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Abstract. The paper presents necessary and sufficient condition on the number of

parity-check digits required for the existence of a linear code capable of correcting

errors in the form of 2-repeated low-density bursts occurring within a sub-block. An
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1. Introduction

In the theory of error control coding, codes have been developed to detect, correct
and/or to locate various kinds of errors. Amongst these, burst errors have played
a dominant role and have been studied extensively by many authors. Most of
the earlier studies in this direction have been made with respect to the following
definition of a burst:

Definition 1. A burst of length b is a vector whose all non-zero components are
among some b consecutive components, the first and the last of which is non-zero.

1Corresponding author.
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Depending upon the type of channel used during the process of transmission
the nature of burst errors differ. It has been observed that in very busy commu-
nication channels, errors repeat themselves. Recently, repeated bursts have been
introduced and studied by Berardi, Dass and Verma [1]. An m-repeated burst of
length b is defined as follows:

Definition 2. An m-repeated burst of length b is a vector of length n whose only
non-zero components are confined to m distinct sets of b consecutive components,
the first and the last component of each set being non-zero.

Certain situations like lightening or other disturbances which induce burst
errors usually operate in a way that over a given length some digits are received
correctly whereas others are corrupted. Such situations led to the development of
codes dealing with errors that are bursts of length b or less with weight w or less
(w ≤ b), known as low-density bursts (refer Wyner [14]). A study of low-density
burst error detecting and correcting linear codes has been made by Sharma and
Dass [12] and Dass [2]. Different situations demanded the development of codes
which correct those errors that are repeated low-density burst errors of length b
or less with weight w or less. A study of such codes was initiated by Dass and
Verma [6]. A 2-repeated low-density burst of length b with weight w (w ≤ b) is
defined as follows:

Definition 3. A 2-repeated low-density burst of length b with weight w is a vector
of length n whose only non-zero components are confined to two distinct sets of b
consecutive components, the first and the last component of each set being non-
zero, with w (w ≤ b) non-zero components within each set of such b consecutive
components.

For example, (01023000132400) is a 2-repeated low-density burst of length 4
with weight 3 over GF (5).

Wolf and Elspas [13] introduced the coding technique called error-locating
codes (EL Codes). The concept of error location coding lies midway between er-
ror detection and error correction. Error location technique provides an attractive
alternative to the conventional error detection in decision feedback communica-
tions. Wolf and Elspas [13] obtained results in the form of bounds over the number
of parity-check digits required for binary codes capable of detecting and locating
a single sub-block containing random errors. Further, Dass [3], [4] studied codes
locating burst errors and low-density burst errors. In our earlier papers [7], [9] the
authors have obtained bounds for codes locating 2-repeated burst errors and 2-
repeated low-density burst errors occurring within a single sub-block. This paper
extends the study further to the correction of 2-repeated low-density burst errors
occurring within a sub-block. The development of codes correcting repeated low-
density burst errors within a sub-block economizes in the number of parity-check
digits in comparison to the usual low-density burst error locating codes.

In this paper lower and upper bounds on the number of parity check digits
required for the existence of such a code are obtained. The paper concludes with
an illustration of such a code. Throughout the paper, we consider a block of n
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digits, consisting of r check digits and k = n − r information digits, subdivided
into s mutually exclusive sub-blocks, each sub-block contains t = n/s digits.

2. Bounds for linear codes correcting 2-repeated low-density bursts

An (n, k) linear EL code over GF (q) capable of detecting and locating a single
sub-block containing 2-repeated low-density burst of length b or less with weight
w or less must satisfy the following two conditions:

(i) The syndrome resulting from the occurrence of any 2-repeated low-density
burst of length b or less with weight w or less within any one sub-block must
be non-zero.

(ii) The syndrome resulting from the occurrence of any 2-repeated low-density
burst of length b or less with weight w or less within a single sub-block
must be distinct from the syndrome resulting likewise from any 2-repeated
low-density burst of length b or less with weight w or less within any other
sub-block.

Further, an (n, k) linear code over GF (q) capable of correcting an error requires
the syndromes of any two vectors to be distinct irrespective of whether they belong
to the same sub-block or to different sub-blocks. So, in order to correct 2-repeated
low-density bursts of length b or less with weight w or less lying within a sub-block
the following conditions need to be satisfied:

(iii) The syndrome resulting from the occurrence of any 2-repeated low-density
burst of length b or less with weight w or less within a single sub-block
must be distinct from the syndrome resulting from any other 2-repeated
low-density burst of length b or less with weight w or less within the same
sub-block.

(iv) The syndrome resulting from the occurrence of any 2-repeated low-density
burst of length b or less with weight w or less within a single sub-block
must be distinct from the syndrome resulting likewise from any 2-repeated
low-density burst of length b or less with weight w or less within any other
sub-block.

Remark 1. We observe that condition (iv) is the same as condition (ii). Also,
for computational purposes condition (i) is taken care of by condition (iii). So we
need to consider conditions (iii) and (iv) or equivalently conditions (ii) and (iii)
for correction of the said type of errors.

We first obtain a lower bound over the number of parity check digits required for
such a code.
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Theorem 1. The number of check digits r required for an (n, k) linear code over
GF (q), subdivided into s sub-blocks of length t each, that corrects 2-repeated low-
density bursts of length b or less with weight w or less lying within a single cor-
rupted sub-block is bounded from below by

(1)

r ≥ logq

{
1+s

[
(q−1)[1+(q−1)](b−1,w−1)

((
t−2b+2

2

)
(q−1)[1+(q−1)](b−1,w−1)

+

(
t− 2b+ 1

1

)
[1 + (q − 1)](b−1,min(w,b−1))

+

t−b−w+1∑
i=t−2b+2

[1 + (q − 1)](t−i−b+1,w) +

t−b+1∑
i=t−b−w+2

qt−i−b+1

)

+

((
t−2b+2

1

) b−2∑
k1=0

∑
r4,r5,r6

+
t−b∑

i=t−2b+3

t−i−b∑
k1=0

∑
r4,r5,r6

)(
k1
r4

)(
b−k1−1

r5

)(
k1
r6

)
·

·(q − 1)r4+r5+r6+2

+

(
t− b+ 1

1

)
(q − 1)[1 + (q − 1)](b−1;w,min(2w−1,b−1))

+[1 + (q − 1)](b−1,min(2w,b−1)) − 1

]}
,

where 0 ≤ r4 ≤ w−1, 1 ≤ r5 ≤ 2w−2, 0 ≤ r6 ≤ w−2, r4+r5 ≥ w, r4+r5+r6 ≤ 2w−2.

Proof. Let V be an (n, k) linear code over GF (q) that corrects 2-repeated low-
density bursts of length b or less with weight w or less within a single corrupted
sub-block. The maximum number of distinct syndromes available using r check
digits is qr. The proof proceeds by first counting the number of syndromes that
are required to be distinct by the two conditions and then setting this number
less than or equal to qr.

Since the code is capable of correcting all errors which are 2-repeated low-
density bursts of length b or less with weight w or less within any single sub-block,
the syndrome produced by a 2-repeated low-density burst of length b or less with
weight w or less in a given sub-block must be distinct from any such syndrome
likewise resulting from another 2-repeated low-density burst of length b or less
with weight w or less in the same sub-block(refer to condition (iii)). Moreover,
syndromes produced by 2-repeated low-density bursts of length b or less with
weight w or less in different sub-blocks must also be distinct by condition (iv).
Thus, the syndromes of vectors which are 2-repeated low-density bursts of length
b or less with weight w or less, whether in the same sub-block or in different
sub-blocks, must be distinct. Since there are

(q − 1)[1 + (q − 1)](b−1,w−1)

((
t−2b+2

2

)
(q − 1)[1 + (q − 1)](b−1,w−1)

+

(
t− 2b+ 1

1

)
[1 + (q − 1)](b−1,min(w,b−1))
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+
t−b−w+1∑
i=t−2b+2

[1 + (q − 1)](t−i−b+1,w) +
t−b+1∑

i=t−b−w+2

qt−i−b+1

)

+

((
t− 2b+ 2

1

) b−2∑
k1=0

∑
r4,r5,r6

+
t−b∑

i=t−2b+3

t−i−b∑
k1=0

∑
r4,r5,r6

)(
k1
r4

)(
b− k1 − 1

r5

)(
k1
r6

)
·

·(q − 1)r4+r5+r6+2

+

(
t− b+ 1

1

)
(q − 1)[1 + (q − 1)](b−1;w,min(2w−1,b−1))

+[1 + (q − 1)](b−1,min(2w,b−1)) − 1

2-repeated low-density burst of length b or less with weight w or less within one
sub-block of length t excluding the vector of all zeros [5], where 0 ≤ r4 ≤ w − 1,
1 ≤ r5 ≤ 2w− 2, 0 ≤ r6 ≤ w− 2, r4 + r5 ≥ w, r4 + r5 + r6 ≤ 2w− 2, and as there
are s sub-blocks in all, we must have at least

1 + s

[
(q − 1)[1 + (q − 1)](b−1,w−1)

((
t− 2b+ 2

2

)
(q − 1)[1 + (q − 1)](b−1,w−1)

+

(
t− 2b+ 1

1

)
[1 + (q − 1)](b−1,min(w,b−1))

+
t−b−w+1∑
i=t−2b+2

[1 + (q − 1)](t−i−b+1,w) +
t−b+1∑

i=t−b−w+2

qt−i−b+1

)

+

((
t− 2b+ 2

1

) b−2∑
k1=0

∑
r4,r5,r6

+
t−b∑

i=t−2b+3

t−i−b∑
k1=0

∑
r4,r5,r6

)(
k1
r4

)(
b− k1 − 1

r5

)(
k1
r6

)
·

·(q − 1)r4+r5+r6+2

+

(
t− b+ 1

1

)
(q − 1)[1 + (q − 1)](b−1;w,min(2w−1,b−1))

+[1 + (q − 1)](b−1,min(2w,b−1)) − 1

]

where 0 ≤ r4 ≤ w − 1, 1 ≤ r5 ≤ 2w − 2, 0 ≤ r6 ≤ w − 2, r4 + r5 ≥ w,
r4 + r5 + r6 ≤ 2w − 2, distinct syndromes including the all zeros syndrome.
Therefore, we must have

qr ≥ 1 + s

[
(q − 1)[1 + (q − 1)](b−1,w−1)

((
t− 2b+ 2

2

)
(q − 1)[1 + (q − 1)](b−1,w−1)

+

(
t− 2b+ 1

1

)
[1 + (q − 1)](b−1,min(w,b−1))

+
t−b−w+1∑
i=t−2b+2

[1 + (q − 1)](t−i−b+1,w) +
t−b+1∑

i=t−b−w+2

qt−i−b+1

)
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+

((
t− 2b+ 2

1

) b−2∑
k1=0

∑
r4,r5,r6

+
t−b∑

i=t−2b+3

t−i−b∑
k1=0

∑
r4,r5,r6

)(
k1
r4

)(
b− k1 − 1

r5

)(
k1
r6

)
·

·(q − 1)r4+r5+r6+2

+

(
t− b+ 1

1

)
(q − 1)[1 + (q − 1)](b−1;w,min(2w−1,b−1))

+[1 + (q − 1)](b−1,min(2w,b−1)) − 1

]
Taking logarithm on both the sides we get the result as stated in (1).

Remark 2. By taking s = 1 the bound obtained in (1) reduces to

logq

(
(q − 1)[1 + (q − 1)](b−1,w−1)

((
t− 2b+ 2

2

)
(q − 1)[1 + (q − 1)](b−1,w−1)

+

(
t− 2b+ 1

1

)
[1 + (q − 1)](b−1,min(w,b−1))

+
t−b−w+1∑
i=t−2b+2

[1 + (q − 1)](t−i−b+1,w) +
t−b+1∑

i=t−b−w+2

qt−i−b+1

)

+

((
t− 2b+ 2

1

) b−2∑
k1=0

∑
r4,r5,r6

+
t−b∑

i=t−2b+3

t−i−b∑
k1=0

∑
r4,r5,r6

)(
k1
r4

)(
b− k1 − 1

r5

)(
k1
r6

)
·

·(q − 1)r4+r5+r6+2

+

(
t− b+ 1

1

)
(q − 1)[1 + (q − 1)](b−1;w,min(2w−1,b−1))

+[1 + (q − 1)](b−1,min(2w,b−1)) − 1

)

which coincides with the result for correction of 2-repeated low-density bursts
obtained by Dass and Verma [5].

Remark 3. For w = b the bound obtained in (1) reduces to

logq

{
1 + s

[
q2b−2

{
q + (q − 1)2

(
t− 2b+ 2

2

)
+ (q − 1)

(
t− 2b+ 1

1

)}
− 1

]}
.

which coincides with the lower bound on the number of parity check digits required
for the blockwise correction of 2-repeated bursts [8].

Several other particular cases by fixing up the parameters may also be deduced
which would result into known results obtained earlier by various authors.

In the following result, we derive another bound on the number of check digits
required for the existence of such a code. The proof is based on the technique
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used to establish Varshamov-Gilbert-Sacks bound by constructing a parity check
matrix for such a code (refer Sacks [11], also Theorem 4.7, Peterson and Weldon
[10]). This technique not only ensures the existence of such a code but also gives
a method for the construction of the code.

Theorem 2. An (n, k) linear code over GF (q) capable of correcting 2-repeated
low-density burst of length b or less with weight w or less or less occurring within
a single sub-block of length t (4b < t) can always be constructed using r check
digits, where r is the smallest integer satisfying the inequality

(2)

qr ≥

{
[1 + (q − 1)](b−1,w−1)πb,w

3,t−b

+

( b−1∑
k1=1

∑
r1,r2,r3

(
b− k1 − 1

r1

)(
k1
r2

)(
b− k1 − 1

r3

)
(q − 1)r1+r2+r3+1

)
πb,w
2,t−2b+1

+
b−1∑
k1=1

∑
r4,r5,r6,r7,r8

(
b− k1 − 1

r4

)(
k1
r5

)(
b− k1 − 1

r6

)(
k1
r7

)(
b− k1 − 1

r8

)
× (q − 1)r4+r5+r6+r7+r8+1πb,w

1,t−3b+2

+
b−1∑
k1=1

∑
r9,r10,...,r15

(
b− k1 − 1

r9

)(
k1
r10

)(
b− k1 − 1

r11

)(
k1
r12

)(
b− k1 − 1

r13

)
×
(
k1
r14

)(
b− k1 − 1

r15

)
(q − 1)r9+r10+...+r15+1

+
b−1∑
k1=1

∑
r16,r17,...,r20

(
b− k1 − 1

r16

)(
k1
r17

)(
b− k1 − 1

r18

)(
k1
r19

)(
b− k1 − 1

r20

)
× (q − 1)r16+r17+r18+r19+r20+1

+
b−1∑
k1=1

∑
r21,r22,r23

(
b− k1 − 1

r21

)(
k1
r22

)(
b− k1 − 1

r23

)
(q − 1)r21+r22+r23+1πb,w

1,t−3b+2

+
b−1∑
k1=1

∑
r24,r25,r26

(
b− k1 − 1

r24

)(
k1
r25

)(
b− k1 − 1

r26

)
(q − 1)r24+r25+r26+1πb,w

1,t−2b+1

+
b−1∑
k1=1

∑
r27,r28,...,r31

(
b− k1 − 1

r27

)(
k1
r28

)(
b− k1 − 1

r29

)(
k1
r30

)(
b− k1 − 1

r31

)
× (q − 1)r27+r28+r29+r30+r31+1

+
b−1∑
k1=1

∑
r32,r33,r34

(
b− k1 − 1

r32

)(
k1
r33

)(
b− k1 − 1

r34

)
(q − 1)r32+r33+r34+1

+ [1 + (q − 1)](b−1;w,2w−2)πb,w
2,t−2b+1 +

(
b− 1

2w − 1

)
(q − 1)2w−1πb,w

2,t−b
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+
b−1∑
k1=1

∑
r35,r36,r37

(
b− k1 − 1

r35

)(
k1
r36

)(
b− k1 − 1

r37

)
(q − 1)r35+r36+r37+1πb,w

1,t−2b+1

+
b−1∑
k1=1

∑
r38,r39,...,r42

(
b− k1 − 1

r38

)(
k1
r39

)(
b− k1 − 1

r40

)(
k1
r41

)(
b− k1 − 1

r42

)
× (q − 1)r38+r39+r40+r41+r42+1

+
b−1∑
k1=1

∑
r43,r44,r45

(
b− k1 − 1

r43

)(
k1
r44

)(
b− k1 − 1

r45

)
(q − 1)r43+r44+r45+1

+ [1 + (q − 1)](b−1;2w,3w−2)πb,w
1,t−2b+1 +

(
b− 1

3w − 1

)
(q − 1)3w−1πb,w

1,t−b

+
b−1∑
k1=1

∑
r46,r47,r48

(
b− k1 − 1

r46

)(
k1
r47

)(
b− k1 − 1

r48

)
(q − 1)r46+r47+r48+1

+ [1 + (q − 1)](b−1;3w,min(4w−1,b−1))

}

+

{ (
[1 + (q − 1)](b−1,w−1)

{
qw−1((q − 1)(t− b− w + 1) + 1)

+ (q − 1)2
b∑

i=w+1

(t− b− i+ 1)[1 + (q − 1)](i−2,w−2)
}
+

2w−1∑
i=w

(
b− 1

i

)
(q − 1)i

+
b−1∑
k=1

∑
r′1,r

′
2,r

′
3

(
b− k − 1

r′1

)(
k

r′2

)(
b− k − 1

r′3

)
(q − 1)r

′
1+r′2+r′3+1

)

× (s− 1) ·

(
(q − 1)[1 + (q − 1)](b−1,w−1)

((
t− 2b+ 2

2

)
(q − 1)[1 + (q − 1)](b−1,w−1)

+

(
t− 2b+ 1

1

)
[1 + (q − 1)](b−1,min(w,b−1)) +

t−b−w+1∑
i=t−2b+2

[1 + (q − 1)](t−i−b+1,w)

+
t−b+1∑

i=t−b−w+2

qt−i−b+1

)

+

((
t− 2b+ 2

1

) b−2∑
k1=0

∑
r′4,r

′
5,r

′
6

+
t−b∑

i=t−2b+3

t−i−b∑
k1=0

∑
r′4,r

′
5,r

′
6

)(
k1
r′4

)(
b− k1 − 1

r′5

)(
k1
r′6

)
·

· (q − 1)r
′
4+r′5+r′6+2

+

(
t− b+ 1

1

)
(q − 1)[1 + (q − 1)](b−1;w,min(2w−1,b−1))

+ [1 + (q − 1)](b−1,min(2w,b−1)) − 1

)}
,
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where 0 ≤ r1 ≤ w − 2, 1 ≤ r2 ≤ 2w − 2, 0 ≤ r3 ≤ w − 1, r2 + r3 ≥ w,
r1 + r2 + r3 ≤ 2w − 2; 0 ≤ r4 ≤ w − 2, 1 ≤ r5 ≤ 2w − 2, 0 ≤ r6 ≤ 2w − 3,
0 ≤ r7 ≤ 2w − 2, 0 ≤ r8 ≤ 2w − 2, 2 ≤ r5 + r6 ≤ 2w − 2, w ≤ r7 + r8 ≤ 2w − 2,
2w ≤ r5+ r6+ r7+ r8 ≤ 3w− 2, 2w ≤ r4+ r5+ . . .+ r8 ≤ 3w− 2; 0 ≤ r9 ≤ w− 2,
1 ≤ r10 ≤ 2w − 2, 0 ≤ r11 ≤ 2w − 3, 0 ≤ r12 ≤ 2w − 2, 0 ≤ r13 ≤ 2w − 2,
0 ≤ r14 ≤ 2w−2, 0 ≤ r15 ≤ 2w−2, 2 ≤ r10+r11 ≤ 2w−2, 2 ≤ r12+r13 ≤ 2w−2,
w ≤ r14+r15 ≤ 2w−2, 2w ≤ r12+r13+r14+r15 ≤ 3w−2, 3w ≤ r10+r11+. . .+r15 ≤
4w − 2, 3w ≤ r9 + r10 + . . .+ r15 ≤ 4w − 2; 1 ≤ r16 ≤ 2w − 2, 0 ≤ r17 ≤ 2w − 2,
0 ≤ r18 ≤ 2w − 2, 0 ≤ r19 ≤ 2w − 2, 0 ≤ r20 ≤ 2w − 2, 2 ≤ r17 + r18 ≤ 2w − 2,
w ≤ r19 + r20 ≤ 2w − 2, 2w ≤ r17 + r18 + r19 + r20 ≤ 3w − 2, 3w − 1 ≤
r16+r17+ . . .+r20 ≤ 4w−2; 1 ≤ r21 ≤ 2w−3, 0 ≤ r22 ≤ 2w−2, 0 ≤ r23 ≤ 2w−2,
w ≤ r22 + r23 ≤ 2w − 2, 2w − 1 ≤ r21 + r22 + r23 ≤ 3w − 3; w ≤ r24 ≤ 2w − 2,
0 ≤ r25 ≤ 2w−2, 0 ≤ r26 ≤ 2w−2, w ≤ r25+r26 ≤ 2w−2, r24+r25+r26 = 3w−2;
0 ≤ r27 ≤ w − 2, 1 ≤ r28 ≤ 3w − 2, 0 ≤ r29 ≤ 3w − 3, 0 ≤ r30 ≤ 2w − 2,
0 ≤ r31 ≤ 2w − 2, w + 2 ≤ r28 + r29 ≤ 3w − 2, w ≤ r30 + r31 ≤ 2w − 2,
3w ≤ r28 + r29 + r30 + r31 ≤ 4w − 2, 3w ≤ r27 + r28 + . . . + r31 ≤ 4w − 2;
w+1 ≤ r32 ≤ 3w−2, 0 ≤ r33 ≤ 2w−2, 0 ≤ r34 ≤ 2w−2, w ≤ r33+r34 ≤ 2w−2,
3w − 1 ≤ r32 + r33 + r34 ≤ 4w − 2; 0 ≤ r35 ≤ w − 2, 1 ≤ r36 ≤ 3w − 2,
0 ≤ r37 ≤ 3w − 3, r36 + r37 ≥ 2w, r35 + r36 + r37 ≤ 3w − 2; 0 ≤ r38 ≤ w − 2,
1 ≤ r39 ≤ 2w − 2, 0 ≤ r40 ≤ 2w − 3, 0 ≤ r41 ≤ 3w − 2, 0 ≤ r42 ≤ 3w − 2,
2 ≤ r39+r40 ≤ 2w−2, 2w ≤ r41+r42 ≤ 3w−2, 3w ≤ r39+r40+r41+r42 ≤ 4w−2,
3w ≤ r38 + r39 + . . . + r42 ≤ 4w − 2; 1 ≤ r43 ≤ 2w − 2, 0 ≤ r44 ≤ 3w − 2,
0 ≤ r45 ≤ 3w − 2, 2w ≤ r44 + r45 ≤ 3w − 2, 3w − 1 ≤ r43 + r44 + r45 ≤ 4w − 2;
0 ≤ r46 ≤ w − 2, 1 ≤ r47 ≤ 4w − 2, 0 ≤ r48 ≤ 3w − 1, r47 + r48 ≥ 3w,
r46 + r47 + r48 ≤ 4w − 2;
0 ≤ r′1 ≤ w−2, 1 ≤ r′2 ≤ 2w−2, 0 ≤ r′3 ≤ w−1, r′2+r′3 ≥ w, r′1+r′2+r′3 ≤ 2w−2;
0 ≤ r′4 ≤ w−1, 1 ≤ r′5 ≤ 2w−2, 0 ≤ r′6 ≤ w−2, r′4+r′5 ≥ w, r′4+r′5+r′6 ≤ 2w−2
and πb,w

m,n denotes the number of m-repeated low-density bursts of length b or less

with weight w or less (w ≤ b) in a vector of length n, [1 + x](m,r) denotes the
incomplete binomial expansion of (1 + x)m upto the term xr in ascending powers
of x and [1+x](m;r1,r2) denotes the incomplete binomial expansion of (1+x)m from
the term xr1 to the term xr2 (r1 < r2).

Proof. We shall prove the result by constructing an appropriate (n−k)×n parity
check matrix H for the desired code. Suppose that the columns of the first s− 1
sub-blocks of H and the first j − 1 columns h1, h2, · · · , hj−1 of the sth sub-block
have been appropriately added. We lay down conditions to add the jth column hj

to the sth sub-block as follows:

Since the code is to correct 2-repeated low-density bursts of length b or less
with weight w or less within a single sub-block, therefore, by condition (iii), the
syndrome of any 2-repeated low-density burst in any sub-block must be different
from the syndrome resulting from any other such burst within the same sub-
block. Therefore the jth column hj can be added provided that hj is not a linear
combination of w − 1 or fewer columns from the immediately preceding b − 1 or
fewer columns of H together with any w or fewer columns chosen from three sets
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of b or fewer consecutive columns each amongst the first j − 1 columns. In other
words,

(3)

hj ̸= (α1hi + α2hi+1 + · · ·+ αw−1hi+w−2)

+(β1hi1 + β2hi1+1 + · · ·+ βwhi1+w−1)

+(γ1hi2 + γ2hi2+1 + · · ·+ γwhi2+w−1)

+(δ1hi3 + δ2hi3+1 + · · ·+ δwhi3+w−1),

where αi, βi, γi and δi ∈ GF (q) and the hi are any w− 1 or less columns amongst
hj−b+1, · · · , hj−1 and hi1 , hi2 and hi3 are any w or less columns each from three
sets of b or less consecutive columns amongst all the preceding j − 1 columns.

The number of linear combinations corresponding to the right hand side of
(3) is (refer Dass and Verma [5])

(4)

[1 + (q − 1)](b−1,w−1)πb,w
3,j−b

+

( b−1∑
k1=1

∑
r1,r2,r3

(
b− k1 − 1

r1

)(
k1
r2

)(
b− k1 − 1

r3

)
(q − 1)r1+r2+r3+1

)
πb,w
2,j−2b+1

+
b−1∑
k1=1

∑
r4,r5,r6,r7,r8

(
b− k1 − 1

r4

)(
k1
r5

)(
b− k1 − 1

r6

)(
k1
r7

)(
b− k1 − 1

r8

)
× (q − 1)r4+r5+r6+r7+r8+1πb,w

1,j−3b+2

+
b−1∑
k1=1

∑
r9,r10,...,r15

(
b− k1 − 1

r9

)(
k1
r10

)(
b− k1 − 1

r11

)(
k1
r12

)(
b− k1 − 1

r13

)
×
(
k1
r14

)(
b− k1 − 1

r15

)
(q − 1)r9+r10+...+r15+1

+
b−1∑
k1=1

∑
r16,r17,...,r20

(
b− k1 − 1

r16

)(
k1
r17

)(
b− k1 − 1

r18

)(
k1
r19

)(
b− k1 − 1

r20

)
× (q − 1)r16+r17+r18+r19+r20+1

+
b−1∑
k1=1

∑
r21,r22,r23

(
b− k1 − 1

r21

)(
k1
r22

)(
b− k1 − 1

r23

)
(q − 1)r21+r22+r23+1πb,w

1,j−3b+2

+
b−1∑
k1=1

∑
r24,r25,r26

(
b− k1 − 1

r24

)(
k1
r25

)(
b− k1 − 1

r26

)
(q − 1)r24+r25+r26+1πb,w

1,j−2b+1

+
b−1∑
k1=1

∑
r27,r28,...,r31

(
b− k1 − 1

r27

)(
k1
r28

)(
b− k1 − 1

r29

)(
k1
r30

)(
b− k1 − 1

r31

)
× (q − 1)r27+r28+r29+r30+r31+1

+
b−1∑
k1=1

∑
r32,r33,r34

(
b− k1 − 1

r32

)(
k1
r33

)(
b− k1 − 1

r34

)
(q − 1)r32+r33+r34+1
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+ [1 + (q − 1)](b−1;w,2w−2)πb,w
2,j−2b+1 +

(
b− 1

2w − 1

)
(q − 1)2w−1πb,w

2,j−b

+
b−1∑
k1=1

∑
r35,r36,r37

(
b− k1 − 1

r35

)(
k1
r36

)(
b− k1 − 1

r37

)
(q − 1)r35+r36+r37+1πb,w

1,j−2b+1

+
b−1∑
k1=1

∑
r38,r39,...,r42

(
b− k1 − 1

r38

)(
k1
r39

)(
b− k1 − 1

r40

)(
k1
r41

)(
b− k1 − 1

r42

)
× (q − 1)r38+r39+r40+r41+r42+1

+
b−1∑
k1=1

∑
r43,r44,r45

(
b− k1 − 1

r43

)(
k1
r44

)(
b− k1 − 1

r45

)
(q − 1)r43+r44+r45+1

+ [1 + (q − 1)](b−1;2w,3w−2)πb,w
1,j−2b+1 +

(
b− 1

3w − 1

)
(q − 1)3w−1πb,w

1,j−b

+
b−1∑
k1=1

∑
r46,r47,r48

(
b− k1 − 1

r46

)(
k1
r47

)(
b− k1 − 1

r48

)
(q − 1)r46+r47+r48+1

+ [1 + (q − 1)](b−1;3w,min(4w−1,b−1))

where conditions on r1 · · · r48 are as stated in (2).

Further, by condition (iv), hj can be added to the sth sub-block provided
thathj is not a linear combination of w or fewer columns out of the immediately
preceding b− 1 or fewer columns together with w or fewer columns out of one set
of b or fewer consecutive columns from amongst the first j − 1 columns together
with linear combinations of w or fewer columns out of any two sets of b or fewer
consecutive columns each within any other sub-block, i.e.,

hj ̸= (α′
1hi + α′

2hi+1 + · · ·+ α′
w−1hi+w−2)

+ (β′
1hi1 + β′

2hi1+1 + · · ·+ β′
whiw)

+ (γ′
1hp1 + γ′

2hp1+1 + · · ·+ γ′
whp1+w−1)

+ (δ′1hp2 + δ′2hp2+1 + · · ·+ δ′whp2+w−1),

where α′
i, β

′
i, γ

′
i, δ

′
i ∈ GF (q), not all γ′

i, δ
′
i zero and hi are any w−1 columns amongst

hj−b+1, hj−b+2, · · · , hj−1 and h′
i1
s are any w columns from a set of b consecutive

columns from the previously chosen j− 1 columns of sth sub-block and both hp1 ’s
and hp2 ’s are sets of w columns from any b consecutive columns each from any
other sub-block.

The number of ways in which the coefficients α′
i and β′

i can be chosen is [2, 6]
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(5)

(
[1 + (q − 1)](b−1,w−1)

{
qw−1((q − 1)(j − b− w + 1) + 1)+

(q − 1)2
b∑

i=w+1

(j − b− i+ 1)[1 + (q − 1)](i−2,w−2)
}
+

2w−1∑
i=w

(
b− 1

i

)
(q − 1)i

+
b−1∑
k=1

∑
r′1,r

′
2,r

′
3

(
b− k − 1

r′1

)(
k

r′2

)(
b− k − 1

r′3

)
(q − 1)r

′
1+r′2+r′3+1

)
,

where conditions on r′1, r
′
2, r

′
3 are as stated in (2).

Also, the number of linear combinations corresponding to the last two terms
on the right hand side of (5) is the same as the number of 2-repeated low-density
bursts of length b or less with weight w or less within a sub-block of length t,
excluding the vector of all zeros and this number in a sub-block of length t, is [5]

(6)

(q − 1)[1 + (q − 1)](b−1,w−1)

((
t− 2b+ 2

2

)
(q − 1)[1 + (q − 1)](b−1,w−1)

+

(
t− 2b+ 1

1

)
[1 + (q − 1)](b−1,min(w,b−1))

+
t−b−w+1∑
i=t−2b+2

[1 + (q − 1)](t−i−b+1,w) +
t−b+1∑

i=t−b−w+2

qt−i−b+1

)

+

((
t− 2b+ 2

1

) b−2∑
k1=0

∑
r4,r5,r6

+
t−b∑

i=t−2b+3

t−i−b∑
k1=0

∑
r4,r5,r6

)(
k1
r4

)(
b− k1 − 1

r5

)(
k1
r6

)
·

·(q − 1)r4+r5+r6+2

+

(
t− b+ 1

1

)
(q − 1)[1 + (q − 1)](b−1;w,min(2w−1,b−1))

+[1 + (q − 1)](b−1,min(2w,b−1)) − 1,

where conditions on r′4, r
′
5, r

′
6 are as stated in (2).

Since there are s− 1 previously chosen sub-blocks, therefore number of such
linear combinations becomes

(s− 1) · expr(6).(7)

Thus, according to condition (iv), the number of linear combinations to which hj

can not be equal to is the product computed in expr (5) and expr (7). i.e.

expr(5) · expr(7).(8)

Thus, for blockwise correction of 2-repeated low-density burst errors, the total
number of linear combinations that hj can not be equal to is the sum of linear
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combinations in (4) and (8). At worst, all these combinations might yield a
distinct sum. Therefore, hj can be added to the sth sub- block of H provided that

qr > expr(4) + expr.

For completing the sth sub-block to length t, replacing j by t gives the result as
stated in (2).

Remark 4. By taking s = 1 in (2), the bound obtained in (2)coincides with the
condition for existence of a code correcting 2-repeated low-density bursts of length
b or less with weight w or less [5].

Remark 5. For w = b the bound in (2) reduces to the upper bound on the
number of parity-check digits for the existence of a code correcting 2-repeated
bursts of length b or less occurring within a sub-block [8].

We conclude this section with an example.

Example 1. Consider a (24, 10) binary code with a 14× 24 parity-check matrix
H given by

H =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0


This matrix has been constructed by the synthesis procedure outlined in the proof
of Theorem 2 by taking b = 3, w = 2, s = 2, t = 12 over GF (2). It has been
verified though MS Excel program that the syndromes of all distinct 2-repeated
bursts of length 3 or less with weight 2 or less whether in the same sub-block or in
different sub-blocks are different, thereby ensuring that the code that is the null
space of this matrix corrects all 2-repeated bursts of length 3 or less with weight
2 or less occurring within a sub-block. It should be noted that this code may not
correct 2-repeated bursts of length 3 or less which are not 2-repeated low-density
bursts of length 3 or less and weight 2 or less, e.g. the code does not correct
the error (000000011111 000000000000) as its syndrome is the same as that of
(000000000000 000100000000).
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