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1. Introduction

The theory of hyperstructures was introduced in 1934 by Marty [11] at the 8th Con-
gress of Scandinavian Mathematicians. This theory has been subsequently deve-
loped by Corsini [5], [6], Mittas [12], [13], Stratigopoulos [17], Vougiouklis [20] and
by various authors. Basic definitions and propositions about the hyperstructures
are found in [5], [6] and [20]. Krasner [10] has studied the notion of hyperfields,
hyperrings and then many researchers like Davvaz [7], Massouros [14] and others
followed him.

There are different notions of hyperrings (R, +, ·). If in a hyperring the ad-
dition + is a hyperoperation and the multiplication · is a binary operation, then
the hyperring is called a Krasner (additive) hyperring [10]. The monograph [8]
of Davvaz and Leoreanu-Fotea contains many results about various hyperrings.
Asokkumar and Velrajan [1], [4] have studied Von Neumann regularity in Krasner
hyperrings. Rota [16] introduced multiplicative hyperrings, where the additions
are binary operations and multiplications are hyperoperations. De Salvo [9] in-
troduced hyperrings in which the additions and the multiplications are hyperop-
erations. These hyperrings are studied by Rahnamani Barghi [15] and also by
Asokkumar and Velrajan [2], [3], [19].
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In this paper we prove that regularity (Von Neumann) is a radical property on
hyperrings, where the additions and the multiplications are hyperoperations. We
also prove that if a hyperring R is regular, then for a hyperideal I of R both I and
R/I are regular. Conversely, if R is a hyperring and if there exists a hyperideal I
of R such that both I and R/I are regular, then R is regular.

2. Basic definitions and notations

This section explains some basic definitions that have been used in the sequel. A
hyperoperation ◦ on a nonempty set H is a mapping of H ×H into the family of
nonempty subsets of H (i.e., x ◦ y ⊆ H for every x, y ∈ H). A hypergroupoid is a
nonempty set H equipped with a hyperoperation ◦. For any two subsets A,B of
a hypergroupoid H, the set A ◦ B means

⋃
a∈A
b∈B

(a ◦ b). A hypergroupoid (H, ◦) is

called a semihypergroup if x◦(y◦z) = (x◦y)◦z for every x, y, z ∈ H(the associative
axiom). A hypergroupoid (H, ◦) is called a quasihypergroup if x ◦H = H ◦ x = H
for every x ∈ H(the reproductive axiom). A reproductive semihypergroup is
called a hypergroup (Marty). A comprehensive review of the theory of hypergroups
appears in [5].

A nonempty set H with a hyperoperation + is said to be a canonical hyper-
group if the following conditions hold:

(i) for every x, y, z ∈ H, x + (y + z) = (x + y) + z,

(ii) for every x, y ∈ H, x + y = y + x,

(iii) there exists 0 ∈ H such that 0 + x = x for all x ∈ H,

(iv) for every x ∈ H there exists an unique element denoted by −x ∈ H such
that 0 ∈ x + (−x),

(v) for every x, y, z ∈ H, z ∈ x + y implies y ∈ −x + z and x ∈ z − y.

A nonempty subset N of a canonical hypergroup of H is called a subcanonical
hypergroup of H if N itself is a canonical hypergroup under the same hyperoper-
ation as that of H. Equivalently, for every x, y ∈ N, x− y ⊆ N. Moreover, for any
subset A of H, −A denotes the set {−a : a ∈ A}.

The following elementary facts in a canonical hypergroup easily follow from
the axioms.

(i) −(−a) = a for every a ∈ R;

(ii) 0 is the unique element such that for every a ∈ R, there is an element
−a ∈ R with the property 0 ∈ a + (−a);

(iii) −0 = 0;

(iv) −(a + b) = −b− a for all a, b ∈ R.
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Theorem 2.1 [19] Let H be a canonical hypergroup and N be a subcanonical
hypergroup of H. For any two elements a, b ∈ H, if we define a relation a ∼ b if
and only if a ∈ b + N, then ∼ is an equivalence relation on H.

Let x be the equivalence class determined by the element x ∈ H and H/N
be the collection of all equivalence classes.

Theorem 2.2 [19] Let H be a canonical hypergroup and N be a subcanonical
hypergroup of H. Then x = x + N for any x ∈ H.

Theorem 2.3 [19] Let H be a canonical hypergroup, N be a subcanonical hyper-
group of H. If we define x⊕ y = {z : z ∈ x + y} for all x, y ∈ H/N, then H/N is
a canonical hypergroup.

A nonempty set R with two hyperoperations + and · is said to be a hyperring
if (R, +) is a canonical hypergroup, (R, ·) is a semihypergroup with x ·0 = 0 ·x = 0
for all x ∈ R (0 as a bilaterally absorbing element) and the hyperoperation · is
distributive over +, i.e., for every x, y, z ∈ R, x · (y + z) = x · y + x · z and
(x+ y) · z = x · z + y · z. The hyperoperation + is usually called hyperaddition and
the hyperoperation · is called hypermultiplication.

Definition 2.4 Let R be a hyperring and I be a nonempty subset of R. Then I
is called a left (resp. right) hyperideal of R if (I, +) is a canonical subhypergroup
of R and for every a ∈ Iand r ∈ R, ra ⊆ I (resp. ar ⊆ I). A hyperideal of R is
one which is a left as well as a right hyperideal of R.

If I, J are left (resp. right) hyperideals of a hyperring R, then I + J is a
left (resp. right) hyperideal of R. If I, J are hyperideals of a hyperring R, then
I + J is a hyperideal of R. Let R be a hyperring, I a hyperideal of R and R/I be
the set of all distinct equivalence classes of I in R obtained by considering I as
a subcanonical hypergroup of R. Then R/I is a canonical hypergroup under the
hyperaddition defined in the Theorem 2.3.

Theorem 2.5 [19] If we define x⊗ y = {z : z ∈ xy} for all x, y ∈ R/I, then R/I
is a hyperring.

Definition 2.6 Let R1 and R2 be two hyperrings. A mapping φ from R1 into R2

is called a homomorphism if the following conditions hold for all a, b ∈ R1 :

(i) φ(a + b) ⊆ φ(a) + φ(b);

(ii) φ(ab) ⊆ φ(a)φ(b), and

(iii) φ(0) = 0.

The mapping φ is called a good homomorphism or a strong homomorphism if
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(i) φ(a + b) = φ(a) + φ(b);

(ii) φ(ab) = φ(a)φ(b), and

(iii) φ(0) = 0 for all a, b ∈ R1.

Definition 2.7 A homomorphism (resp. strong homomorphism)φ from a hy-
perring R1 into a hyperring R2 is said to be an isomorphism (resp. strong
isomorphism) if φ is one to one and onto. In this case we say R1 is isomorphic
(resp. strongly isomorphic) to R2 and is denoted by R1

∼= R2.

Definition 2.8 Let φ be a homomorphism from a hyperring R1 into another
hyperring R2. Then the set {x ∈ R1 : φ(x) = 0} is called the kernel of φ and is
denoted by Kerφ and the set {φ(x) : x ∈ R1} is called Image of φ and is denoted
by Imφ.

It is clear that Kerφ is a hyperideal of R1 and Imφ is a subcanonical hyper-
group of R2 and R1/Kerφ is a hyperring.

Theorem 2.9 [19] (First Isomorphism Theorem) Let φ be a strong homomor-
phism from a hyperring R1 onto a hyperring R2 with kernel K. Then R1/K is
strongly isomorphic to R2.

Theorem 2.10 [19] (Second Isomorphism Theorem) If I and J are hyperideals
of a hyperring R then J/(I ∩ J)∼= (I + J)/I.

3. Regular hyperring

First, let us recall the definition of a regular ring. An element a in a ring R is
said to be regular if a ∈ aRa. A ring R is called regular if every element of R is
regular. We define a regular hyperring as follows.

Definition 3.1 [2] An element a ∈ R is said to be regular if a ∈ aRa. That is,
there exists an element b ∈ R such that a ∈ aba. A hyperring R is said to be
regular if every element of R is regular.

Proposition 3.2 [2] Strong homomorphic image of a regular hyperring is a reg-
ular hyperring.

Proposition 3.3 If I is a hyperideal of a regular hyperring R, then I is regular.

Proof. Consider a hyperideal I of R. Let a ∈ I. Since R is regular, there exists
x ∈ R such that a ∈ axa. Then a ∈ a(xa) ⊆ (axa)(xa) = a(xax)a where xax ⊆ I.
Thus I is regular.

Theorem 3.4 If I, J are regular hyperideals of a hyperring R, then I ∩ J is also
a regular hyperideal of R.
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Proof. It is clear that I ∩ J is a hyperideal of R. Let a ∈ I ∩ J. Then there exist
x ∈ I and y ∈ J such that a ∈ axa and a ∈ aya. Now,

a ∈ axa ⊆ (axa)x(aya) = a(xaxay)a.

Since I, J are hyperideals of R, xaxay ⊆ I ∩ J. Thus I ∩ J is regular.

4. Regularity is a radical property on hyperrings

In this section, we show that regularity is a radical property on hyperrings. We
also prove that if a hyperring R is regular, then for a hyperideal I of R both I and
R/I are regular. Conversely, if R is a hyperring and if there exists a hyperideal I
of R such that both I and R/I are regular, then R is regular.

Definition 4.1 Let P be a property of hyperrings. A hyperring with the property
P is called a P -hyperring. A hyperideal I of a hyperring R is called a P -hyperideal
if the hyperideal I, as a hyperring, is a P -hyperring.

Definition 4.2 A P -hyperideal P (R) of a hyperring R which contains every P -
hyperideal of R is called the P -hyperradical of R.

Definition 4.3 A property P of a hyperring is called a radical property (in the
sense of Amitsur and Kurosh [18]) if P satisfies the following conditions:

(i) Strong homomorphic image of a P -hyperring is a P -hyperring.

(ii) Every hyperring R has a P -hyperradical P (R).

(iii) The hyperring R/P (R) has no non-zero P -hyperideals.

Lemma 4.4 Let R be a hyperring and a ∈ R. If there exists x ∈ R and c ∈ axa−a
such that c is regular, then a is regular.

Proof. Since c ∈ axa − a is regular, there exists d ∈ R such that c ∈ cdc. This
means that

c ∈ (axa− a)d(axa− a)

= (axad− ad)(axa− a)

⊆ axadaxa− axada− adaxa + ada

= a(xadaxa− xada− daxa + da)

= a(xadax− xad− dax + d)a

Hence c ∈ aba for some b ∈ xadax − xad − dax + d. Since c ∈ (axa − a), we get
a ∈ (axa− c) ⊆ axa− aba = a(x− b)a. So a ∈ aya for some y ∈ x− b. That is, a
is regular.
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Theorem 4.5 Let R be a regular hyperring and I be a hyperideal of R. Then I and
R/I are regular. Conversely, if R is a hyperring and if there exists a hyperideal I
of R such that both I and R/I are regular, then R is regular.

Proof. Let R be a regular hyperring and I be a hyperideal of R. Then by the
Proposition 3.3, I is a regular hyperideal. Let x+I ∈ R/I. Since R is regular, there
exists y ∈ R such that x ∈ xyx. Consider y = y + I. Now, x y x = {z : z ∈ xyx}.
Since x ∈ xyx we have x ∈ {z : z ∈ xyx}. That is, x ∈ x y x. So x + I is regular
in R/I. Hence R/I is regular.

Conversely, suppose R is a hyperring and there exists a hyperideal I of R
such that both I and R/I are regular. Let a ∈ R. Then a ∈ R/I. Since R/I is
regular, there exists an element b ∈ R/I such that a ∈ a b a = {z : z ∈ aba}. This
means that a = z for some z ∈ aba. That is, a+ I = z + I for some z ∈ aba. Since
z ∈ a+I, we get z ∈ a+ i for some i ∈ I. Therefore, i ∈ −a+z = z−a ⊆ aba−a.
Thus i ∈ aba− a. Since I is regular, i is a regular element of I and therefore i is
a regular element of R. Thus the set aba − a contains a regular element i of R.
Then by the Lemma 4.4, the element a is regular in R. Hence R is regular.

Theorem 4.6 Let R be a hyperring. If I and J are regular hyperideals of R, then
I + J is regular.

Proof. Since J/(I ∩ J) is a homomorphic image of a regular hyperideal J, it is
regular. By the Theorem 2.10, J/(I ∩ J) is isomorphic to (I + J)/I. Therefore,
(I + J)/I is regular. Since both I and (I + J)/I are regular, by the Theorem 4.5,
the hyperideal I + J is regular.

Theorem 4.7 Any hyperring has a regular hyperradical.

Proof. Let R be a hyperring. Consider the hyperideal (0) of R. Clearly, (0) is a
regular hyperideal of R. If (0) is the only regular hyperideal of R, then this is the
regular hyperradical.

Otherwise, let {Ii} be the collection of all regular hyperideals in a hyperring
R. Their sum is given by M =

⋃{∑finite ai : ai ∈ Ii}. Clearly, M is a hyperideal
of R. If x ∈ M, then x ∈ ai + aj + ak + · · · + al, where ai ∈ Ii. By Theorem 4.6,
Ii + Ij + Ik + · · ·+ Il is a regular hyperideal. Therefore, x is regular. Hence, M is
regular. Since M contains all regular hyperideals of R, we have M is the regular
hyperradical of R.

Theorem 4.8 Let R be a hyperring and M be the regular hyperradical of R. Then
the hyperring R/M has no non-zero regular hyperideals.

Proof. Let J be a regular hyperideal of R/M. Then J = I/M for some hyperideal
I of R containing M. Since M and I/M are regular, by the Theorem 4.5, I is
regular. By the definition of M, we have I ⊆ M. Hence I = M. Therefore, J is a
zero hyperideal of R/M.

Theorem 4.9 The regularity is a radical property on hyperrings.
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Proof. The proof follows from the Proposition 3.2, and the Theorems 4.7, 4.8.
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