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Abstract. An important notion related to injectivity with respect to monomorphisms
or any other class M of morphisms in a category A is essentialness. In this paper,
taking A to be the category of right acts over a semigroup S, C to be an arbitrary clo-
sure operator in the category Act-S, andMd to be the class of C-dense monomorphisms
resulting from a closure operator C, we study the properties of Md-essential monomor-
phisms and we show the existence of a maximal Md-essential extension for any given
act. Finally, the behavior of Md-injectivity in the sense that the three so called Well-
behavedness propositions hold is studied. We show that the idempotency and weak
hereditariness of a closure operator C are sufficient, but not necessary, conditions for
the well-behavedness of Md-injectivity. The class of sequentially dense monomorphisms
resulting from a special closure operator (sequential closure operator) and injectivity
with respect to this class of monomorphisms have been studied by Giuli, Ebrahimi,
Mahmoudi, Moghaddasi, and the author. Some of these results generalize some of the
results about the class of sequentially dense monomorphisms.
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1. Introduction and preliminaries

An important notion related to injectivity with respect to monomorphisms or any
other class M of morphisms in a category A is essentialness. In fact, injectivity is
characterized and injective hulls are defined using essentialness (see, for example,
[1], [18], and [6]). Recall that for a subclass M of the class Mono of monomor-
phisms of a category A and M

m→X ∈ M, one usually uses one of the following
definitions to say that m is essential:

(1) M
m½X

f→Y ∈M⇒ f ∈M.

(2) M
m½X

f→Y ∈Mono ⇒ f ∈Mono.

(3) M
m½X

f→Y ∈M⇒ f ∈Mono.
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Clearly, condition (3) is weaker than the other two and if M is taken to
be the class Mono of all monomorphisms (in which case m is said to be an
essential monomorphism), all the above three conditions are equivalent, but not
necessarily otherwise (see, for example, [2], [3], [19]). Definition (1) is usually
used for an arbitrary class M of morphisms of an arbitrary category A (see [1],
[6], and [18]). The second is the one which is used in Universal Algebra, and
the third one has been used when M is an special class of monomorphisms,
in particular pure monomorphisms in an equational class of algebras. Further,
Banaschewski [1] defines and studies conditions on a category A and a subclass
M of monomorphisms in A under which M-injectivity behaves well in the sense
that the following three propositions hold (the definition of the terms will be given
in the sequel):

Proposition 1.1 (First Theorem of Well-Behavedness) For every A ∈ A, the
following conditions are equivalent:

(I1) A is M-injective.

(I2) A is an M-absolute retract.

(I3) A has no proper M-essential extensions.

Proposition 1.2 (Second Theorem of Well-Behavedness) Every A ∈ A has an
M-injective hull which is unique up to isomorphism.

Proposition 1.3 (Third Theorem of Well-Behavedness) For an extension B of
A, the following conditions are equivalent:

(H1) B is an M-injective hull of A.

(H2) B is a maximal M-essential extension of A.

(H3) B is a minimal M-injective extension of A.

Banaschewski [1] gives the following sufficient conditions on the pair M and
A which ensure the well-behavedness of M-injectivity in A.

Proposition 1.4 M-injectivity behaves well in A if the following conditions hold:

(E1) M is transitive (closed under composition).

(E2) M is isomorphism closed.

(E3) A fulfills Banaschewski’s M-condition.

(E4) A satisfies the M-transferability property.

(E5) A has M-direct limits.

(E6) A is M-essentially bounded.
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In this paper, we take A to be the category Act-S of acts over a semigroup
S, C to be an arbitrary closure operator in the category Act-S, and Md to be the
class of C-dense monomorphisms and study the above notions of essentiality with
respect to this class. We will see that the above notions of essentiality are equi-
valent for this subclass Md of Mono, too, and investigate some of the properties
of Md-essential monomorphisms normally needed in the study of Md-injectivity.
Among other things, the existence of a maximal such essential extension for any
given act is shown. Finally, the behavior of Md-injectivity in the sense that the
above so called well-behavedness propositions hold is studied. We show that the
idempotency and weakly hereditariness of a closure operator C are sufficient, but
not necessary, conditions for the well-behavedness of Md-injectivity. Some of
these results generalize some of the results in [8], [11], [12], [14], [15], and [16].

In the following we first recall from [10] and [7] some facts about the category
Act-S needed in this paper.

Let S be a semigroup, A be a set, and

µ : A× S −→ A
(a, s) 7−→ as := µ(a, s),

be a map. The set A is called a (right) S-act or a (right) act over S, if the map µ
satisfies a(st) = (as)t for a ∈ A and s, t ∈ S. In this case, µ is called the action
of S on A.

If S is a monoid with 1 as its identity, we usually also require that a1 = a for
a ∈ A.

A subset A′ of an S-act A is said to be a subact of A if a′s ∈ A′ for all s ∈ S
and a′ ∈ A′; and in this case we write A′ ≤ A.

A homomorphism (also called an equivariant map or an S-map) from an
S-act A to an S-act B is a function from A to B such that for each a ∈ A, s ∈ S,
f(as) = f(a)s.

Since idA and the composition of two S-maps are S-maps, we have the cate-
gory Act-S of all right S-acts and S-maps between them.

Note that the class of S-acts is an equational class, and so the category Act-S
is complete and cocomplete (has all products, equalizers, pullbacks, coproducts,
coequalizers, and pushouts). In fact, limits and colimits in this category are
computed as in the category Set of sets and equipped with a natural action.
Also, monomorphisms (epimorphisms) in Act-S are exactly one-one (onto) S-
maps. Therefore, we do not distinguish between monomorphisms of acts and
inclusions, and call an S-act B containing (an isomorphic copy of) an S-act A an
extension of A.

For an S-act A and a ∈ A we denote the S-map f : S → A, given by f(s) = as
for all s ∈ S, by λa.

Recall that an element a of an S-act A is called a fixed or a zero element if
as = a for all s ∈ S.

Also, recall that for a family {Ai : i ∈ I} of S-acts with a unique fixed
element 0, the direct sum

⊕
i∈I Ai is defined to be the subact of the product
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∏
i∈I Ai consisting of all (ai)i∈I such that ai = 0 for all i ∈ I except a finite

number.
Denoting the lattice of all subacts of an S-act B by SubB, following [5] for

the general definition of closure operators on a category, we get:

Definition 1.5 A family C = (CB)B∈Act−S, with CB : SubB → SubB, taking
A ≤ B to CB(A), is called a closure operator on Act-S if it satisfies the following
laws:

(c1) (Extension) A ≤ CB(A),

(c2) (Monotonicity) A1 ≤ A2 implies CB(A1) ≤ CB(A2),

(c3) (Continuity) f(CB(A)) ≤ CD(f(A)), for all morphisms f : B → D.

Now, one has the usual two classes of monomorphisms related to the notion
of a closure operator as follows:

Definition 1.6 Let A ≤ B be in Act-S. We say that A is C-closed in B if
CB(A) = A, and it is C-dense in B if CB(A) = B. Also, an S-map f : A → B is
said to be C-dense (C-closed) if f(A) is a C-dense (C-closed) subact of B.

We denote the class of all C-dense monomorphisms by Md and recall some
of the properties of this class from [17].

Definition 1.7 A closure operator C is said to be:

(a) Weakly hereditary if for every S-act B and every A ≤ B, A is C-dense in
CB(A).

(b) Idempotent if CB(CB(A)) = CB(A) for all S-acts B and A ≤ B.

Remark 1.8 Notice that all isomorphisms are C-dense and the composition of
an isomorphism with a C-dense monomorphism is C-dense. Also, the composition
of a C-dense monomorphism with a surjective morphism is a C-dense morphism.

As the following result of [17] shows, the class of C-dense monomorphisms is
not always closed under composition.

Theorem 1.9 For a semigroup S and a closure operator C, the following are
equivalent:

(i) The closure operator C is idempotent and weakly hereditary.

(ii) The class Md is closed under composition and the closure operator C is
weakly hereditary.

(iii) Each S-map f : A → B has a (C-dense, C-closed) factorization.

We recall the following lemma from [9]:

Lemma 1.10 Pushouts transfer monomorphisms in Act-S.

We recall the following from [17] which is a counterpart of (E4) in [1].
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Proposition 1.11 In Act-S, pushouts transfer C-dense monomorphisms.

We recall the following from [17] which is a counterpart of (E5) in [1].

Proposition 1.12 Act-S has Md-directed colimits.

Definition 1.13 We call an S-act A, C-dense injective or C-injective if it is
injective with respect to C-dense monomorphisms; that is, for every C-dense
monomorphism h : B → D and every S-map f : B → A there exists an S-map
g : D → A such that gh = f .

We recall the following theorem from [17] which is desirable in the study of
any type of injectivity.

Theorem 1.14 Let S be a semigroup. Then, an S-act A is C-injective if and
only if it is C-absolute retract (retract of any of its C-dense extensions).

2. C-dense essential monomorphisms

Now that we have introduced the class Md of C-dense monomorphisms, we begin
the study of essentiality with respect to this class. Recall the three different
notions of essentiality with respect to a subclass M of monomorphisms given in
the introduction. We also mentioned there that for some classes M, specially
for the class Mono, these three notions of essentiality are in fact equivalent. In
the following theorem we prove that this is also the case for the class Md. We
then investigate some properties of essentiality, usually needed in the study of
injectivity with respect to the class Md.

Theorem 2.15 For a C-dense monomorphism f : A → B, the following are
equivalent:

(i) Any S-map g : B → D for which gf is a C-dense monomorphism is itself a
C-dense monomorphism.

(ii) Any S-map g : B → D for which gf is a C-dense monomorphism is a
monomorphism.

(iii) Any S-map g : B → D for which gf is a monomorphism is itself a monomor-
phism.

(iv) For every congruence ρ on B with ρ 6= ∆B one has ρ |A= ρ∩ (A×A) 6= ∆A.

Proof. (i)⇒(ii) Let g : B → D be such that gf ∈ Md, then by the assumption
g ∈Md. Thus g is a monomorphism.

(ii)⇒(iii) Let g : B → D be an S-map such that gf is a monomorphism.
Then since gf : A → g(B) is a C-dense monomorphism, and by (ii), we get that
g : B → g(B) is a monomorphism and hence g is a monomorphism.
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(iii)⇔(iv) It is obtained using Lemma III.1.15 of [10].
(iv)⇒(i) Let g : B → D be such that gf ∈ Md, by (iii)⇔(iv), we get that g

is a monomorphism. Since the class Md is right cancellable, g is C-dense. Thus
g ∈Md.

Definition 2.16 We call a C-dense monomorphism satisfying one of the equi-
valent conditions of the above theorem an Md-essential or C-dense essential
monomorphism.

It follows by the above theorem that:

Corollary 2.17 A monomorphism f is Md-essential if and only if it is essential
as well as C-dense.

Remark 2.18

(a) Since the composition of two essential monomorphisms is clearly essential,
if the closure operator C is idempotent and weakly hereditary, we get from
Corollary 2.17 that the composition of Md-essential monomorphisms is an
Md-essential monomorphism.

(b) Let the closure operator C be idempotent and weakly hereditary and A ⊆
A′ ⊆ B. Then A is Md-essential in B if and only if A is Md-essential in A′

and A′ is Md-essential in B.

(c) If gf is Md-essential and g is a monomorphism then g is Md-essential.

(d) Any directed colimit of Md-essential monomorphisms is an Md-essential
monomorphism.

Definition 2.19 A category A is called M-essentially bounded, for a subclass M
of its monomorphisms, if every A ∈ A has only a set of M-essential extensions.

The following is a counterpart of (E6) in [1].

Proposition 2.20 The category Act-S is Md-essentially bounded.

Proof. By using the fact that each S-act admits only a set of essential exten-
sions and Corollary 2.17, we get that each S-act has only a set of Md-essential
extensions.

Definition 2.21 For a category A, a classM of monomorphisms is said to satisfy
Banaschewski’s M-condition if for every M-morphism f : A → B there exists a
homomorphism g : B → D such that gf is an M-essential morphism.

The following is a counterpart of (E3) in [1].

Proposition 2.22 Act-S fulfills Banaschewski’s Md-condition.
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Proof. Let A
f→B ∈Md. Consider the poset

P = {θ ∈ Con(B) : A
f→B

γθ→B/θ is a C− dense monomorphism}

under the usual ordering of relations. Let

... ≤ ρi ≤ ...

i ∈ I, be a chain in P . Then ρ =
⋃

i∈I ρi is also a congruence which is an upper
bound of this chain which belongs to P . Indeed, let x, y ∈ A with xρy. Then
xρjy for some j ∈ I. Since γρj

f is a monomorphism we have x = y. This means
that ρ ∈ P . Applying Zorn’s Lemma, there exists a maximal such a congruence,
say θ. Let g : B→B/θ. Then maximality of θ implies that g ◦ f : A→B/θ is
an essential monomorphism. Indeed, suppose h : B/θ → D is a homomorphism
whose restriction on A is monomorphism. Define a relation σ on B by

xσy ⇔ [x]θ(kerf)[y]θ

for any x, y ∈ B. Then σ is a congruence on B such that θ ≤ σ and γσf is a
monomorphism. Hence σ = θ which means that h is a monomorphism. Since g is
surjective, it is C-dense and so, by Corollary 2.17, it is Md-essential.

Lemma 2.23 Let A be a C-dense subact of B. If A is a proper retract of B
(A � B) then A is not Md-essential in B.

Definition 2.24 Let A be an S-act. Then by a maximal Md-essential extension
of A we mean an Md-essential extension B of A such that every homomorphism
h : B → D from B to an Md-essential extension D of A for which h |A is the
inclusion map, is an isomorphism.

Lemma 2.25 If B is an Md-essential extension of A and A is embedded into
some (C−) injective act Q, then B can also be embedded into Q.

Proof. Suppose A is Md-essential in B and consider the diagram

A

i
²²

Â Ä // B

īÄÄÄÄ
ÄÄ

ÄÄ
Ä

Q

where Q is (C−) injective and i is a monomorphism. Since Q is (C−) injective,
there exists an S-map i such that i |A= i. Since A is Md-essential in B, i is a
monomorphism.

Proposition 2.26 Every right S-act has a maximal Md-essential extension.
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Proof. Let A be an arbitrary act and Q be an injective act into which A can be
embedded which exists by [4]. By the above Lemma A and all its Md-essential
extensions are subacts of Q. Let P be the set of all Md-essential extensions of A.
Consider P as a partially ordered set under inclusion. By Zorn’s Lemma, P has
a maximal element, say E. Then E is clearly a maximal Md-essential extension
of A.

3. Well-behavedness of C-dense injectivity

Banaschewski defines and gives some sufficient, but not necessary, conditions on
a category A and a subclass M of its monomorphisms under which M-injectivity
is well behaved with respect to the notions such as M-absolute retract and M-
essentialness. Recall the three well-behavedness theorems given in the introduc-
tion. In this section we study these so called well-behavedness theorems of injec-
tivity for C-injectivity. We show that the idempotency and weakly hereditariness
of the closure operator C are sufficient, but not necessary (take C as the sequential
closure operator and see [14]), conditions for C-injectivity to be well behaved.

First, applying Proposition 1.4, and the results of former sections about (E1)-
(E6) for the class Md of C-dense monomorphisms in the category Act-S, we get:

Theorem 3.27 If C is an idempotent and weakly hereditary closure operator then
Md-injectivity behaves well in the category Act-S.

But, we see that the mentioned condition on C is not necessary for the First
Theorem of Well-Behavedness.

Theorem 3.28 (First Theorem of Well-Behavedness) For a semigroup S, a clo-
sure operator C, and any S-act A, the following are equivalent:

(i) A is C-injective.

(ii) A is C-absolute retract.

(iii) A has no proper C-essential extension.

Proof. (i)⇐⇒(ii) is clear by Theorem 1.14.

(ii)⇐⇒(iii) Let A be C-absolute retract and B be a proper C-dense extension
of A. By hypothesis, A is a retract of B. Then, by Lemma 2.23, B is not an Md-
essential extension of A. For the converse, let B be a C-dense extension of A.
Then, by Proposition 2.22, there is an S-map g : B → D such that gi is Md-
essential, where i : A → B is the inclusion map. Then, by hypothesis, gi has to
be an isomorphism. Now, π = (gi)−1g : B → A is an epimorphism and π(a) = a
for all a ∈ A.

Now, giving a definition, we state the Second Theorem of Well-Behavedness
of C-injectivity.
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Definition 3.29 By a C-dense injective hull or C-injective hull of an S-act A we
mean a C-essential extension of A which is C-injective.

For an S-act A, C-injective hull is unique up to isomorphism (if it exists).
The Second Theorem of Well-Behavedness of C-injectivity is about the exis-

tence of C-injective hull, which is proved in the following theorem for S-acts, for
an idempotent and weakly hereditary closure operator C.

Theorem 3.30 (Second Theorem of Well-Behavedness) If C is an idempotent
and weakly hereditary closure operator then for each S-act A the C-injective hull
of A exists.

Proof. Take a maximal C-essential extension E of an S-act A which exists by
Proposition 2.26. We claim that E is C-injective. To prove this, let g : B → D
be any C-dense monomorphism and h : B → E be any homomorphism. Form the
following pushout

B

h

²²

g // D

v
²²

E
u // P = (EtD)/θ

by Proposition 1.11, u is a C-dense monomorphism and hence retractable by
Theorem 3.28 and Remark 2.18(b). This proves that E is C-injective.

Finally, we give the Third Theorem of Well-Behavedness of C-injectivity,
which is about the relation between C-injective hull and C-essential extension.

Definition 3.31 Let A be an S-act. Then, by a minimal C-injective C-dense
extension of A we mean a C-dense extension B of A such that B is C-injective,
and every (C-dense) monomorphism k : D → B from a C-injective C-dense
extension D of A which maps A identically is an isomorphism.

Theorem 3.32 (Third Theorem of Well-Behavedness) If C is an idempotent and
weakly hereditary closure operator then for every extension B of an S-act A, the
following are equivalent:

(i) B is the C-injective hull of A.

(ii) B is a maximal C-essential extension of A.

(iii) B is a minimal C-injective C-dense extension of A.

Proof. (i)⇒(ii) Let D be an extension of B which is a C-essential extension of
A. Then applying Remark 2.18 (b), D is a C-essential extension of B. But, by
Theorem 3.28, B being C-injective has no proper C-essential extension and so
D = B.
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(ii)⇒(i) If B is a maximal C-essential extension of A then, using Lemma 2.18,
it has no proper C-essential extension. So, by Theorem 3.28, B is C-injective and
hence the C-injective hull of A.

(i)⇒(iii) Similar to the first part of the proof, if D ≤ B is a C-injective
extension of A, since A is C-essential in B it is concluded that the same is true
for D and then since D is C-injective, applying Theorem 3.28, we get B = D.

(iii)⇒(i) Let E(A) be the C-injective hull of A, which exists by Theorem
3.30. Since B is C-injective, there is an S-map f : E(A) → B such that
f |A = A ↪→ B. Since A is essential in E(A), f has to be a monomorphism.
So, by (iii), B ∼= E(A).

Two other conditions can be added to the equivalent conditions given in the
preceding theorem. To give them we need the following definition:

Definition 3.33

(a) By a smallest C-injective C-dense extension of an act A we mean a C-dense
C-injective extension B of A such that for each C-injective extension D of
A there exists a monomorphism g : B → D such that g |A is the inclusion
map.

(b) By a largest Md-essential extension of an act A we mean an Md-essential
extension B of A such that for each Md-essential extension D of A there
exists an S-map h : D → B such that h |A is the inclusion map.

Theorem 3.34 The following conditions are equivalent to the conditions of Theo-
rem 3.32:

(iv) B is a largest C-essential extension of A.

(v) B is a smallest C-injective C-dense extension of A.

Proof. Using the notations of Theorem 3.32, we have:

(iii)⇒(iv) Let f : A → B be a minimal C-injective extension of A. Consider
h : A → B′ as the C-injective hull of A which exists by Theorem 3.30. Then,
by maximality of f , we get that the S-map g : B′ → B which exists, since B is
C-injective, and is a monomorphism, (since h is C-essential), is an isomorphism.
So f is C-essential and evidently is a largest C-essential extension of A.

(iv)⇒(v) Take E(A) to be the C-injective hull of A which exists by Theorem
3.30. Since E(A) is a C-essential extension of A and B is a largest C-essential
extension of A, we obtain an S-map h : E(A) → B such that h |A is the inclusion
map. Now, since A is C-essential in E(A), h is a monomorphism and so, since
B is a C-essential extension of A, Remark 2.18 (b), implies that h is C-essential.
But, E(A) is C-injective, and so, by Theorem 3.28, has no proper C-essential
extension. Hence, h is an isomorphism. Therefore, B is C-injective. So, B is
evidently a smallest C-injective C-dense extension of A.
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(v)⇒(i) Suppose E(A) is the C-injective hull of A which exists by Theorem
3.30. Then, since E(A) is C-injective and B is a smallest C-injective C-dense
extension of A, there exists an S-map g : B → E(A) such that g |A is the inclusion
map. Also since A is C-essential in E(A) we get that g is C-essential by Remark
2.18 (b). But, B is C-injective and so has no proper C-essential extension. Thus,
g is an isomorphism. Hence, B is a C-essential extension and so it is a C-injective
hull of A.
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