RARELY b-CONTINUOUS FUNCTIONS

Saeid Jafari

College of Vestsjælland
South Herrestræde 11, 4200 Slagelse
Denmark
e-mail: jafari@stofanet.dk

Uğur Şengül

Department of Mathematics
Faculty of Science and Letters
Marmara University
34722 Göztepe-Istanbul
Turkey
usengul@marmara.edu.tr

Abstract. In this paper we introduce a new class of functions called rarely b-continuous. Some characterizations and several properties concerning rare b-continuity are obtained.

Keywords and phrases: rare set, b-open, rarely b-continuous, rarely almost compact.

2000 Mathematics Subject Classification: 54B05, 54C08.

1. Introduction and preliminaries

In 1979, Popa [15] introduced the notion of rarely continuous functions as a generalization of weak continuity. The function has been further investigated by Long and Herrington in [12] and by various authors [5], [6], [7], [8], [9], [16]. The first author of this article introduced and investigated weak b-continuity [17] as a generalization of weak continuity. The purpose of the present paper is to introduce concept of rare b-continuity in topological spaces as a generalization of rare continuity and weak b-continuity. We investigate several properties of rarely b-continuous functions. Rare b-continuity implied by rare precontinuity and rare quasi continuity and implies rare β-continuity. The notion of $I.b$-continuity is also introduced which is weaker than b-continuity and stronger than b-continuity. It is shown that if Y is a regular space, then the function $f : X \to Y$ is $I.b$-continuous on X if and only if f is rarely b-continuous on X.
Throughout this paper, X and Y are topological spaces. Recall that a rare set R is a set R such that $\text{int}(R) = \emptyset$. A subset S of a space (X, τ) is called regular open [18] (resp. regular closed [18]) if $S = \text{int}(\text{cl}(S))$ (resp. $S = \text{cl}(\text{int}(S))$).

A subset S of a space (X, τ) is called semi-open [11] (resp. preopen [13], α-open [14], semi-preopen [2] or β-open [1], b-open [3] or γ-open [4]) if $S \subset \text{cl}(\text{int}(S))$ (resp. $S \subset \text{int}(\text{cl}(S))$, $S \subset \text{cl}(\text{int}(S))$, $S \subset \text{cl}(\text{int}(S)) \cup \text{int}(\text{cl}(S))$) The complement of a semi-open (resp. preopen, α-open, β-open, b-open) set is said to be semi-closed (resp. preclosed, α-closed, β-closed, b-closed).

The family of all open (resp., regular open, semi-open, preopen, α-open, β-open, b-open) sets of X denoted by $O(X)$ (resp., $RO(X)$, $SO(X)$, $PO(X)$, $\alpha O(X)$, $\beta O(X)$, $BO(X)$).

The family of all b-closed sets of X is denoted by $BC(X)$ and the family of all b-open (resp. open, regular open) sets of X containing a point $x \in X$ is denoted by $BO(X, x)$ (resp., $O(X, x)$, $RO(X, x)$).

If S is a subset of a space X, then the b-closure of S, denoted by $bcl(S)$, is the smallest b-closed set containing S. The b-interior of S, denoted by $bint(S)$ is the largest b-open set contained in S. Our next definition contains some types of functions used throughout this paper.

Definition 1 A function $f : X \rightarrow Y$ is called:

(a) Weakly continuous [10] (resp. weakly b-continuous [17]) if for each $x \in X$ and each open set G containing $f(x)$, there exists $U \subset O(X, x)$ (resp., $U \subset BO(X, x)$) such that $f(U) \subset \text{cl}(G)$.

(b) b-continuous [4] if $f^{-1}(V)$ is b-open in X for every open set V of Y;

(c) Rarely continuous [15] (resp., rarely precontinuous [8], rarely quasicontinuous [16], rarely β-continuous [7]) at $x \in X$ if for each $G \subset O(Y, f(x))$, there exists a rare set R_G with $G \cap \text{cl}(R_G) = \emptyset$ and $U \in RO(X, x)$, $U \in SO(X, x)$, $U \in \beta O(X, x)$ such that $f(U) \subset G \cup R_G$.

2. Rarely b-continuous functions

Definition 2 A function $f : X \rightarrow Y$ is called rarely b-continuous at $x \in X$ if for each open set $G \subset Y$ containing $f(x)$, there exists a rare set R_G with $G \cap \text{cl}(R_G) = \emptyset$ and $U \in BO(X, x)$ such that $f(U) \subset G \cup R_G$.

Theorem 3 The following statements are equivalent for a function $f : X \rightarrow Y$:

(a) The function is rarely b-continuous at $x \in X$.

(b) For each $G \in O(Y, f(x))$, there exists a rare set R_G with $G \cap \text{cl}(R_G) = \emptyset$ such that $x \in bint(f^{-1}(G \cup R_G))$.
For each \(G \in O(Y, f(x)) \), there exists a rare set \(R_G \) with \(\overline{cl}(G) \cap R_G = \emptyset \) such that
\[
x \in \text{bint}(f^{-1}(\overline{cl}(G) \cup R_G)).
\]

For each \(G \in RO(Y, f(x)) \), there exists a rare set \(R_G \) with \(G \cap \overline{cl}(R_G) = \emptyset \) such that
\[
x \in \text{bint}(f^{-1}(G \cup R_G)).
\]

For each \(G \in O(Y, f(x)) \), there exists \(U \in BO(X, x) \) such that
\[
\text{int}(f(U) \cap (Y - G)) = \emptyset.
\]

For each \(G \in O(Y, f(x)) \), there exists \(U \in BO(X, x) \) such that
\[
\text{int}(f(U)) \subset \overline{cl}(G).
\]

Proof. (a) \(\Rightarrow \) (b): Let \(x \in X \) and \(G \in O(Y, f(x)) \). Then, there exists a rare set \(R_G \) with \(\overline{cl}(R_G) = \emptyset \) and \(U \in BO(X, x) \) such that \(f(U) \subset G \cup R_G \). It follows that \(x \in U \subset f^{-1}(G \cup R_G) \), then we have \(x \in \text{bint}(f^{-1}(G \cup R_G)) \).

(b) \(\Rightarrow \) (c): Suppose that \(G \in O(Y, f(x)) \). Then, there exists a rare set \(R_G \) with \(G \cap \overline{cl}(R_G) = \emptyset \) such that \(x \in \text{bint}(f^{-1}(G \cup R_G)) \). Since \(G \cap \overline{cl}(R_G) = \emptyset \), \(R_G \subset Y - G \) where \(Y - G = (Y - \overline{cl}(G)) \cup (\overline{cl}(G) - G) \). Now, we have \(R_G \subset (R_G \cap (Y - \overline{cl}(G))) \cup (\overline{cl}(G) - G) \). Set \(R^* = R_G \cap (Y - \overline{cl}(G)) \). It follows that \(R^* \) is a rare set with \(\overline{cl}(G) \cap R^* = \emptyset \). Therefore, \(x \in \text{bint}(f^{-1}(G \cup R_G)) \subset \text{bint}(f^{-1}(\overline{cl}(G) \cup R^*)) \).

(c) \(\Rightarrow \) (d): Assume that \(x \in X \) and \(G \in RO(Y, f(x)) \). Then, there exists a rare set \(R_G \) with \(\overline{cl}(G) \cap R_G = \emptyset \) such that \(x \in \text{bint}(f^{-1}(\overline{cl}(G) \cup R_G)) \). Set \(R^* = R_G \cap (Y - \overline{cl}(G)) \). It follows that \(R^* \) is a rare set and \(G \cap \overline{cl}(R^*) = \emptyset \). Hence \(x \in \text{bint}(f^{-1}(\overline{cl}(G) \cup R_G)) = \text{int}(f(U) \cap (Y - G)) = \text{int}(f(U)) \cap (Y - G) \in \text{int}(\overline{cl}(G) \cup \overline{int}(R_G)) \subset ((\overline{cl}(G) \cup \overline{int}(R_G)) \cap (Y - \overline{cl}(G)) = \emptyset.

(d) \(\Rightarrow \) (e): Let \(G \in O(Y, f(x)) \). Then, using \(f(U) \subset G \subset \text{int}(\overline{cl}(G)) \) and the fact that \(\text{int}(\overline{cl}(G)) \in RO(Y, f(x)) \), there exists a rare set \(R_G \) with \(\text{int}(\overline{cl}(G)) \cap \overline{cl}(R_G) = \emptyset \) such that \(x \in \text{bint}(f^{-1}(\text{int}(\overline{cl}(G)) \cup R_G)) \). Suppose \(U = \text{bint}(f^{-1}(\text{int}(\overline{cl}(G)) \cup R_G)) \). Then, \(U \in BO(X, x) \) and, therefore, \(f(U) \subset \text{int}(\overline{cl}(G)) \cup R_G \). We have \(\text{int}(f(U) \cap (Y - G)) = \text{int}(f(U)) \cap (Y - G) \subset \text{int}((\overline{cl}(G) \cup \overline{cl}(R_G)) \cap (Y - \overline{cl}(G)) = \emptyset.

(e) \(\Rightarrow \) (f): Since \(\text{int}(f(U) \cap (Y - G)) = \text{int}(f(U)) \cap (Y - G) = \text{int}(f(U)) \subset \overline{cl}(G) \).

(f) \(\Rightarrow \) (a): \(G \in O(Y, f(x)) \). Then, by (f), there exists \(U \in BO(X, x) \) such that \(\text{int}(f(U)) \subset \overline{cl}(G) \). Then, \(f(U) = (f(U) - \text{int}(f(U))) \cup \text{int}(f(U)) \subset (f(U) - \text{int}(f(U))) \cup \overline{cl}(G) = (f(U) - \text{int}(f(U))) \cup \overline{cl}(G) \). Set \(R^* = (f(U) - \text{int}(f(U))) \cap (Y - G) \) and \(R^{**} = (\overline{cl}(G) - G) \). Then, \(R^* \) and \(R^{**} \) are rare sets. Moreover, \(R_G = R^* \cup R^{**} \) is a rare set and \(\overline{cl}(R_G) \cap G = \emptyset \) and \(f(U) \subset G \cup R_G \).

Theorem 4 A function \(f : X \to Y \) is rarely \(b \)-continuous if and only if \(f^{-1}(G) \subset \text{bint}(f^{-1}(G \cup R_G)) \) for every open set \(G \) in \(Y \), where \(R_G \) is a rare set with \(G \cap \overline{cl}(R_G) = \emptyset \).
Proof. Clear from the Theorem 3. ■

Remark 5 Rare b-continuity is implied by rare quasi-continuity and rare precontinuity, and implies rare β-continuity, but the converse implications are not true in general as the following examples shows.

Example 6 Let τ be the usual topology for \mathbb{R} and for $A = [0, 1] \cup (1, 2) \cap \mathbb{Q}$ define $\sigma = \{\emptyset, \mathbb{R}, A, \mathbb{R} - A\}$. Then, the identity function $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \sigma)$ is rarely b-continuous but it is neither rarely quasi-continuous nor rarely precontinuous.

Example 7 Let τ be the usual topology for \mathbb{R} and $\sigma = \{\emptyset, \mathbb{R}, [1, 2) \cap \mathbb{Q}\}$. Then, the identity function $f : (\mathbb{R}, \tau) \to (\mathbb{R}, \sigma)$ is rarely β-continuous but it is not rarely b-continuous.

Definition 8 A function $f : X \to Y$ is called $I:b$-continuous at $x \in X$ if for each open set $G \subset Y$ containing $f(x)$, there exists a b-open set U containing x such that $int[f(U)] \subset G$.

If f has this property at each point $x \in X$, then we say that f is $I:b$-continuous on X.

Remark 9 It is clear that $I:b$-continuity is weaker than b-continuity and stronger than rare b-continuity.

Theorem 10 Let Y be a regular space. Then the function $f : X \to Y$ is $I:b$-continuous on X if and only if f is rarely b-continuous on X.

Proof. Necessity is clear.

Sufficiency. Let f be rarely b-continuous on X. Suppose that $f(x) \in G$, where G is an open set in Y and $x \in X$. By the regularity of Y, there exists an open set G_1 in Y such that $f(x) \in G_1$ and $cl(G_1) \subset G$. Since f is rarely b-continuous, then there exists $U \in BO(X, x)$ such that $int[f(U)] \subset cl(G_1)$. This implies $int[f(U)] \subset G$ which means that $I:b$-continuous on X. ■

Definition 11 A function $f : X \to Y$ is called strongly b-open if for every $U \in BO(X)$, $f(U)$ is open.

Theorem 12 If a function $f : X \to Y$ is strongly b-open and rarely b-continuous then f is weakly b-continuous.

Proof. Suppose that $x \in X$ and G is any open set of Y containing $f(x)$. Since f is rarely b-continuous, there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ and $U \in BO(X, x)$ such that $f(U) \subset G \cup R_G$. Then $f(U) \cap (Y - cl(G)) \subset R_G$. Since f is strongly b-open $f(U) \cap (Y - cl(G))$ is open. But the rare set R_G has no interior point. Then $f(U) \cap (Y - cl(G)) = \emptyset$. This implies that $f(U) \subset cl(G)$. Hence f is weakly b-continuous. ■
Lemma 13 (Andrijevic [3]) The intersection of an open set and a b-open set is a b-open set.

Theorem 14 If a function $f : X \to Y$ is rarely b-continuous at x and for each open set G containing $f(x)$, $f^{-1}(cl(R_G))$ is closed in X, then f is b-continuous at x where R_G is a rare set with $G \cap cl(R_G) = \emptyset$.

Proof. Let $G \in O(Y, f(x))$. Since f is rarely b-continuous at x, there exist a rare set R_G with $G \cap cl(R_G) = \emptyset$ and $U \in BO(X, x)$ such that $f(U) \subset G \cup R_G$. Since $G \cap cl(R_G) = \emptyset$, we have
\[f(x) \notin cl(R_G) \text{ and } x \in X - f^{-1}(cl(R_G)). \]

Set $V = U \cap (X - f^{-1}(cl(R_G)))$ then, by Lemma 13,
\[V \in BO(X, x) \text{ and } f(V) \subset f(U) \cap (Y - cl(R_G)) \subset G. \]

Therefore, f is b-continuous at x. ■

Theorem 15 If a function $f : X \to Y$ is rarely b-continuous then the graph function $g : X \to X \times Y$, defined by $g(x) = (x, f(x))$ for every $x \in X$ is rarely b-continuous.

Proof. Suppose that $x \in X$ and W is any open set containing $g(x)$. Then there exist open sets U and V in X and Y respectively such that $(x, f(x)) \in U \times V \subset W$. Since f is rarely b-continuous, there exists $G \in BO(X, x)$ such that $int[f(G)] \subset cl(V)$. Let $O = U \cap G$. By Lemma 13, $O \in BO(X, x)$ and we have
\[int[g(O)] \subset int[U \times f(G)] \subset U \times cl(V) \subset cl(W). \]

Therefore, g is rarely b-continuous. ■

Definition 16 A topological space (X, τ) is said to be b-compact [4] if every b-open cover of X has a finite subcover.

Definition 17 Let $\mathcal{A} = \{G_i\}$ be a class of subsets of X. By rarely union sets [5] of \mathcal{A} we mean $\{G_i \cup R_{G_i}\}$, where each R_{G_i} is a rare set such that each of $\{G_i \cap cl(R_{G_i})\}$ is empty.

Definition 18 A topological space (X, τ) is called rarely almost compact [5] if each open cover of X has a finite subfamily whose rarely union sets cover the space.

Definition 19 A subset K of a space X is said to be:

(a) b-compact relative to X [4] if for every cover $\{V_\alpha : \alpha \in I\}$ of K by b-open sets of X, there exists a finite subset I_0 of I such that $K \subset \bigcup\{V_\alpha : \alpha \in I_0\}$,
(b) rarely almost compact relative to \(X \) [5] if for every cover of \(K \) by open sets of \(X \), there exists a finite subfamily whose rarely union sets cover \(K \).

Theorem 20 Let \(f : X \to Y \) be rarely \(b \)-continuous and \(K \) be a \(b \)-compact set in \(X \). Then \(f(K) \) is a rarely almost compact subset of \(Y \).

Proof. Suppose that \(G \) is an open cover of \(f(K) \). Set \(G^* = \{ V \in G : V \cap f(K) \neq \emptyset \} \). Then \(G^* \) is an open cover of \(f(K) \). Hence for each \(x \in K \), there is some \(V_x \in G^* \) such that \(f(x) \in V_x \). Since \(f \) is rarely \(b \)-continuous there exist a rare set \(R_{V_x} \) with \(V_x \cap \text{cl}(R_{V_x}) = \emptyset \) and a \(b \)-open set \(U_x \) containing \(x \) such that \(f(U_x) \subset V_x \cup R_{V_x} \). Hence there is a subfamily \(\{ U_{x_i} \}_{x_i \in K_0} \) which covers \(K \), where \(K_0 \) is a finite subset of \(K \). The subfamily \(\{ V_{x_i} \cup R_{V_{x_i}} \}_{x_i \in K_0} \) also covers \(f(K) \). ■

Lemma 21 If \(g : Y \to Z \) is continuous and one-to-one, then \(g \) preserves rare sets [12].

Theorem 22 If \(f : X \to Y \) is a rarely \(b \)-continuous surjection and \(g : Y \to Z \) is continuous and one-to-one, then \(g \circ f : X \to Z \) is rarely \(b \)-continuous.

Proof. Suppose that \(x \in X \) and \(g(f(x)) \in V \), where \(V \) is open set \(Z \). By hypothesis, \(g \) is continuous, therefore there exists an open set \(G \subset Y \) containing \(f(x) \) such that \(g(G) \subset V \). Since \(f \) is rarely \(b \)-continuous, there exists rare set \(R_G \) with \(G \cap \text{cl}(R_G) = \emptyset \) and a \(b \)-open set \(U \) containing \(x \) such that \(f(U) \subset G \cup R_G \). It follows from Lemma 21 that \(g(R_G) \) is a rare set in \(Z \). Since \(R_G \) is a subset of \(Y - G \) and \(g \) is injective, we have \(\text{cl}(g(R_G)) \cap V = \emptyset \). This implies that \(g(f(U)) \subset V \cup g(R_G) \). Hence the result follows. ■

Definition 23 A function \(f : X \to Y \) is called pre-\(b \)-open if for every \(U \in BO(X) \), \(f(U) \in BO(Y) \).

Theorem 24 If \(f : X \to Y \) is a pre \(b \)-open surjection and \(g : Y \to Z \) a function such that \(g \circ f : X \to Z \) is rarely \(b \)-continuous. Then \(g \) is rarely \(b \)-continuous.

Proof. Let \(y \in Y \) and \(x \in X \) such that \(f(x) = y \). Let \(G \) be an open set containing \(g(f(x)) \). Then there exists a rare set \(R_G \) with \(G \cap \text{cl}(R_G) = \emptyset \) and a \(b \)-open set \(U \) containing \(x \) such that \(g(f(U)) \subset G \cup R_G \). But \(f(U) \) is a \(b \)-open set containing \(f(x) = y \) such that \(g(f(U)) = (g \circ f)(U) \subset G \cup R_G \). This shows that \(g \) is rarely \(b \)-continuous at \(y \). ■

Definition 25 A function \(f : X \to Y \) satisfies interiority rare \(b \) condition if \(\text{bint}(f^{-1}(G \cup R_G)) \subset f^{-1}(G) \) for each open set \(G \) in \(Y \), where \(R_G \) is a rare set with \(G \cap \text{cl}(R_G) = \emptyset \).

Theorem 26 If \(f : X \to Y \) is rarely \(b \)-continuous and satisfies interiority rare \(b \) condition then \(f \) is \(b \)-continuous.
Proof. Since \(f \) is rarely \(b \)-continuous by Theorem 4, we have

\[f^{-1}(G) \subset \text{bint}(f^{-1}(G \cup R_G)), \]

where \(G \) is an open set in \(Y \) and \(R_G \) is a rare set with \(G \cap \text{cl}(R_G) = \emptyset \). On the other hand by the interiority rare \(b \) condition we have \(\text{bint}(f^{-1}(G \cup R_G)) \subset f^{-1}(G) \). Therefore \(f^{-1}(G) \) is \(b \)-open in \(X \) and consequently \(f \) is \(b \)-continuous.

References

Accepted: 10.11.2010