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1. Introduction

Let G be a finite group, k(G) be the conjugacy number of G. Let µ(G) =
|G|/k(G). By classes equation: |G| = c1 + c2 + ... + ck, where ci are length
of conjugacy classes of elements of G, i = 1, 2, ..., k. In fact µ(G) = |G|/k(G)
is average length of conjugacy classes of the finite group G. We know that con-
jugacy classes length can show some character of the group. Further more, the
average length of a group has strong restriction to the group. Shi ([1]) proved
that if Z(G) = 1, then µ(G) = 2 if and only if G/Z(G) ∼= S3. Du ([2])
generalized this result that: if |Z(G)| is a odd, then µ(G) = 2 if and only if
G/Z(G) ∼= S3. Du and Qian ([3]) proved that if G′ ̸≃ Z6, then µ(G) = 3
if and only if G/Z(G) ∼= A4, D18, G18 and for any x, y ∈ G, [x, y] ̸∈ Z∗(G)
(where G18

∼= ⟨a, b, c | a3 = b3 = c2 = 1, ab = ba, c−1ac = a−1, c−1bc =
b−1⟩, G18 is a group of order 18, it contains six conjugacy classes, there are
{1}, {a, a2}, {b, b2}, {ab, a2b2}, {ab2, a2b}, {c, ca, ca2, cb, cb2, cab, ca2b, cab2, ca2b2})

This paper generalizes the results of [3], we will get rid of the condition of
G′ ̸≃ Z6 in paper [3] and have the same results as paper [3].
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For the sake of convenience, let G18 = ⟨a, b, c | a3 = b3 = c2 = 1, ab = ba,
c−1ac = a−1, c−1bc = b−1⟩, G∗ = G − {1}, k(G) be the number of conjugacy
classes of elements of G, aG be the conjugacy class containing a, Irr(G) be the
set of all irreducible characters of G, Irr∗(G) be the set of nonlinear irreducible
characters of G. Let χP be the character of P by χ restricting on P , θG be the
induced character of G, where χ ∈ Irr(G), θ ∈ Irr(G). Throughout this paper, all
groups are finite.

2. Preliminaries

We need the following lemmas in this paper.

Lemma 2.1. [1]

(1) Let G be a finite nonAbelian group, then µ(G) ≥ 8/5.

(2) Let G = A×B, where A and B are finite groups. Then µ(G) = µ(A)µ(B).

Lemma 2.2. [3] Let H be a subgroup of a finite group G. Then

(1) µ(H) ≤ µ(G), and the equality holds if and only if for any χ ∈ Irr(G),
χ
H ∈ Irr(H), and H ′ = G′.

(2) If H ▹G, then µ(G/H) ≤ µ(G). µ(G/H) = µ(G) if and only if H ≤ Z(G),
and moreover, for any x, y ∈ G, [x, y] /∈ H∗.

Lemma 2.3. [4] Let G be a finite group. Then |G| =
∑

χ∈Irr(G)
χ2(1).

Lemma 2.4. Let G is a finite group. Then

(1) µ(G) = 2 if and only if G/Z(G) ≃ S3.

(2) Suppose G′ ̸≃ Z6. Then µ(G) = 3 if and only if G/Z(G) ∼= A4, D18, G18,
and for any x, y ∈ G, [x, y] /∈ Z(G)− {1}.

Proof. See [3], Theorem 3.3.

3. Main theorem

Theorem 3.1. Suppose that G is a finite group, if µ(G) = 3, then G′ ̸≃ Z6.

Proof. If G′ ∼= Z6 = Z2 × Z3, then Z2 ≤ Z(G). Since G′ ∼= Z6, G is solvable.
Let G = HL, where H is a {2, 3}-Hall subgroup, L is a {2, 3}′-Hall subgroup. It
is easy to see that H ▹ G and L is an Abelian group. Moreover, we prove that
L ≤ Z(G).
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Let Q ∈ Sly3(G) and let Z3 = Q∩G′ = ⟨u⟩, then ⟨u⟩ char G′▹G. So ⟨u⟩▹G.

Firstly, we prove that L = CL(u)▹G. Because ⟨u⟩▹G, we have CL(u)▹G.
By n-c theorem, L/CL(u) ≤ Aut(⟨u⟩) = Z2, it follows that CL(u) = L since L is
a {2, 3}′-group.

Secondly, we prove that L ≤ Z(G).
For any element a ∈ L, g ∈ G, Since a−1ag ∈ G′ = Z2×⟨u⟩, we have ag = ab,

where b ∈ Z2 × ⟨u⟩. Since Z2 ≤ Z(G) and L = CL(u), we have ab = ba. If b ̸= 1,
then ag is a {2, 3}′- element, and the order of ab can be divided by 2 or 3, this is
a contradiction. So b = 1, ag = a, and L ≤ Z(G) follows.

Therefore, G = H × L. By Lemma 2.1, we have µ(G) = µ(H)µ(L) = µ(H).
In the following proof, we only consider G = H = PQ, where P ∈ Syl2(G),

Q ∈ Syl3(G), clearly, Q ▹ G. Let |G| = 2n.3m. We will complete the proof of
Theorem 3.1 in four steps.

Step 1. ⟨u⟩ � Z(G).

Proof. Because G′ = Z2 × Z3, we have P ′ = Z2 = ⟨z⟩ ≤ Z(G). If ⟨u⟩ ≤ Z(G),
for any a ∈ P, g ∈ G, g−1aga−1 ∈ G′ = Z2 × ⟨u⟩. It implies that g−1ag = axy,
where x ∈ Z2, y ∈ ⟨u⟩ and xy ∈ Z(G). Since ⟨u⟩ is a subgroup of order 3, we have
g−1a3g = (ax)3 ∈ P . P is Sylow-2 subgroup of G implies that g−1ag ∈ P . So
P ▹G, and G = P ×Q. In this case P and Q are not Abelian since G′ = Z2×Z3.
Furthermore, we have P ′ = Z2, Q

′ = Z3. Now we compute k(Q), the number
of conjugacy classes of Q. Since |Q/Q′| = 3m−1 we have k(Q) > 3m−1. Let
k(Q) = k, clearly, for any a ∈ Q, |aQ| = 1, or 3, and the number of conjugacy
classes of elements with length 1 of Q is |Z(Q)|. Therefore,

3m = |Q| = |Z(Q)|+ 3(k − |Z(Q)|) = 3k − 2|Z(Q)|.

So we can conclude that µ(Q) = |Q|/k = 3 − 2|Z(Q)|/k. Since |Z(Q)| ≤ 3m−2

and k > |Q/Q′| = 3m−1, we have

µ(Q) = |Q|/k > 3− 2.3m−2/3m−1 = 3− 2/3 > 2.

We know from Lemma 2.1 (1) that µ(P ) ≥ 8/5, therefore

3 = µ(G) = µ(P ×Q) = µ(P ).µ(Q) > µ(P ) ≥ (8/5).2 = 16/5 > 3,

a contradiction.

Step 2. Q is an Abelian subgroup.

Proof. We have know that ⟨u⟩ ▹ G, so for any g ∈ G, ug = ui ∈ ⟨u⟩, i = 1, 2.
It follows that |G : CG(u)| = |uG| = 2. Let CG(u) = P1Q, where |P : P1| = 2,
which implies that P1 ▹ P . Let P = ⟨a, P1⟩. For any x ∈ P1, y ∈ Q, we have
x−1xy ∈ Q ∩ G′ = ⟨u⟩. Thus xy = ui. If i ̸= 0, then the left is an elements of
order 2 and the right is an element of order 6. Therefore, i = 0 and xy = yx.
That means that CG(u) = P1Q = P1 × Q. Since P = ⟨a, P1⟩ and a /∈ CG(u),
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|aG| = 3, or 6. Therefore 3m−1 | |CG(a)|. Let Q1 is a Sylow-3 subgroup of CG(a),
then |Q : Q1| = 3. We prove Q1 is an Abelian subgroup. For any x, y ∈ Q1,
x−1xy = ui ∈ Q1 ∩ G′ ≤ ⟨u⟩. i ̸= 0 means that u ∈ Q1 ≤ CG(a), and a ∈ CG(u)
follows, it is a contradiction. So i = 0, that is xy = yx. Therefore Q1 is an
Abelian. Clearly, u ∈ Z(Q). So Q = ⟨u,Q1⟩, and Q is an Abelian subgroup.

Step 3. G = (P ⟨u⟩)×Q1.

Proof. Since Q1 ≤ CG(a) and P1Q = P1 ×Q, Q1 ≤ CG(P ). Therefore, Q1 ▹ G.
Clearly, Q1∩⟨u⟩ = 1, so Q = ⟨u⟩×Q1 and Q1▹Z(G). Therefore G = (P ⟨u⟩)×Q1.

Step 4. The finial contradiction.

Proof. By Step 3, G = (P ⟨u⟩) × Q1, by Lemma 2.1, µ(G) = µ(P ⟨u⟩).µ(Q1) =
µ(P ⟨u⟩). So in the following proof, we can think G = P ⟨u⟩. Because ⟨u⟩ is an
abelian normal subgroup of G, for any χ ∈ Irr(G), we have χ(1) | |G : ⟨u⟩| = 2n.
(See [4].)

Remember that

Z2 = ⟨z⟩ ≤ Z(G).

Now, we compute the number of irreducible characters of G.
The irreducible characters of Ḡ = G/Z2 may be identified as irreducible

characters of G. For any χ ∈ Irr(G), if z ∈ kerχ, then χ ∈ Irr(G/Z2). Therefore,
Irr(G) = Irr(G/Z2)∪{χ ∈ Irr(G) | z /∈ kerχ}. If χ(1) = 1, since z ∈ G′, χ(z) = 1
and z ∈ kerχ, it follows that χ ∈ Irr(G/Z2). So for any χ ∈ Irr(G), if z /∈ kerχ,
then χ(1) > 1.

Let Ḡ = G/Z2, Ā = P̄1Q̄, then Ā is an Abelian normal subgroup of Ḡ. Hence
χ(1) | |Ḡ : Ā| = |P : P1| = 2 ([4]). Therefore any χ ∈ Irr(Ḡ), χ(1) = 1, or 2.
Thus

2n−1.3 = |Ḡ| = |Ḡ/Ḡ′|+ |Irr∗(Ḡ)|.22.

Since |Ḡ/Ḡ′| = |P̄ | = 2n−1, it is easy to see that

|Irr∗(Ḡ)| = 2n−2.

Therefore Ḡ has exactly 2n−1+2n−2 = 3.2n−2 irreducible characters. We know that
G has exactly |G|/3 = 2n irreducible characters, thereforeG has 2n−3.2n−2 = 2n−2

other irreducible characters χ with z /∈ kerχ.
Let χ ∈ Irr(G) with z /∈ kerχ, ρ be the irreducible C-representation affor-

ding χ.
Since P ′ = Z2 = ⟨z⟩ ≤ Z(G), for a /∈ Z(P ), there exists g ∈ P such that

ag = az. z ∈ Z(G) implies that ρ(z) = ωI, where I is an unit matrix with χ(1)
degree, ω is a root of unity. So

χ(a)=trρ(a)=trρ(ag)=trρ(az) =tr(ρ(z)ρ(a))=tr(ωρ(a))=ωχ(a).

z /∈ kerχ implies that ω ̸= 1. Therefore χ(a) = 0.
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We restrict χ in subgroup P . Then we have

(∗) (χ, χ)P =
1

|P |
∑
a∈P

χ(a)χ(a−1) =
|Z(P )|χ2(1)

|P |

Hence
χ2(1) = |P |/|Z(P )|(χ, χ)P .

Since P is non-Abelian,
|P : Z(P )| = 2n−s ≥ 4,

where |Z(P )| = 2s. If (χ, χ)P > 1, then χ(1) ≥ 22. If χ(1) = 2, then (χ, χ)P = 1
and χ ∈ Irr(P ).

If any χ ∈ Irr(G) with z /∈ kerχ, χ(1) ≥ 22. Then we have

3.2n = |G| = |G/Z2|+
∑

z /∈kerχ

χ2(1) ≥ 3.2n−1 + 2n−2.24

Thus 3.2n−1 ≥ 8.2n−1, a contradiction.
Therefore there exists at least one χ ∈ Irr(G) with z /∈ kerχ, χ(1) = 2.
Now we prove, for any χ ∈ Irr(G) with z /∈ kerχ, χ(1) = 2 or χ(1) = 4. Let

θ ∈ Irr(G) with θ(1) = 2, z /∈ kerθ, we have known that θ ∈ Irr(P ), and by (*),
|P : Z(P )| = 4. Also by (*), for any θ ∈ Irr∗(P ), we have θ(1) = 2.

Since |P |/|Z(P )| = 4, by (*) for any χ ∈ Irr(G) with χ(1) > 2, z /∈ kerχ,
we have (χ, χ)P > 1. Restricting χ on subgroup P , let χ

P = n1θ1 + ... + ntθt,
where θi ∈ Irr(P ). Then there is a θi(1) = 2 since z /∈ kerχ. Let it be θ = θ1,
by Frobenius Reciprocity theorem, the induced character θG1 = n1

χ + ...,+mt
χ
t.

We know that θG1 (1) = |G : P |θ1(1) = 3.2 = 6, χ(1) > 2 and χ(1) is power of 2,
therefore the only possible is χ(1) = 4.

Suppose that there exists n1 irreducible characters χ ∈ Irr(G) with χ(1) = 2,
z /∈ kerχ, n2 irreducible characters χ ∈ Irr(G) with χ(1) = 4, z /∈ kerχ, then
n1 + n2 = 2n−2. Therefore we have

3.2n = |G| = |G/Z2| +
∑

z /∈kerχ

χ2(1) = 3.2n−1

+
∑

z /∈kerχ

χ2(1) = 3.2n−1 + n1.2
2 + n2.2

4.

From here we have 2n−3 = 3.n2. It is a final contradiction.

Theorem 3.2. Suppose that G is a finite group, Then µ(G) = 3 if and only if
G/Z(G) ∼= A4, D18, G18, and for any x, y ∈ G, [x, y] ̸∈ Z∗(G).

Proof. By Theorem 3.1, G′ ̸≃ Z6. So by Lemma 2.4(2), the Theorem is true.
The proof is completed.
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