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1. Introduction

Let G be a finite group, k(G) be the conjugacy number of G. Let u(G) =
|G|/k(G). By classes equation: |G| = ¢; + ¢2 + ... + ¢, where ¢; are length
of conjugacy classes of elements of G,i = 1,2,....k. In fact u(G) = |G|/k(G)
is average length of conjugacy classes of the finite group G. We know that con-
jugacy classes length can show some character of the group. Further more, the
average length of a group has strong restriction to the group. Shi ([1]) proved
that if Z(G) = 1, then pu(G) = 2 if and only if G/Z(G) = S;. Du ([2])
generalized this result that: if |Z(G)| is a odd, then p(G) = 2 if and only if
G/Z(G) = S3. Du and Qian ([3]) proved that if G’ % Zs, then pu(G) = 3
if and only if G/Z(G) = A4, Dis, Gis and for any z,y € G, [z,y] € Z*(G)
(where Gig = (a,b,c | a® = b® = ¢ = 1,ab = ba,ctac = a ',clbe =
b~1), Gig is a group of order 18, it contains six conjugacy classes, there are
{1}, {a,a?}, {b,b*}, {ab, a®b?*}, {ab? a®b}, {c, ca,ca?, cb, cb*, cab, ca®b, cab?, ca®V*})

This paper generalizes the results of [3], we will get rid of the condition of
G’ # Zg in paper [3] and have the same results as paper [3].
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For the sake of convenience, let Gig = (a,b,c | a® = 1® = ¢ = 1, ab = ba,
ctac = a™, ¢lbe = b7Y), G* = G — {1}, k(G) be the number of conjugacy
classes of elements of G, a® be the conjugacy class containing a, Irr(G) be the
set of all irreducible characters of G, Irr*(G) be the set of nonlinear irreducible
characters of G. Let Xp be the character of P by X restricting on P, #% be the
induced character of G, where X € Irr(G), 6 € Irr(G). Throughout this paper, all
groups are finite.

2. Preliminaries
We need the following lemmas in this paper.
Lemma 2.1. [1]
(1) Let G be a finite nonAbelian group, then p(G) > 8/5.

(2) Let G = A x B, where A and B are finite groups. Then u(G) = p(A)u(B).

Lemma 2.2. [3] Let H be a subgroup of a finite group G. Then

(1) u(H) < w(G), and the equality holds if and only if for any X € Irr(G),
Xg € Irr(H), and H = G'.

(2) If H<QG, then w(G/H) < u(G). w(G/H) = u(G) if and only if H < Z(G),
and moreover, for any x,y € G, [x,y] ¢ H*.

Lemma 2.3. [4] Let G be a finite group. Then |G| = xc1,q) X2(1).
Lemma 2.4. Let G is a finite group. Then
(1) u(G) =2 if and only if G/Z(G) ~ Ss.

(2) Suppose G' # Zg. Then u(G) = 3 if and only if G/Z(G) = A4, Dis, Gis,
and for any x,y € G, [z,y] ¢ Z(G) — {1}.

Proof. See [3], Theorem 3.3.

3. Main theorem
Theorem 3.1. Suppose that G is a finite group, if u(G) = 3, then G’ % Zs.

Proof. If G' = Zs = Zy x Z3, then Zy < Z(G). Since G' = Zg, G is solvable.
Let G = HL, where H is a {2,3}-Hall subgroup, L is a {2,3}-Hall subgroup. It
is easy to see that H <t G and L is an Abelian group. Moreover, we prove that
L<Z(G).
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Let @ € Sly3(G) and let Z3 = QNG’ = (u), then (u) char G'<G. So (u) <G.

Firstly, we prove that L = Cf(u) <G. Because (u) <G, we have C(u) <G.
By n-c theorem, L/C(u) < Aut({u)) = Zs, it follows that Cp(u) = L since L is
a {2,3}-group.

Secondly, we prove that L < Z(G).

For any element a € L, g € G, Since a™*a? € G' = Z, x (u), we have a? = ab,
where b € Z x (u). Since Zy < Z(G) and L = Cp(u), we have ab = ba. If b # 1,
then a9 is a {2, 3}'- element, and the order of ab can be divided by 2 or 3, this is
a contradiction. So b =1, a? = a, and L < Z(G) follows.

Therefore, G = H x L. By Lemma 2.1, we have u(G) = u(H)u(L) = p(H).

In the following proof, we only consider G = H = PQ, where P € Syly(G),
Q € Syl3(G), clearly, Q@ < G. Let |G| = 2™.3™. We will complete the proof of
Theorem 3.1 in four steps.

Step 1. (u) £ Z(G).

Proof. Because G' = Zy x Z3, we have P’ = Z, = (z) < Z(G). If (u) < Z(G),
for any a € P, g € G, g taga™ € G' = Zy x (u). Tt implies that g~lag = axy,
where x € Zs, y € (u) and zy € Z(G). Since (u) is a subgroup of order 3, we have
g 'a*g = (ax)® € P. P is Sylow-2 subgroup of G implies that g~'ag € P. So
P <G, and G = P x @. In this case P and @ are not Abelian since G' = Zy X Z3.
Furthermore, we have P’ = Z5, Q' = Z3. Now we compute k(Q), the number
of conjugacy classes of Q. Since |Q/Q'| = 3™ ! we have k(Q) > 3™ L. Let
k(Q) = k, clearly, for any a € Q, |a®] = 1, or 3, and the number of conjugacy
classes of elements with length 1 of @ is |Z(Q)|. Therefore,

3" = [Q| = 2(Q)] + 3(k = [2(Q)]) = 3k — 2|2(Q)]

So we can conclude that u(Q) = |Q|/k = 3 — 2|Z(Q)|/k. Since |Z(Q)| < 3m2
and k > |Q/Q'| = 3™, we have

Q) =1Q|/k >3—-23m"2/3"1 =3-2/3>2.
We know from Lemma 2.1 (1) that u(P) > 8/5, therefore

3=u(G) =uP xQ)=puP).u(@Q) > pu(P)>(8/5).2=16/5> 3,
a contradiction.

Step 2. @ is an Abelian subgroup.

Proof. We have know that (u) < G, so for any g € G, w9 = v’ € (u), i = 1,2.
It follows that |G : Cg(u)| = |u®] = 2. Let Cg(u) = P,Q, where |P : P| = 2,
which implies that P, < P. Let P = (a, P;). For any x € P, y € @, we have
rl2v € QNG = (u). Thus ¥ = u'. If i # 0, then the left is an elements of
order 2 and the right is an element of order 6. Therefore, i = 0 and zy = yx.
That means that Cg(u) = PQ = P, X Q. Since P = (a, P;) and a ¢ Cg(u),
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la%| = 3, or 6. Therefore 31| |Cq(a)|. Let Q; is a Sylow-3 subgroup of Cg(a),
then |Q : Q1| = 3. We prove @ is an Abelian subgroup. For any z, y € Q1,
vy =u' € QNG < (u). i # 0 means that u € Q; < Cg(a), and a € Cg(u)
follows, it is a contradiction. So ¢ = 0, that is zy = yx. Therefore @, is an
Abelian. Clearly, u € Z(Q). So Q = (u, @), and @ is an Abelian subgroup.

Step 3. G = (P(u)) x Q.

Proof. Since Q; < Cg(a) and P,Q = P, x Q, Q1 < Cg(P). Therefore, Q1 < G.
Clearly, Q1N (u) = 1,80 Q = (u) x Q1 and Q1 <Z(G). Therefore G = (P(u)) x Q1.

Step 4. The finial contradiction.

Proof. By Step 3, G = (P{u)) x Q1, by Lemma 2.1, u(G) = u(P(u)).u(Q1) =
u(P{u)). So in the following proof, we can think G = P(u). Because (u) is an
abelian normal subgroup of G, for any X € Irr(G), we have X(1) | |G : (u)| =
(See [4].)
Remember that
7= (2) < Z(G).

Now, we compute the number of irreducible characters of G.

The irreducible characters of G = G/Z, may be identified as irreducible
characters of G. For any X € Irr(G), if z € kerX, then X € Irr(G/Z,). Therefore,
Irr(G) = Irr(G/Zy)U{X € Irr(G) | z ¢ kerX}. It X(1) = 1, since z € G', X(2) = 1
and z € kerX, it follows that X € Irr(G/Z;). So for any X € Irr(G), if z ¢ kerX,
then X(1) > 1.

Let G = G/Zy, A = P,Q, then A is an Abelian normal subgroup of GG. Hence
X(1) |G : Al = |P : P| = 2 ([4]). Therefore any X € Irr(G), X(1) = 1, or 2.
Thus

2" 13 = |G| = |G/G| + |Irr*(G)].2%.

Since |G/G'| = |P| = 2"71, it is easy to see that
|Irr*(G)| = 2" 2.

Therefore G has exactly 271 +2"~2 = 3.2"~2 irreducible characters. We know that
G has exactly |G|/3 = 2" irreducible characters, therefore G has 2" —3.2""2 = 2n~2
other irreducible characters X with z ¢ kerX.

Let X € Irr(G) with z ¢ kerX, p be the irreducible C-representation affor-
ding X.

Since P' = Zy = (2) < Z(G), for a ¢ Z(P), there exists g € P such that
a¥ = az. z € Z(G) implies that p(z) = wl, where I is an unit matrix with X(1)
degree, w is a root of unity. So

X(a)=trp(a)=trp(a?)=trp(az) =tr(p(z)p(a))=tr(wp(a))=wX(a).

z ¢ kerX implies that w # 1. Therefore X(a) = 0.
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We restrict X in subgroup P. Then we have

() (G0p = = 3 X(a@)X(a) = !Z<P&l>‘< (1)

Hence
X2(1) = |PI/|Z(P)|(X,X)p.

Since P is non-Abelian,
|P: Z(P)|=2""° >4,

where |Z(P)| = 2°. If (X,X)p > 1, then X(1) > 2% If X(1) = 2, then (X,X)p =1
and X € Irr(P).
If any X € Irr(G) with z ¢ kerX, X(1) > 2% Then we have

32" =G| =|G/Z|+ Y X*(1) =32 42022
z¢kerX

Thus 3.2"7! > 8.2"71 a contradiction.

Therefore there exists at least one X € Irr(G) with z ¢ kerX, X(1) = 2.

Now we prove, for any X € Irr(G) with z ¢ kerX, X(1) =2 or X(1) = 4. Let
0 € Irr(G) with 0(1) = 2, z ¢ kerf, we have known that 6 € Irr(P), and by (*),
|P: Z(P)| =4. Also by (*), for any 6 € Irr*(P), we have 6(1) = 2.

Since |P|/|Z(P)| = 4, by (*) for any X € Irr(G) with X(1) > 2, z ¢ kerX,
we have (X,X)p > 1. Restricting X on subgroup P, let Xp = ni6; + ... + n0;,
where 6; € Irr(P). Then there is a 6;(1) = 2 since z ¢ kerX. Let it be 6 = 0,
by Frobenius Reciprocity theorem, the induced character 0 = niX + ..., +m;X;.
We know that (1) = |G : P|f;(1) = 3.2 = 6, X(1) > 2 and X(1) is power of 2,
therefore the only possible is X(1) = 4.

Suppose that there exists ny irreducible characters X € Irr(G) with X(1) = 2,
z ¢ kerX, ny irreducible characters X € Irr(G) with X(1) = 4, z ¢ kerX, then
ny + ne = 2772, Therefore we have

32" =G| =|G/Z| + > X*(1)=32""
z¢kerX

+ ) (1) =327 40y 22 4 mp 2t
2¢kerX

From here we have 273 = 3.n,. It is a final contradiction.

Theorem 3.2. Suppose that G is a finite group, Then u(G) = 3 if and only if
G/Z(G) = Ay, Dis, Gis, and for any x,y € G, [z,y] & Z*(G).

Proof. By Theorem 3.1, G’ % Zs. So by Lemma 2.4(2), the Theorem is true.
The proof is completed.
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