_G with $cl(G) \cap R_G = \emptyset$ such that $x \in bint(f^{-1}(cl(G) \cup R_G))$. Set $R^* = R_G \cup (cl(G) - G)$. It follows that R^* is a rare set and $G \cap cl(R^*) = \emptyset$. Hence $x \in bint(f^{-1}(cl(G) \cup R_G)) = bint[f^{-1}(G \cup (cl(G) - G) \cup R_G)] = bint[f^{-1}(G \cup R^*)]$.

(d) \Rightarrow (e): Let $G \in O(Y, f(x))$. Then, using $f(x) \in G \subset int(cl(G))$ and the fact that $int(cl(G)) \in RO(Y, f(x))$, there exists a rare set R_G with $int(cl(G)) \cap cl(R_G) = \emptyset$ such that $x \in bint[f^{-1}(int(cl(G)) \cup R_G)]$. Suppose $U = bint[f^{-1}(int(cl(G)) \cup R_G)]$. Then, $U \in BO(X, x)$ and, therefore, $f(U) \subset$ $int(cl(G)) \cup R_G$. We have $int[f(U) \cap (Y - G)] = int(f(U)) \cap (int(Y - G)) \subset$ $int[cl(G) \cup R_G] \cap (Y - cl(G)) \subset ((cl(G) \cup int(R_G))) \cap (Y - cl(G)) = \emptyset$.

(e) \Rightarrow (f): Since $int(f(U) \cap (Y-G)) = int(f(U)) \cap int(Y-G)) = int[f(U)] \cap (Y-cl(G)) = \emptyset$, we have $int[f(U)] \subset cl(G)$.

 $(f) \Rightarrow (a): G \in O(Y, f(x)).$ Then, by (f), there exists $U \in BO(X, x)$ such that $int[f(U)] \subset cl(G)$. Then, $f(U) = [f(U) - int(f(U))] \cup int(f(U)) \subset [f(U) - int(f(U))] \cup cl(G) = [f(U) - int(f(U))] \cup G \cup (cl(G) - G).$ Set $R^* = [f(U) - int(f(U))] \cap (Y - G)$ and $R^{**} = (cl(G) - G).$ Then, R^* and R^{**} are rare sets. Moreover, $R_G = R^* \cup R^{**}$ is a rare set and $cl(R_G) \cap G = \emptyset$ and $f(U) \subset G \cup R_G.$

Theorem 4 A function $f : X \to Y$ is rarely b-continuous if and only if $f^{-1}(G) \subset bint(f^{-1}(G \cup R_G))$ for every open set G in Y, where R_G is a rare set with $G \cap cl(R_G) = \emptyset$.

Proof. Clear from the Theorem 3. \blacksquare

Remark 5 Rare *b*-continuity is implied by rare quasi-continuity and rare precontinuity, and implies rare β -continuity, but the converse implications are not true in general as the following examples shows.

Example 6 Let τ be the usual topology for \mathbb{R} and for $A = [0, 1] \cup ((1, 2) \cap \mathbb{Q})$ define $\sigma = \{\emptyset, \mathbb{R}, A, \mathbb{R} - A\}$. Then, the identity function $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \sigma)$ is rarely *b*-continuous but it is neither rarely quasi-continuous nor rarely precontinuous.

Example 7 Let τ be the usual topology for \mathbb{R} and $\sigma = \{\emptyset, \mathbb{R}, [1, 2) \cap \mathbb{Q}\}$. Then, the identity function $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \sigma)$ is rarely β -continuous but it is not rarely *b*-continuous.

Definition 8 A function $f: X \to Y$ is called *I.b*-continuous at $x \in X$ if for each open set $G \subset Y$ containing f(x), there exists a *b*-open set *U* containing *x* such that $int[f(U)] \subset G$.

If f has this property at each point $x \in X$, then we say that f is I.b-continuous on X.

Remark 9 It is clear that *I.b*-continuity is weaker than *b*-continuity and stronger than rare *b*-continuity.

Theorem 10 Let Y be a regular space. Then the function $f : X \to Y$ is I.bcontinuous on X if and only if f is rarely b-continuous on X.

Proof. *Necessity* is clear.

Sufficiency. Let f be rarely b-continuous on X. Suppose that $f(x) \in G$, where G is an open set in Y and $x \in X$. By the regularity of Y, there exists an open set G_1 in Y such that $f(x) \in G_1$ and $cl(G_1) \subset G$. Since f is rarely b-continuous, then there exists $U \in BO(X, x)$ such that $int[f(U)] \subset cl(G_1)$. This implies $int[f(U)] \subset G$ which means that I.b-continuous on X.

Definition 11 A function $f : X \to Y$ is called strongly *b*-open if for every $U \in BO(X), f(U)$ is open.

Theorem 12 If a function $f : X \to Y$ is strongly b-open and rarely b-continuous then f is weakly b-continuous.

Proof. Suppose that $x \in X$ and G is any open set of Y containing f(x). Since f is rarely b-continuous, there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ and $U \in BO(X, x)$ such that $f(U) \subset G \cup R_G$. Then $f(U) \cap (Y - cl(G)) \subset R_G$. Since f is strongly b-open $f(U) \cap (Y - cl(G))$ is open. But the rare set R_G has no interior point. Then $f(U) \cap (Y - cl(G)) = \emptyset$. This implies that $f(U) \subset cl(G)$. Hence f is weakly b-continuous.

Lemma 13 (Andrijevic [3]) The intersection of an open set and a b-open set is a b-open set.

Theorem 14 If a function $f : X \to Y$ is rarely b-continuous at x and for each open set G containing f(x), $f^{-1}(cl(R_G))$ is closed in X, then f is b-continuous at x where R_G is a rare set with $G \cap cl(R_G) = \emptyset$.

Proof. Let $G \in O(Y, f(x))$. Since f is rarely b-continuous at x, there exist a rare set R_G with $G \cap cl(R_G) = \emptyset$ and $U \in BO(X, x)$ such that $f(U) \subset G \cup R_G$. Since $G \cap cl(R_G) = \emptyset$, we have

 $f(x) \notin cl(R_G)$ and $x \in X - f^{-1}(cl(R_G))$.

Set $V = U \cap (X - f^{-1}(cl(R_G)))$ then, by Lemma 13,

$$V \in BO(X, x)$$
 and $f(V) \subset f(U) \cap (Y - cl(R_G)) \subset G$.

Therefore, f is *b*-continuous at x.

Theorem 15 If a function $f : X \to Y$ is rarely b-continuous then the graph function $g : X \to X \times Y$, defined by g(x) = (x, f(x)) for every $x \in X$ is rarely b-continuous.

Proof. Suppose that $x \in X$ and W is any open set containing g(x). Then there exist open sets U and V in X and Y respectively such that $(x, f(x)) \in U \times V \subset W$. Since f is rarely b-continuous, there exists $G \in BO(X, x)$ such that $int[f(G)] \subset cl(V)$. Let $O = U \cap G$. By Lemma 13, $O \in BO(X, x)$ and we have

$$int[g(O)] \subset int[U \times f(G)] \subset U \times cl(V) \subset cl(W).$$

Therefore, g is rarely *b*-continuous.

Definition 16 A topological space (X, τ) is said to be b-compact [4] if every bopen cover of X has a finite subcover.

Definition 17 Let $\mathcal{A} = \{G_i\}$ be a class of subsets of X.By rarely union sets [5] of \mathcal{A} we mean $\{G_i \cup R_{G_i}\}$, where each R_{G_i} is a rare set such that each of $\{G_i \cap cl(R_{G_i})\}$ is empty.

Definition 18 A topological space (X, τ) is called rarely almost compact [5] if each open cover of X has a finite subfamily whose rarely union sets cover the space.

Definition 19 A subset K of a space X is said to be:

(a) b-compact relative to X [4] if for every cover $\{V_{\alpha} : \alpha \in I\}$ of K by b-open sets of X, there exists a finite subset I_0 of I such that $K \subset \cup \{V_{\alpha} : \alpha \in I_0\}$, (b) rarely almost compact relative to X [5] if for every cover of K by open sets of X, there exists a finite subfamily whose rarely union sets cover K.

Theorem 20 Let $f : X \to Y$ be rarely b-continuous and K be a b-compact set in X. Then f(K) is a rarely almost compact subset of Y.

Proof. Suppose that \mathcal{G} is an open cover of f(K). Set $\mathcal{G}^* = \{V \in \mathcal{G} : V \cap f(K) \neq \emptyset\}$. Then \mathcal{G}^* is an open cover of f(K). Hence for each $x \in K$, there is some $V_x \in \mathcal{G}^*$ such that $f(x) \in V_x$. Since f is rarely b-continuous there exist a rare set R_{V_x} with $V_x \cap cl(R_{V_x}) = \emptyset$ and a b-open set U_x containing x such that $f(U_x) \subset V_x \cup R_{V_x}$. Hence there is a subfamily $\{U_{x_i}\}_{x_i \in K_0}$ which covers K, where K_0 is a finite subset of K. The subfamily $\{V_{x_i} \cup R_{V_{x_i}}\}_{x_i \in K_0}$ also covers f(K).

Lemma 21 If $g: Y \to Z$ is continuous and one-to-one, then g preserves rare sets [12].

Theorem 22 If $f : X \to Y$ is a rarely b-continuous surjection and $g : Y \to Z$ is continuous and one-to-one, then $gof : X \to Z$ is rarely b-continuous.

Proof. Suppose that $x \in X$ and $g(f(x)) \in V$, where V is open set Z. By hypothesis, g is continuous, therefore there exists an open set $G \subset Y$ containing f(x) such that $g(G) \subset V$. Since f is rarely b-continuous, there exists rare set R_G with $G \cap cl(R_G) = \emptyset$ and a b-open set U containing x such that $f(U) \subset G \cup R_G$. It follows from Lemma 21 that $g(R_G)$ is a rare set in Z. Since R_G is a subset of Y - G and g is injective, we have $cl(g(R_G)) \cap V = \emptyset$. This implies that $g(f(U)) \subset V \cup g(R_G)$. Hence the result follows.

Definition 23 A function $f : X \to Y$ is called pre-*b*-open if for every $U \in BO(X), f(U) \in BO(Y)$.

Theorem 24 If $f: X \to Y$ is a pre-b-open surjection and $g: Y \to Z$ a function such that $gof: X \to Z$ is rarely b-continuous. Then g is rarely b-continuous.

Proof. Let $y \in Y$ and $x \in X$ such that f(x) = y. Let G be an open set containing g(f(x)). Then there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ and a *b*-open set U containing x such that $g(f(U)) \subset G \cup R_G$. But f(U) is a *b*-open set containing f(x) = y such that $g(f(U)) = (gof)(U) \subset G \cup R_G$. This shows that g is rarely *b*-continuous at y.

Definition 25 A function $f : X \to Y$ satisfies interiority rare *b* condition if $bint(f^{-1}(G \cup R_G)) \subset f^{-1}(G)$ for each open set *G* in *Y*, where R_G is a rare set with $G \cap cl(R_G) = \emptyset$.

Theorem 26 If $f : X \to Y$ is rarely b-continuous and satisfies interiority rare b condition then f is b-continuous.

Proof. Since f is rarely *b*-continuous by Theorem 4, we have

$$f^{-1}(G) \subset bint(f^{-1}(G \cup R_G)),$$

where G is an open set in Y and R_G is a rare set with $G \cap cl(R_G) = \emptyset$. On the other hand by the interiority rare b condition we have $bint(f^{-1}(G \cup R_G)) \subset f^{-1}(G)$. Therefore $f^{-1}(G)$ is b-open in X and consequently f is b-continuous.

References

- ABD EL-MONSEF, M.E., EL-DEEB, S.N., MAHMOUD, R.A., β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut. Univ., 12 (1983), 77–90.
- [2] ANDRIJEVIC, D., Semi-preopen sets, Mat. Vesnik., 38 (1986), 24-32.
- [3] ANDRIJEVIC, D., On b-open sets, Mat. Vesnik., 48 (1996), 59-64.
- [4] EL-ATIK, A.A., A study on some types of mappings on topological spaces, M. Sc. Thesis, Egypt: Tanta University, 1997.
- [5] JAFARI, S., A note on rarely continuous functions, Stud. Cercet. Ştiinţ., Ser. Mat., Univ. Bacău, 5 (1995), 29-34.
- [6] JAFARI, S., On some properties of rare continuity, Stud. Cercet. Ştiinţ., Ser. Mat., Univ. Bacău, 7 (1997), 65-73.
- [7] JAFARI, S., On rarely β -continuous functions, Jour. of Inst. of Math. & Comp. Sci. (Math. Ser.), 13 (2) (2000), 247-251.
- [8] JAFARI, S., On rarely precontinuous functions, Far East J. Math. Sci. (FJMS) Spec. Vol., Pt. III, (2000), 305-314.
- [9] JAFARI, S., Rare α -continuity, Bull. Malays. Math. Sci. Soc., 28 (2) (2005), 157-161.
- [10] LEVINE, N., A decomposition of continuity in topological spaces, Am. Math. Mon., 68 (1961), 44-46.
- [11] LEVINE, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [12] LONG, P.E., HERRINGTON, L.L., Properties of rarely continuous functions, Glas. Mat., III. Ser., 17 (37) (1982), 147-153.
- [13] MASHHOUR, A.S., ABD EL-MONSEF, M.E., EL-DEEB, S.N., On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.

- [14] NJASTAD, O., On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [15] POPA, V., Sur certaine décomposition de la continuite dans les espaces topologiques, Glas. Mat., III. Ser., 14 (34) (1979), 359-362.
- [16] POPA, V., NOIRI, T., Some properties of rarely quasicontinuous functions, An. Univ. Timişoara, Ştiinţe Mat., 29, no. 1, (1991), 65-71.
- [17] ŞENGÜL, U., Weakly b-continuous functions Chaos Solitons Fractals, 41 (3) (2009), 1070-1077.
- [18] STONE, M.H., Applications of the theory of Boolean rings to general topology, Trans. Am. Math. Soc., 41 (1937), 375-381.

Accepted: 10.11.2010