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1. Introduction

The theory of hyperstructures was introduced in 1934 by Marty [11] at the 8" Con-
gress of Scandinavian Mathematicians. This theory has been subsequently deve-
loped by Corsini [5], [6], Mittas [12], [13], Stratigopoulos [17], Vougiouklis [20] and
by various authors. Basic definitions and propositions about the hyperstructures
are found in [5], [6] and [20]. Krasner [10] has studied the notion of hyperfields,
hyperrings and then many researchers like Davvaz [7], Massouros [14] and others
followed him.

There are different notions of hyperrings (R, +,-). If in a hyperring the ad-
dition + is a hyperoperation and the multiplication - is a binary operation, then
the hyperring is called a Krasner (additive) hyperring [10]. The monograph [§]
of Davvaz and Leoreanu-Fotea contains many results about various hyperrings.
Asokkumar and Velrajan [1], [4] have studied Von Neumann regularity in Krasner
hyperrings. Rota [16] introduced multiplicative hyperrings, where the additions
are binary operations and multiplications are hyperoperations. De Salvo [9] in-
troduced hyperrings in which the additions and the multiplications are hyperop-
erations. These hyperrings are studied by Rahnamani Barghi [15] and also by
Asokkumar and Velrajan [2], [3], [19].
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In this paper we prove that regularity (Von Neumann) is a radical property on
hyperrings, where the additions and the multiplications are hyperoperations. We
also prove that if a hyperring R is regular, then for a hyperideal I of R both I and
R/I are regular. Conversely, if R is a hyperring and if there exists a hyperideal [
of R such that both I and R/I are regular, then R is regular.

2. Basic definitions and notations

This section explains some basic definitions that have been used in the sequel. A
hyperoperation o on a nonempty set H is a mapping of H x H into the family of
nonempty subsets of H (i.e., z oy C H for every x,y € H). A hypergroupoid is a
nonempty set H equipped with a hyperoperation o. For any two subsets A, B of
a hypergroupoid H, the set A o B means Uggg (aob). A hypergroupoid (H,o) is
called a semihypergroup if xo(yoz) = (zoy)oz for every x,y, z € H(the associative
axiom). A hypergroupoid (H, o) is called a quasihypergroup if to H = Hox = H
for every x € H(the reproductive axiom). A reproductive semihypergroup is
called a hypergroup (Marty). A comprehensive review of the theory of hypergroups
appears in [5].

A nonempty set H with a hyperoperation + is said to be a canonical hyper-
group if the following conditions hold:

(i) for every z,y,z € H, x+ (y+2) = (x +y) + 2,

(i) for every z,y € H, z +y =y + z,

(iii) there exists 0 € H such that 0 + x = z for all x € H,
)

(iv) for every x € H there exists an unique element denoted by —x € H such
that 0 € v + (—x),

(v) for every z,y,z € H, z € x + y impliesy € —x + zand x € z — y.

A nonempty subset N of a canonical hypergroup of H is called a subcanonical
hypergroup of H if N itself is a canonical hypergroup under the same hyperoper-
ation as that of H. Equivalently, for every x,y € N, x —y C N. Moreover, for any
subset A of H, —A denotes the set {—a :a € A}.

The following elementary facts in a canonical hypergroup easily follow from
the axioms.

(i) —(—a) = a for every a € R;

(ii) 0 is the unique element such that for every a € R, there is an element
—a € R with the property 0 € a + (—a);

(iv) —(a +b) = —b—a for all a,b € R.
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Theorem 2.1 [19] Let H be a canonical hypergroup and N be a subcanonical
hypergroup of H. For any two elements a,b € H, if we define a relation a ~ b if
and only if a € b+ N, then ~ is an equivalence relation on H.

Let T be the equivalence class determined by the element x € H and H/N
be the collection of all equivalence classes.

Theorem 2.2 [19] Let H be a canonical hypergroup and N be a subcanonical
hypergroup of H. Then = x + N for any x € H.

Theorem 2.3 [19] Let H be a canonical hypergroup, N be a subcanonical hyper-
group of H. If we definet @y ={Z:2z € x+y} for allT,y € H/N, then H/N is

a canonical hypergroup.

A nonempty set R with two hyperoperations + and - is said to be a hyperring
if (R, +) is a canonical hypergroup, (R, -) is a semihypergroup with z-0 = 0-z =0
for all z € R (0 as a bilaterally absorbing element) and the hyperoperation - is
distributive over +, i.e., for every x,y,z2 € R, - (y +2) = -y + x -2z and
(x+y)-z=ux-2+y- 2. The hyperoperation + is usually called hyperaddition and
the hyperoperation - is called hypermultiplication.

Definition 2.4 Let R be a hyperring and I be a nonempty subset of R. Then [
is called a left (resp. right) hyperideal of R if (I,+) is a canonical subhypergroup
of R and for every a € Iand r € R, ra C I (resp. ar C I). A hyperideal of R is
one which is a left as well as a right hyperideal of R.

If I,J are left (resp. right) hyperideals of a hyperring R, then I + J is a
left (resp. right) hyperideal of R. If I, J are hyperideals of a hyperring R, then
I+ J is a hyperideal of R. Let R be a hyperring, I a hyperideal of R and R/I be
the set of all distinct equivalence classes of I in R obtained by considering I as
a subcanonical hypergroup of R. Then R/I is a canonical hypergroup under the
hyperaddition defined in the Theorem 2.3.

Theorem 2.5 [19] If we define T @Yy = {Z: z € xy} for allT,y € R/I, then R/I
1S a hyperring.

Definition 2.6 Let R; and R, be two hyperrings. A mapping ¢ from R; into Ry
is called a homomorphism if the following conditions hold for all a,b € R; :

(i) ola+Db) C ¢(a) + o(b);
(i) ¢(ad) € ¢(a)p(b), and
(iii) ¢(0) = 0.

The mapping ¢ is called a good homomorphism or a strong homomorphism if
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(i) ¢a+0) = d(a) + H(b);
(i) ¢(ab) = ¢(a)¢(b), and
(iii) ¢(0) =0 for all a,b € R;.

Definition 2.7 A homomorphism (resp. strong homomorphism)¢ from a hy-
perring R; into a hyperring Ry is said to be an isomorphism (resp. strong
isomorphism) if ¢ is one to one and onto. In this case we say R is isomorphic
(resp. strongly isomorphic) to Ry and is denoted by Ry = Rs.

Definition 2.8 Let ¢ be a homomorphism from a hyperring R; into another
hyperring Rs. Then the set {x € Ry : ¢(x) = 0} is called the kernel of ¢ and is
denoted by Ker¢g and the set {¢(z) : x € Ry} is called Image of ¢ and is denoted
by Imao.

It is clear that Ker¢ is a hyperideal of Ry and Im¢ is a subcanonical hyper-
group of Ry and R;/Ker¢ is a hyperring,.

Theorem 2.9 [19] (First Isomorphism Theorem) Let ¢ be a strong homomor-
phism from a hyperring Ry onto a hyperring Re with kernel K. Then Ri/K is
strongly isomorphic to Rs.

Theorem 2.10 [19] (Second Isomorphism Theorem) If I and J are hyperideals
of a hyperring R then J/(INJ)= (I +J)/1.

3. Regular hyperring

First, let us recall the definition of a regular ring. An element « in a ring R is
said to be regular if a € aRa. A ring R is called regular if every element of R is
regular. We define a regular hyperring as follows.

Definition 3.1 [2] An element a € R is said to be regular if a € aRa. That is,
there exists an element b € R such that a € aba. A hyperring R is said to be
regular if every element of R is regular.

Proposition 3.2 [2] Strong homomorphic image of a reqular hyperring is a reg-
ular hyperring.

Proposition 3.3 If I is a hyperideal of a reqular hyperring R, then I is reqular.
Proof. Consider a hyperideal I of R. Let a € I. Since R is regular, there exists
x € R such that a € aza. Then a € a(xa) C (aza)(za) = a(xax)a where zaz C I.

Thus [ is regular. u

Theorem 3.4 If I, J are regular hyperideals of a hyperring R, then I N J is also
a reqular hyperideal of R.
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Proof. It is clear that I N J is a hyperideal of R. Let a € I N J. Then there exist
x € I and y € J such that a € axa and a € aya. Now,

a € axa C (axa)x(aya) = a(xazay)a.

Since I, J are hyperideals of R, xaxay C I N J. Thus I N J is regular. u

4. Regularity is a radical property on hyperrings

In this section, we show that regularity is a radical property on hyperrings. We
also prove that if a hyperring R is regular, then for a hyperideal I of R both I and
R/I are regular. Conversely, if R is a hyperring and if there exists a hyperideal [
of R such that both I and R/I are regular, then R is regular.

Definition 4.1 Let P be a property of hyperrings. A hyperring with the property
P is called a P-hyperring. A hyperideal I of a hyperring R is called a P-hyperideal
if the hyperideal I, as a hyperring, is a P-hyperring.

Definition 4.2 A P-hyperideal P(R) of a hyperring R which contains every P-
hyperideal of R is called the P-hyperradical of R.

Definition 4.3 A property P of a hyperring is called a radical property (in the
sense of Amitsur and Kurosh [18]) if P satisfies the following conditions:

(i) Strong homomorphic image of a P-hyperring is a P-hyperring.
(ii) Every hyperring R has a P-hyperradical P(R).

(iii) The hyperring R/P(R) has no non-zero P-hyperideals.

Lemma 4.4 Let R be a hyperring and a € R. If there exists x € R and c € ara—a
such that c is reqular, then a is reqular.

Proof. Since ¢ € axa — a is regular, there exists d € R such that ¢ € cde. This
means that

c € (axa — a)d(axa — a)

= (arad — ad)(azxa — a)

C axadazra — axada — adazxa + ada
= a(xadaxa — xada — daxa + da)
= a(radax — rad — dax + d)a

Hence ¢ € aba for some b € xadar — xad — dax + d. Since ¢ € (axa — a), we get
a € (axa —c¢) C axa — aba = a(x — b)a. So a € aya for some y € x — b. That is, a
is regular. .
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Theorem 4.5 Let R be a reqular hyperring and I be a hyperideal of R. Then I and
R/I are regular. Conversely, if R is a hyperring and if there exists a hyperideal I
of R such that both I and R/I are regular, then R is reqular.

Proof. Let R be a regular hyperring and I be a hyperideal of R. Then by the
Proposition 3.3, I is a regular hyperideal. Let x+1 € R/I. Since R is regular, there
exists y € R such that € zyz. Consider y =y + . Now, T 5 T = {Z : z € xyx}.
Since x € xyxr we have T € {Z : z € xyx}. That is, T € Ty T. So = + I is regular
in R/I. Hence R/I is regular.

Conversely, suppose R is a hyperring and there exists a hyperideal I of R
such that both I and R/I are regular. Let a € R. Then @ € R/I. Since R/I is
regular, there exists an element b € R/I such that @ € @b @ = {Z : 2 € aba}. This
means that @ = Z for some 2z € aba. That is, a+ I = z+ [ for some z € aba. Since
z€a+1, weget z € a+1 for some ¢ € I. Therefore, i € —a+2 = z—a C aba—a.
Thus ¢ € aba — a. Since [ is regular, ¢ is a regular element of I and therefore i is
a regular element of R. Thus the set aba — a contains a regular element i of R.
Then by the Lemma 4.4, the element a is regular in R. Hence R is regular. n

Theorem 4.6 Let R be a hyperring. If I and J are regqular hyperideals of R, then
I+ J 1is reqular.

Proof. Since J/(I N J) is a homomorphic image of a regular hyperideal J, it is
regular. By the Theorem 2.10, J/(I N J) is isomorphic to (I + J)/I. Therefore,
(I +J)/I is regular. Since both I and (I + J)/I are regular, by the Theorem 4.5,
the hyperideal I + J is regular. u

Theorem 4.7 Any hyperring has a reqular hyperradical.

Proof. Let R be a hyperring. Consider the hyperideal (0) of R. Clearly, (0) is a
regular hyperideal of R. If (0) is the only regular hyperideal of R, then this is the
regular hyperradical.

Otherwise, let {I;} be the collection of all regular hyperideals in a hyperring
R. Their sum is given by M = (J{>_ ;i1 @i : ai € I;}. Clearly, M is a hyperideal
of R. It v € M, then x € a; + a; + a, + - - - + a;, where a; € I;. By Theorem 4.6,
I+ 1; 4+ I, + - - - + I; is a regular hyperideal. Therefore, z is regular. Hence, M is
regular. Since M contains all regular hyperideals of R, we have M is the regular
hyperradical of R. n

Theorem 4.8 Let R be a hyperring and M be the reqular hyperradical of R. Then
the hyperring R/M has no non-zero reqular hyperideals.

Proof. Let J be a regular hyperideal of R/M. Then J = I /M for some hyperideal
I of R containing M. Since M and I/M are regular, by the Theorem 4.5, [ is
regular. By the definition of M, we have I C M. Hence I = M. Therefore, J is a
zero hyperideal of R/M. .

Theorem 4.9 The regularity is a radical property on hyperrings.
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Proof. The proof follows from the Proposition 3.2, and the Theorems 4.7, 4.8. u
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