A RADICAL PROPERTY OF HYPERRINGS

A. Asokkumar

M. Velrajan

Department of Mathematics Aditanar College of Arts and Science Tiruchendur – 628216, Tamilnadu India e-mail: ashok_a58@yahoo.co.in

Abstract. In this paper we prove that Von Neumann regularity is a radical property on hyperrings.

Keywords and phrases: Hyperring, Regular hyperring, Hyperrideal, Hyperradical, Radical Property.

2000 AMS Subject Classification Codes: 20N20.

1. Introduction

The theory of hyperstructures was introduced in 1934 by Marty [11] at the 8th Congress of Scandinavian Mathematicians. This theory has been subsequently developed by Corsini [5], [6], Mittas [12], [13], Stratigopoulos [17], Vougiouklis [20] and by various authors. Basic definitions and propositions about the hyperstructures are found in [5], [6] and [20]. Krasner [10] has studied the notion of hyperfields, hyperrings and then many researchers like Davvaz [7], Massouros [14] and others followed him.

There are different notions of hyperrings $(R, +, \cdot)$. If in a hyperring the addition + is a hyperoperation and the multiplication \cdot is a binary operation, then the hyperring is called a Krasner (additive) hyperring [10]. The monograph [8] of Davvaz and Leoreanu-Fotea contains many results about various hyperrings. Asokkumar and Velrajan [1], [4] have studied Von Neumann regularity in Krasner hyperrings. Rota [16] introduced multiplicative hyperrings, where the additions are binary operations and multiplications are hyperoperations. De Salvo [9] introduced hyperrings in which the additions and the multiplications are hyperoperations. These hyperrings are studied by Rahnamani Barghi [15] and also by Asokkumar and Velrajan [2], [3], [19]. In this paper we prove that regularity (Von Neumann) is a radical property on hyperrings, where the additions and the multiplications are hyperoperations. We also prove that if a hyperring R is regular, then for a hyperideal I of R both I and R/I are regular. Conversely, if R is a hyperring and if there exists a hyperideal Iof R such that both I and R/I are regular, then R is regular.

2. Basic definitions and notations

This section explains some basic definitions that have been used in the sequel. A hyperoperation \circ on a nonempty set H is a mapping of $H \times H$ into the family of nonempty subsets of H (i.e., $x \circ y \subseteq H$ for every $x, y \in H$). A hypergroupoid is a nonempty set H equipped with a hyperoperation \circ . For any two subsets A, B of a hypergroupoid H, the set $A \circ B$ means $\bigcup_{\substack{a \in A \\ b \in B}} (a \circ b)$. A hypergroupoid (H, \circ) is called a semihypergroup if $x \circ (y \circ z) = (x \circ y) \circ z$ for every $x, y, z \in H$ (the associative axiom). A hypergroupoid (H, \circ) is called a quasihypergroup if $x \circ H = H \circ x = H$ for every $x \in H$ (the reproductive axiom). A reproductive semihypergroup is called a hypergroup (Marty). A comprehensive review of the theory of hypergroups appears in [5].

A nonempty set H with a hyperoperation + is said to be a *canonical hyper*group if the following conditions hold:

- (i) for every $x, y, z \in H$, x + (y + z) = (x + y) + z,
- (ii) for every $x, y \in H, x + y = y + x$,
- (iii) there exists $0 \in H$ such that 0 + x = x for all $x \in H$,
- (iv) for every $x \in H$ there exists an unique element denoted by $-x \in H$ such that $0 \in x + (-x)$,
- (v) for every $x, y, z \in H$, $z \in x + y$ implies $y \in -x + z$ and $x \in z y$.

A nonempty subset N of a canonical hypergroup of H is called a *subcanonical* hypergroup of H if N itself is a canonical hypergroup under the same hyperoperation as that of H. Equivalently, for every $x, y \in N, x - y \subseteq N$. Moreover, for any subset A of H, -A denotes the set $\{-a : a \in A\}$.

The following elementary facts in a canonical hypergroup easily follow from the axioms.

- (i) -(-a) = a for every $a \in R$;
- (ii) 0 is the unique element such that for every $a \in R$, there is an element $-a \in R$ with the property $0 \in a + (-a)$;
- (iii) -0 = 0;
- (iv) -(a+b) = -b a for all $a, b \in R$.

Theorem 2.1 [19] Let H be a canonical hypergroup and N be a subcanonical hypergroup of H. For any two elements $a, b \in H$, if we define a relation $a \sim b$ if and only if $a \in b + N$, then \sim is an equivalence relation on H.

Let \overline{x} be the equivalence class determined by the element $x \in H$ and H/N be the collection of all equivalence classes.

Theorem 2.2 [19] Let H be a canonical hypergroup and N be a subcanonical hypergroup of H. Then $\overline{x} = x + N$ for any $x \in H$.

Theorem 2.3 [19] Let H be a canonical hypergroup, N be a subcanonical hypergroup of H. If we define $\overline{x} \oplus \overline{y} = \{\overline{z} : z \in x + y\}$ for all $\overline{x}, \overline{y} \in H/N$, then H/N is a canonical hypergroup.

A nonempty set R with two hyperoperations + and \cdot is said to be a hyperring if (R, +) is a canonical hypergroup, (R, \cdot) is a semihypergroup with $x \cdot 0 = 0 \cdot x = 0$ for all $x \in R$ (0 as a bilaterally absorbing element) and the hyperoperation \cdot is distributive over +, i.e., for every $x, y, z \in R$, $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(x + y) \cdot z = x \cdot z + y \cdot z$. The hyperoperation + is usually called hyperaddition and the hyperoperation \cdot is called hypermultiplication.

Definition 2.4 Let R be a hyperring and I be a nonempty subset of R. Then I is called a *left* (resp. *right*) *hyperideal* of R if (I, +) is a canonical subhypergroup of R and for every $a \in I$ and $r \in R$, $ra \subseteq I$ (resp. $ar \subseteq I$). A *hyperideal* of R is one which is a left as well as a right hyperideal of R.

If I, J are left (resp. right) hyperideals of a hyperring R, then I + J is a left (resp. right) hyperideal of R. If I, J are hyperideals of a hyperring R, then I + J is a hyperideal of R. Let R be a hyperring, I a hyperideal of R and R/I be the set of all distinct equivalence classes of I in R obtained by considering I as a subcanonical hypergroup of R. Then R/I is a canonical hypergroup under the hyperaddition defined in the Theorem 2.3.

Theorem 2.5 [19] If we define $\overline{x} \otimes \overline{y} = \{\overline{z} : z \in xy\}$ for all $\overline{x}, \overline{y} \in R/I$, then R/I is a hyperring.

Definition 2.6 Let R_1 and R_2 be two hyperrings. A mapping ϕ from R_1 into R_2 is called a *homomorphism* if the following conditions hold for all $a, b \in R_1$:

- (i) $\phi(a+b) \subseteq \phi(a) + \phi(b);$
- (ii) $\phi(ab) \subseteq \phi(a)\phi(b)$, and
- (iii) $\phi(0) = 0$.

The mapping ϕ is called a good homomorphism or a strong homomorphism if

- (i) $\phi(a+b) = \phi(a) + \phi(b);$
- (ii) $\phi(ab) = \phi(a)\phi(b)$, and
- (iii) $\phi(0) = 0$ for all $a, b \in R_1$.

Definition 2.7 A homomorphism (resp. strong homomorphism) ϕ from a hyperring R_1 into a hyperring R_2 is said to be an *isomorphism* (*resp. strong isomorphism*) if ϕ is one to one and onto. In this case we say R_1 is *isomorphic* (resp. *strongly isomorphic*) to R_2 and is denoted by $R_1 \cong R_2$.

Definition 2.8 Let ϕ be a homomorphism from a hyperring R_1 into another hyperring R_2 . Then the set $\{x \in R_1 : \phi(x) = 0\}$ is called the *kernel* of ϕ and is denoted by $Ker\phi$ and the set $\{\phi(x) : x \in R_1\}$ is called *Image* of ϕ and is denoted by $Im\phi$.

It is clear that $Ker\phi$ is a hyperideal of R_1 and $Im\phi$ is a subcanonical hypergroup of R_2 and $R_1/Ker\phi$ is a hyperring.

Theorem 2.9 [19] (First Isomorphism Theorem) Let ϕ be a strong homomorphism from a hyperring R_1 onto a hyperring R_2 with kernel K. Then R_1/K is strongly isomorphic to R_2 .

Theorem 2.10 [19] (Second Isomorphism Theorem) If I and J are hyperideals of a hyperring R then $J/(I \cap J) \cong (I + J)/I$.

3. Regular hyperring

First, let us recall the definition of a regular ring. An element a in a ring R is said to be regular if $a \in aRa$. A ring R is called regular if every element of R is regular. We define a regular hyperring as follows.

Definition 3.1 [2] An element $a \in R$ is said to be regular if $a \in aRa$. That is, there exists an element $b \in R$ such that $a \in aba$. A hyperring R is said to be regular if every element of R is regular.

Proposition 3.2 [2] Strong homomorphic image of a regular hyperring is a regular hyperring.

Proposition 3.3 If I is a hyperideal of a regular hyperring R, then I is regular.

Proof. Consider a hyperideal I of R. Let $a \in I$. Since R is regular, there exists $x \in R$ such that $a \in axa$. Then $a \in a(xa) \subseteq (axa)(xa) = a(xax)a$ where $xax \subseteq I$. Thus I is regular.

Theorem 3.4 If I, J are regular hyperideals of a hyperring R, then $I \cap J$ is also a regular hyperideal of R.

Proof. It is clear that $I \cap J$ is a hyperideal of R. Let $a \in I \cap J$. Then there exist $x \in I$ and $y \in J$ such that $a \in axa$ and $a \in aya$. Now,

$$a \in axa \subseteq (axa)x(aya) = a(xaxay)a.$$

Since I, J are hyperideals of R, $xaxay \subseteq I \cap J$. Thus $I \cap J$ is regular.

4. Regularity is a radical property on hyperrings

In this section, we show that regularity is a radical property on hyperrings. We also prove that if a hyperring R is regular, then for a hyperideal I of R both I and R/I are regular. Conversely, if R is a hyperring and if there exists a hyperideal I of R such that both I and R/I are regular, then R is regular.

Definition 4.1 Let P be a property of hyperrings. A hyperring with the property P is called a P-hyperring. A hyperideal I of a hyperring R is called a P-hyperrideal if the hyperideal I, as a hyperring, is a P-hyperring.

Definition 4.2 A *P*-hyperideal P(R) of a hyperring *R* which contains every *P*-hyperideal of *R* is called the *P*-hyperradical of *R*.

Definition 4.3 A property P of a hyperring is called a *radical property* (in the sense of Amitsur and Kurosh [18]) if P satisfies the following conditions:

- (i) Strong homomorphic image of a *P*-hyperring is a *P*-hyperring.
- (ii) Every hyperring R has a P-hyperradical P(R).
- (iii) The hyperring R/P(R) has no non-zero P-hyperideals.

Lemma 4.4 Let R be a hyperring and $a \in R$. If there exists $x \in R$ and $c \in axa-a$ such that c is regular, then a is regular.

Proof. Since $c \in axa - a$ is regular, there exists $d \in R$ such that $c \in cdc$. This means that

$$c \in (axa - a)d(axa - a)$$

= $(axad - ad)(axa - a)$
 $\subseteq axadaxa - axada - adaxa + ada$
= $a(xadaxa - xada - daxa + da)$
= $a(xadax - xad - dax + d)a$

Hence $c \in aba$ for some $b \in xadax - xad - dax + d$. Since $c \in (axa - a)$, we get $a \in (axa - c) \subseteq axa - aba = a(x - b)a$. So $a \in aya$ for some $y \in x - b$. That is, a is regular.

Theorem 4.5 Let R be a regular hyperring and I be a hyperideal of R. Then I and R/I are regular. Conversely, if R is a hyperring and if there exists a hyperideal I of R such that both I and R/I are regular, then R is regular.

Proof. Let R be a regular hyperring and I be a hyperideal of R. Then by the Proposition 3.3, I is a regular hyperideal. Let $x+I \in R/I$. Since R is regular, there exists $y \in R$ such that $x \in xyx$. Consider $\overline{y} = y + I$. Now, $\overline{x} \ \overline{y} \ \overline{x} = \{\overline{z} : z \in xyx\}$. Since $x \in xyx$ we have $\overline{x} \in \{\overline{z} : z \in xyx\}$. That is, $\overline{x} \in \overline{x} \ \overline{y} \ \overline{x}$. So x + I is regular in R/I. Hence R/I is regular.

Conversely, suppose R is a hyperring and there exists a hyperideal I of R such that both I and R/I are regular. Let $a \in R$. Then $\overline{a} \in R/I$. Since R/I is regular, there exists an element $\overline{b} \in R/I$ such that $\overline{a} \in \overline{a} \ \overline{b} \ \overline{a} = \{\overline{z} : z \in aba\}$. This means that $\overline{a} = \overline{z}$ for some $z \in aba$. That is, a + I = z + I for some $z \in aba$. Since $z \in a + I$, we get $z \in a + i$ for some $i \in I$. Therefore, $i \in -a + z = z - a \subseteq aba - a$. Thus $i \in aba - a$. Since I is regular, i is a regular element of I and therefore i is a regular element of R. Thus the set aba - a contains a regular element i of R. Then by the Lemma 4.4, the element a is regular in R. Hence R is regular.

Theorem 4.6 Let R be a hyperring. If I and J are regular hyperideals of R, then I + J is regular.

Proof. Since $J/(I \cap J)$ is a homomorphic image of a regular hyperideal J, it is regular. By the Theorem 2.10, $J/(I \cap J)$ is isomorphic to (I + J)/I. Therefore, (I + J)/I is regular. Since both I and (I + J)/I are regular, by the Theorem 4.5, the hyperideal I + J is regular.

Theorem 4.7 Any hyperring has a regular hyperradical.

Proof. Let R be a hyperring. Consider the hyperideal (0) of R. Clearly, (0) is a regular hyperideal of R. If (0) is the only regular hyperideal of R, then this is the regular hyperradical.

Otherwise, let $\{I_i\}$ be the collection of all regular hyperideals in a hyperring R. Their sum is given by $M = \bigcup \{\sum_{finite} a_i : a_i \in I_i\}$. Clearly, M is a hyperideal of R. If $x \in M$, then $x \in a_i + a_j + a_k + \cdots + a_l$, where $a_i \in I_i$. By Theorem 4.6, $I_i + I_j + I_k + \cdots + I_l$ is a regular hyperideal. Therefore, x is regular. Hence, M is regular. Since M contains all regular hyperideals of R, we have M is the regular hyperradical of R.

Theorem 4.8 Let R be a hyperring and M be the regular hyperradical of R. Then the hyperring R/M has no non-zero regular hyperideals.

Proof. Let J be a regular hyperideal of R/M. Then J = I/M for some hyperideal I of R containing M. Since M and I/M are regular, by the Theorem 4.5, I is regular. By the definition of M, we have $I \subseteq M$. Hence I = M. Therefore, J is a zero hyperideal of R/M.

Theorem 4.9 The regularity is a radical property on hyperrings.

Proof. The proof follows from the Proposition 3.2, and the Theorems 4.7, 4.8.

References

- [1] ASOKKUMAR, A., Hyperlattice formed by the idempotents of a hyperring, Tamkang J. Math., 38 (3)(2007), 209-215.
- [2] ASOKKUMAR, A. and VELRAJAN, M., *Characterizations of regular hyper*rings, Italian Journal of Pure and Applied Mathematics, 22(2007), 115-124.
- [3] ASOKKUMAR, A. and VELRAJAN, M., Hyperring of matrices over a regular hyperring, Italian Journal of Pure and Applied Mathematics, 23 (2008), 113-120.
- [4] ASOKKUMAR, A. and VELRAJAN, M., Von Neumann Regularity on Krasner Hyperring, Algebra, Graph Theory and their Applications, Editors: T. Tamizh Chelvam, S. Somasundaram and R. Kala, Narosa Publishing House, New Delhi, India, (2010), 9-19.
- [5] CORSINI, P., *Prolegomena of hypergroup theory*, Second edition, Aviani Editore, 1993.
- [6] CORSINI, P., LEOREANU, V., *Applications of Hyperstructure Theory*, Kluwer Academic Publishers, Advances in Math., 5, 2003.
- [7] DAVVAZ, B., On hyperring of Polynomials, Italian Journal of Pure and Applied Mathematics, 15 (2004), 206-214.
- [8] DAVVAZ, B. and LEOREANU-FOTEA, V., Hyperring Theory and Applications, International Academic Press, Palm Harbor, U.S.A, 2007.
- [9] DE SALVO, M., Iperanelli ed ipercorpi, Ann. Sci. Univ. Clermount II, Ser. Math. Fasc., 22 (1985), 89-107.
- [10] KRASNER, M., A class of hyperrings and hyperfields, Int. J. Math and Math. Sci., 2 (1983), 307-312.
- [11] MARTY, F., Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm, 1934, 45-49.
- [12] MITTAS, J., Hyperanneaux et certaines de leurs proprietes, C.R. Acad. Sci. Paris, t. 269, Serie A, (1969).
- [13] MITTAS, J., Sur les hyperanneaux et les hypercorps, Mat. Balk., t. 3, Beograd, (1983).
- [14] MASSOUROS, C., Quasicanonical Hypergroups, Fourth Int. Congress on AHA, World Scientific, 1990, 129-136.

- [15] RAHNAMAI BARGHI, A., A class of hyperrings, Journal of Discrete Mathematical Sciences & Cryptography, 6 (2003), 227-233.
- [16] ROTA, R., Strongly distributive multiplicative hyperrings, J. Geom., 39(1990), 130-138.
- [17] STRATIGOPOULOS, D., Hyperanneaux, hypercorps, hypermodules, hyperspaces vectoriels et leurs proprietes elementaires, C.R. Acad. Sci., Paris, A (269) (1969), 489-492.
- [18] SZASZ, F.A., Radicals of Rings, Wiley-Interscience Publication, New York, 1981.
- [19] VELRAJAN, M., ASOKKUMAR, A., Note on Isomorphism Theorems of Hyperrings, International Journal of Mathematics and Mathematical Sciences, vol. 2010, Article ID 376985, 12 pages.
- [20] VOUGIOUKLIS, T., Hyperstructures and their representations, Hadronic Press, Inc., 115, Palm Harber, USA, 1994.

Accepted: 21.09.2011