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Abstract. It is well-known that A10 is the smallest (by order) nonabelian simple group
with connected prime graph and L4(4) is the smallest nonabelian simple group of Lie
type with connected prime graph. In 2009, A.V. Vasil’ev first dealt with the groups with
connected prime graph and proved that Thompson’s conjecture holds for A10 and L4(4)
(see [1]). In this work, the authors characterize finite simple groups A10 and L4(4) by
their orders and largest and smallest conjugacy class sizes greater than 1, and partially
generalize A.V. Vasil’ev’s work.
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1. Introduction

Throughout this paper, groups under consideration are finite. For any group G,
π(G) denotes the set of prime divisors of |G|. We associate to π(G) a simple
graph called prime graph of G, denoted by Γ(G). Prime graph Γ(G) is defined as
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follows: the vertex of Γ(G) is the set of all prime divisors of the order of G, two
distinct vertexes p and q are adjacent by edge if and only if there is an element
of order pq in G(see [10]). Denote the connected components of the prime graph
by T (G) = {πi(G)|1 6 i 6 t(G)}, where t(G) is the number of the prime graph
components of G. If the order of G is even, we always assume that 2 ∈ π1(G).
In addition, for x ∈ G, clG(x) denotes the conjugacy class in G containing x and
CG(x) denotes the centralizer of x in G. Let cs(G) = {n ∈ N|G has a conjugacy
class C such that |C| = n}. For p ∈ π(G), we denote Gp and Sylp(G) a Sylow
p−subgroup of G and the set of all of its Sylow p−subgroups, respectively. We
also denote Soc(G) the socle of G which is the subgroup generated by the set of
a minimal normal subgroups of G. The other notation and terminologies in this
paper are standard and the reader is referred to [8] if necessary. The second author
G.Y. Chen once worked on J.G. Thompson’s conjecture posed by J.G. Thompson
in 1980s, which is about characterizing finite simple groups by the set of lengths
of its conjugacy classes as following (ref. to [[9], Problem 12.38]):

Thompson’s conjecture. Let G be a finite group with Z(G) = 1 and L is a
finite non-abelian simple group satisfying that cs(G) = cs(L), then G ' L.

In 1994, G.Y. Chen proved in his Ph.D. dissertation [3] that if G is a group
with Z(G) = 1, and L a non-abelian simple group with non-connected prime
graph such that cs(G) = cs(L), then G ' L (also ref. to [4], [5], [6]). In 2009,
A.V. Vasil’ev first dealt with the groups with connected prime graph and proved
that Thompson’s conjecture holds for A10 and L4(4) (see [1]). In 2011, N. Ahan-
jideh in [2] proved that Thompson’s conjecture is true for Ln(q). Recently,
G.Y. Chen and J.B. Li contributed their interests on special class sizes of finite
simple groups, and characterize successfully sporadic simple groups (see J.B. Li’s
Ph.D. dissertation [15])and simple K3−groups (to prepared) by their orders and
few special class sizes greater than 1. In their papers, they provided two new
ways to characterize finite simple group by group order and largest class size, or
smallest class size greater than 1. More importantly, one of two methods doesn’t
consider about connection of prime graph of group. Thus it is may be effec-
tive to deal with simple groups which have connected prime graph. In this paper,
we focus our attention on simple groups A10 and L4(4) which have connected prime
graphs, and characterize A10 and L4(4) by their orders, and largest and smallest
conjugacy class sizes greater than 1, respectively. In addition, we partially genera-
lize A.V. Vasil’ev’s work (see [1]) and prove that Thompson’s conjecture holds for
A10 and L4(4) at the same time. That is the following theorem. For convenience,
lcs(G) and scs(G) denote largest and smallest conjugacy class size greater than 1
of group G, respectively.

Main Theorem. Let G be a group and L one of A10 and L4(4). Then G ' L if
and only if |G| = |L| and lcs(G) = lcs(L) and scs(G) = scs(L).

If Main Theorem is proved, then the following corollary holds, which proves
Thompson’s conjecture for A10 and L4(4).

Corollary. Thompson’s conjecture holds for finite simple group A10 and L4(4).
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Proof. Let G be a group and L one of A10 and L4(4). Under the hypothesis
of Thompson’s conjecture, it is proved in [1] that |G| = |L|. Hence the corollary
follows from Main Theorem.

2. Preliminaries

First, we generalize a simple fact which is used many times in G.Y. Chen and
J.B. Li’s works. It is important to prove our Main Theorem.

Lemma 2.1. Let G be a group, G = G/Z(G). N is a minimal normal subgroup
of G, and N is the pre-image of N in G. If p ∈ π(N) for some p ∈ π(G) and
Np ∈ Sylp(N) satisfying |Np| < scs(G), then N is not solvable.

Proof. Assume that N is solvable. Then N is an elementary abelian p−group
with |N | = pt, t ≥ 1, and N is a nilpotent normal subgroup of G by the hypothesis.
Hence Np is a normal subgroup of G, and Np is not a subgroup of Z(G). So there
exists an element x of Np − Z(G) satisfying that

1 < |clG(x)| = |G : CG(x)| ≤ |Np| < scs(G),

violating the hypothesis.

By Lemma 2.1, the fact can easily be obtained as a corollary following.

Corollary 2.2. Let G be a group, G = G/Z(G). If |Gp| < scs(G) for any
p ∈ π(G), then Soc(G) E G .Aut(Soc(G)).

Proof. Suppose that N is any minimal normal subgroup of G, and N is the pre-
image of N in G. By the hypothesis, N satisfies that |Np| ≤ |Gp| < scs(G),
so every minimal normal subgroup of G is not solvable by Lemma 2.1. Let
S1, S2, . . . , Sk(k ≥ 1) be all minimal normal subgroup of G. Let M = Soc(G),
hence M = Soc(G) = S1 × S2 × · · · × Sk and Si is a direct product of some
isomorphic non-abelian simple groups for i = 1, 2, . . . , k. Now, we assert that
CG(M) = 1. If not, there exists a minimal normal subgroup S of G such that
S ≤ CG(M)

⋂
M . Thus S is an abelian group, a contradiction. By N/C theorem,

we have M E G = G/CG(M) .Aut(M), as desired.

Lemma 2.3. Let K be a normal subgroup of a group G, and G = G/K. If x is the
image of an element x of G in G, and (|x|, |K|) = 1, then CG(x) = CG(x)K/K.
In particular, if K = Z(G), then CG(x) = CG(x)/Z(G).

Proof. This is an immediate consequence of Theorem 1.6.2 in [14] or Lemma 5
in [1]. For π(A10), π(L4(4)) ⊆ {2, 3, 5, 7, 17}, we need to list all the non-abelian
simple groups L satisfying with π(L) ⊆ {2, 3, 5, 7, 17}.
Lemma 2.4. Let L be a non-abelian simple group. If π(L) ⊆ {2, 3, 5, 7, 17}, then
L is isomorphic to one of simple groups of Table 1. Especially, {2, 3} ⊆ π(L),
and if L 6= S6(2), S8(2), then π(Out(L)) ⊆ {2, 3}.
Proof. This is Lemma 2.5 in [7].
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Table 1. Non-abelian simple groups L with π(L) ⊆ {2, 3, 5, 7, 17}
L Order of L |Out(L)| L Order of L |Out(L)|
A5 22 · 3 · 5 2 A9 26 · 34 · 5 · 7 2
L2(7) 23 · 3 · 7 2 J2 27 · 33 · 52 · 7 2
A6 23 · 32 · 5 22 S4(4) 28 · 32 · 52 · 17 4
L2(8) 23 · 32 · 7 3 S6(2) 29 · 34 · 5 · 7 1
L2(17) 24 · 32 · 17 2 U4(3) 27 · 36 · 5 · 7 |D8|
A7 23 · 32 · 5 · 7 2 S4(7) 28 · 32 · 52 · 74 2
L2(16) 24 · 3 · 5 · 17 4 A10 27 · 34 · 52 · 7 2
U3(3) 25 · 33 · 7 2 O+

8 (2) 212 · 35 · 52 · 7 |S3|
A8 26 · 32 · 5 · 7 2 O−

8 (2) 212 · 34 · 5 · 7 · 17 22

L3(4) 26 · 32 · 5 · 7 |D12| L4(4) 212 · 34 · 52 · 7 · 17 2
U4(2) 26 · 34 · 5 2 He 210 · 33 · 73 · 17 2
L2(49) 24 · 3 · 52 · 72 22 S8(2) 216 · 35 · 52 · 7 · 17 1
U3(5) 24 · 32 · 53 · 7 |S3|

A group G is said to be an almost simple group related to L if and only
if L E G ≤Aut(L) for some non-abelian simple group L. Almost simple groups
related to L with π(L) ⊆ {2, 3, 5, 7, 17} are listed in the following lemma.

Lemma 2.5. Let L be a non-abelian simple group such that π(L) ⊆ {2, 3, 5, 7, 17}.
If L E G ≤ Aut(L), then G is isomorphic to one of the groups listed in Table 2.

Table 2. Almost simple groups L E G ≤ Aut(L) with π(L) ⊆ {2, 3, 5, 7, 17}
L G L G L G L G

A5 L L3(4) L S6(2) L L4(4) L
L · 2 L · 21 A10 L L · 21

L2(7) L L · 3 L · 2 L · 22

L · 2 L · 6 S4(7) L L · 23

A6 L L · 22 L · 2 L · 22

L · 21 L · 3 · 22 O+
8 (2) L L2(16) L

L · 22 L · 23 L · 2 L · 2
L · 23 L · 3 · 23 L · 3 L · 4
L · 22 L · 22 L · S3 O−

8 (2) L
L2(8) L L ·D12 U4(3) L L · 2

L · 3 L2(49) L L · 21 S4(4) L
A7 L L · 21 L · 4 L · 2

L · 2 L · 22 L · 22 L · 4
U3(3) L L · 23 L · (22)122

L · 2 L · 22 L · (22)133

A8 L U3(5) L L ·D8

L · 2 L · 2 L2(17) L
U4(2) L L · 3 L · 2

L · 2 L · S3 He L
A9 L J2 L L · 2

L · 2 L · 2 S8(2) L
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Proof. All almost simple groups not related to L2(17), L2(16), S4(4), S8(2),
O−

8 (2), L4(4), and He listed in Table 2 were given in Proposition 1 in [11]. Those
related to one of L2(17), L2(16), S4(4), S8(2), O−

8 (2), L4(4), and He are easily
obtained by an algorithm from [12].

Lemma 2.6. Let R = R1×· · ·×Rk, where Ri is a direct product of ni isomorphic
copies of a non-abelian simple group Hi, where Hi and Hj are not isomorphic if
i 6= j. Then Aut(R)'Aut(R1)×· · ·× Aut(Rk) and Aut(Ri)'(Aut(Hi)oSni

, where
in this wreath product Aut(Hi) appears in its right regular representation and the
symmetric group Sni

in its natural permutation representation. Moreover, these
isomorphisms induce outer automorphisms Out(R) 'Out(R1)×· · ·×Out(Rk) and
Out(Ri)'(Out(Hi) o Sni

.

Proof. This is Theorem 3.3.20 in [13].

3. Proof of the Main Theorem

We divide the sufficient proof of Main Theorem into two lemmas.

Lemma 3.1. Let G be a group with |G| = 27 · 34 · 52 · 7. If lcs(G) = 24 · 34 · 52 · 7
and scs(G) = 24 · 3 · 5. Then G ' A10.

Proof. It is clear that one has that Z(G) 6 CG(x) for any x ∈ G. Set x, and
y ∈ G such that lcs(G) =|clG(x)|= 24 · 34 · 52 · 7 and scs(G) =|clG(y)|= 24 · 3 · 5.
Since |G| = 27 · 34 · 52 · 7 and lcs(G) = 24 · 34 · 52 · 7, Z(G) is a proper subgroup of
G with |Z(G)| | 23 by the hypothesis. Thus 3, 5, and 7 6∈ π(Z(G)). Considering
G = G/Z(G). For any prime p ∈ π(G), the order of Sylow p−subgroup of
G is less than scs(G). By Corollary 2.2, we know that every minimal normal
subgroup of G = G/Z(G) is non-solvable and Soc(G) E G ≤Aut(Soc(G)). Let
M = Soc(G) and S1, S2, · · · , Sk(k ≥ 1) be all minimal normal subgroups of G,
hence M = Soc(G) = S1 × S2 × · · · × Sk and Si is a direct product of some
isomorphic non-abelian simple groups for i = 1, 2, . . . , k.

We assert that 3 ∈ π(M). Otherwise, M is a simple K3−group with π(M) =
{2, 5, 7}. This is impossible by Table 1.

We assert that 5 ∈ π(M). Otherwise, M is a simple K3−group with π(M) =
{2, 3, 7} and 5 ∈ π(Out(G)). By Table 1, we find that M is isomorphic to one
of the following simple groups: L2(7), L2(8), and U3(3). By Lemma 2.4, we see
that |Out(L2(7))| = |Out(U3(3))| = 2, and |Out(L2(8))| = 3, a contradiction to
5 ∈ π(Out(G)).

We also assert that 7∈π(M). Otherwise, π(M)={2, 3, 5} and 7∈π(Out(G)).
By Table 1, M may be isomorphic to one of the following groups:

A5, A6, U4(2), A5 × A5, A5 × A6, and A6 × A6.

By Lemma 2.4 and Lemma 2.6, we see that outer automorphism groups of these
groups are 2−groups, contradicting to 7 ∈ π(Out(G)). Hence {3, 5, 7} ⊆ π(M).
By Table 1 again, M may be isomorphic to one of the following groups:

A7, A8, L3(4), A9, J2, A10, A5 × L2(7), A5 × L2(8), A5 × U3(3), A5 × A7,
L2(7)× A6, and L2(8)× A6.
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Now, let us recall that M E G ≤Aut(M). If M is isomorphic to one of
A7, A8, L3(4), A9, A5 ×L2(7), A5 ×L2(8), A5 ×U3(3), L2(7)×A6, and L2(8)×A6,
then we have that 5 ‖ |G| by Table 1 and Lemma 2.6. Hence 5 ∈ π(Z(G)), a
contradiction. If M is isomorphic to one of J2, and A5 × A7, then by the same
reasoning 3 ∈ π(Z(G)), a contradiction.

Hence M ' A10 and G must be isomorphic to A10 by comparing the orders
of M and G, as claimed.

Lemma 3.2. Let G be a group with |G| = 212·34·52·7·17. If lcs(G) = 210·32·52·7·17
and scs(G) = 32 · 5 · 7 · 17. Then G ' L4(4).

Proof. First, for any x ∈ G, Z(G) is contained in CG(x). By the hypothesis,
there exist y, and z ∈ G such that scs(G)= |clG(y)| =32 · 5 · 7 · 17 and lcs(G)=
|clG(z)| =210 ·32 ·52 ·7·17. Since |G| = 212 ·34 ·52 ·7·17, and lcs(G) = 210 ·32 ·52 ·7·17,
we have that Z(G) is a proper subgroup of G of order dividing 36. Similar to
Lemma 3.1, Considering G = G/Z(G). For any prime p ∈ π(G), the order of Sylow
p−subgroup of G is less than scs(G). Hence by Corollary 2.2, we know that every
minimal normal subgroup of G is non-solvable and Soc(G) E G ≤Aut(Soc(G)).
Let M = Soc(G) and S1, S2, . . . , Sk(k ≥ 1) be all minimal normal subgroups of
G. Hence M = Soc(G) = S1 × S2 × · · · × Sk and Si is a direct product of some
isomorphic non-abelian simple groups for i = 1, 2, . . . , k. Similar to the proof
Lemma 3.1, we prove 5, 7, and 17 ∈ π(M).

If 5 6∈ π(M), then 5 ∈ π(Out(M)). Applying Table 1 and possible order of
M , M may be isomorphic to one of the following groups:

L2(7), L2(8), L2(17), U3(3), L2(7)× L2(17), and L2(8)× L2(17).

By Lemmas 2.4 and 2.6, we see that outer automorphism groups of groups above
are {2, 3}−groups, a contradiction to 5 ∈ π(Out(M)). Therefore, 5 ∈ π(M).

If 7 6∈ π(M), then 7 ∈ π(Out(M)). By Table 1 and 5 ∈ π(M), M may be
isomorphic to one of the following groups:

A5, A6, L2(16), U4(2), S4(4), A5 × A5, A5 × A6, A6 × A6, A5 × L2(17),
A5 × L2(16), A6 × L2(17), and A6 × L2(16).

By Table 1 and Lemma 2.6, we see that outer automorphism groups of these
groups are 2− groups, a contradiction. Hence 7 ∈ π(M).

If 17 6∈ π(M), then 17 ∈ π(Out(G)). By Table 1 and {5, 7} ⊆ π(M), M may
be isomorphic to one of the following groups:

A7, A8, L3(4), A9, J2, S6(2), A10, A5 × L2(7), A5 × L2(8), A5 × A7, A5 × A8,
A5 × L3(4), A6 × L2(7), A6 × L2(8), A6 × A7, A6 × A8, A6 × L3(4),

and A5 × L2(7)× A6.

By Table 1 and Lemma 2.6, we know that 17 is not a prime divisor of outer
automorphism of those groups above, a contradiction. Hence 17 ∈ π(M). For
convenience, we assume that 7 ∈ π(Si), and 17 ∈ π(Sj) for i, j ∈ {1, 2, · · · , k}.
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If i 6= j, then Si and Sj are two non-isomorphic simple groups. By Table 1
and possible order of M again, we see that M may be isomorphic to one of the
following groups:

L2(7)× L2(16), L2(7)× L2(17), L2(7)× S4(4), L2(8)× L2(16),
L2(8)× L2(17), L2(8)× S4(4), A7 × L2(16), A7 × L2(17), U3(3)× L2(16),
A8 × L2(16), A8 × L2(17), L3(4)× L2(16), L3(4)× L2(17),
A5 × L2(7)× L2(16), A5 × L2(7)× L2(17), A5 × L2(8)× L2(16),
and A6 × L2(7)× L2(16).

If M is isomorphic to one of the following groups:

L2(7)× L2(16), L2(7)× L2(17), ÃL2(8)× L2(16), U3(3)× L2(16), A8 × L2(17),
L3(4)× L2(17), L2(8)× L2(17), A7 × L2(17), and A5 × L2(7)× L2(17),

then, by Table 1 and Lemma 2.6, we come to 5 ∈ π(Z(G)) by comparing the
orders of M, G, and Aut(M), a contradiction.

If M ' L2(7)× S4(4), then

Aut(M) = Aut(L2(7))×AutS4(4)) = L2(7) · 2× S4(4) · 4
by Lemma 2.6 and Table 2.

Recall that M E G ≤Aut(M), then |Z(G)| = 3 or 6. So there exists an
element w of order 7 in G such that CG(w)/Z(G) = CG(w) ≥ 〈w〉 × S4(4) by
Lemma 2.3, where w is the image of w in G. Hence |CG(w)| ≥ 28 · 33 · 52 · 7 · 17
such that 1 < |clG(w)| < scs(G), a contradiction to minimality of scs(G).

If M ' L2(8) × S4(4), then by same way above we come to Aut(M) =
L2(8) · 3× S4(4) · 4 such that |Z(G)| ≤ 2. So there exists an element w of order 7
in G such that such that 1 < |clG(w)| < scs(G), a contradiction.

In a similar way used above, we can deal with the remaining cases of M , and
can always find an element of G such that its conjugacy class length is less than
scs(G), leading to a contradiction.

Hence i = j. Without loss of generality, assume that 7, and 17 ∈ π(S1). Then
S1 is a non-abelian simple group and isomorphic to O−

8 (2) or L4(4) by Table 1.
Therefore k = 1, and M may be isomorphic to one of following groups: O−

8 (2),
and L4(4).

If M ' O−
8 (2), then, by Table 1 and Table 2, G ' O−

8 (2) or O−
8 (2) · 2

and Aut(M) = O−
8 (2) · 2. Comparing the orders of M, G, and Aut(M), we see

that |Z(G)| = 5 and G ' O−
8 (2). If G is a split extension O−

8 (2) by Z(G), then
G = O−

8 (2)×Z(G). Therefore, by [8], there exists a non-central element w of order
2 in G such that 1 < |clG(w)| < scs(G), leading to a contradiction. Hence G is
not a split extension O−

8 (2) by Z(G), which implies that 5 divides |Mult(O−
8 (2))|,

a contradiction to |Mult(O−
8 (2))| = 2 by [8].

Hence M ' L4(4) and so G must be isomorphic to L4(4) by |G| = |M |, as
desired.

Proof of the Main Theorem. The necessity is obvious by [8] and the sufficiency
follows from Lemmas 3.1 and 3.2.
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