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1. Introduction

The notion of a hypergroup was introduced by F. Marty in 1934 [19]. Since then
many researchers have worked on hyperalgebraic structures and developed this
theory (for more details see [9], [10]). In 1990, M.S. Tallini introduced the notion
of hypervector spaces ([24], [25]) and studied basic properties of them.

As it is well-known the concept of a fuzzy subset of a nonempty set was
introduced by Zadeh in 1965 [27] as a function from a nonempty set X into the
unit real interval I = [0, 1]. Rosenfeld [21] applied this to the group theory and
then many researchers developed it in all branches of algebra. The concepts of
fuzzy field and fuzzy linear space over a fuzzy field were introduced and discussed
by Nanda [20]. In 1977, Katsaras and Liu [15] formulated and studied the notion
of fuzzy vector subspaces over the field of real or complex numbers.

Fuzzy set theory has been well developed in the context of hyperalgebraic
structure theory. (for example see [1]-[6], [11], [13], [14]). The study of fuzzy hy-
perstructure is divided into three groups. Crisp hyperoperations defined through



150 r. ameri, m. motameni

fuzzy sets have been initiated by Corsini [8]. Fuzzy hyperalgebras which is a direct
extension of the concept of fuzzy algebras. This idea has been extended to fuzzy
hypergroups by Zahedi [28]. A completely different approach is an idea defining a
fuzzy hypersemigroup considering a fuzzy hyperoperation and a nonempty set that
assigns to every pair of elements a fuzzy set. This idea was studied by Corsini
and Tofan [12] and then studied by Kehagias, Konstantinidou and Serafimidis
[23]. This idea was continued by Sen, Ameri and Chowdhury in [22], where fuzzy
semihypergroups are introduced and analyzed. In 2009, Leoreanu and Davvaz [17]
introduced the notion of a fuzzy hyperring and then fuzzy hepermodule based on
the fuzzy semihypergroup in [22] and made connections.

In [1], Ameri introduced and studied fuzzy hypervector spaces. Now in this
paper we introduce and study a new type of a fuzzy hypervector spaces (which
is different from that) and obtain some results. We will proceed by giving a
connection between fuzzy hypervector spaces and hypervector spaces.

2. Preliminaries

In this section, we present some definitions and simple properties of hypervector
spaces and fuzzy subsets, that we need for developing our paper.

A mapping ◦ : H ×H −→ P ∗(H) is called a hyperoperation (or a join opera-
tion), where P ∗(H) is the set of all non-empty subsets of H. The join operation
is extended to subsets of H in natural way, so that A ◦B is given by

A ◦B =
⋃
{a ◦ b : a ∈ A and b ∈ B }

The notations a ◦ A and A ◦ a are used for {a} ◦ A and A ◦ {a}, respectively.
Generally, the singleton {a} is identified by its element a.

Definition 2.1 Let K be a field and (V, +) be an abelian group. We define
a hypervector space over K to be the quadrupled (V, +, ◦, K), where ” ◦ ” is a
mapping

◦ : K × V −→ P ∗(V ),

such that for all a, b ∈ K and x, y ∈ V the following conditions hold:

(H1) a ◦ (x + y) ⊆ a ◦ x + a ◦ y;

(H2) (a + b) ◦ x ⊆ a ◦ x + b ◦ x;

(H3) a ◦ (b ◦ x) = (ab) ◦ x;

(H4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x);

(H5) x ∈ 1 ◦ x.

Remark.

(i) In the right hand side of the right distributivity law (H1) the sum is meant in
the sense of Frobenius, that is we consider the set of all sums of an element
of a◦x with an element of a◦y. Similarly we have that for left distributivity
law (H2).
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(ii) We say (V, +, ◦, K) is anti-left distributive if

∀a, b ∈ K, ∀x ∈ V, (a + b) ◦ x ⊇ a ◦ x + b ◦ x,

and strongly left distributive, if

∀a, b ∈ K, ∀x ∈ V, (a + b) ◦ x = a ◦ x + b ◦ x

In a similar way, we define the anti-right distributive and strongly right dis-
tributive hypervector spaces, respectively. V is called strongly distributive
if it is both strongly left and strongly right distributive. (For more details
see [25]).

(iii) The left hand side of associativity law (H3) means the set-theoretical union
of all the sets a ◦ y, where y runs over the set b ◦ x, i.e.,

a ◦ (b ◦ x) =
⋃

y∈b◦x
a ◦ y.

(iv) Let ΩV = 0 ◦ 0, where 0 is the zero of (V, +). It has been shown if V is
either strongly right or left distributive, then ΩV is a subgroup of (V, +).
(For more details see [24]).

Example 2.2 [24] In (R2, +) we define the product times a scalar in R by setting:

∀a ∈ R, ∀x ∈ R2 : a ◦ x =

{
line ox if x 6= 0,

{0} if x = 0,

where 0 = (0, 0). Then (R2, +, ◦,R) is a strongly left distributive hypervector
space.

Definition 2.3 [3] A nonempty subset W of V is a subhyperspace if W is itself a
hypervector space with the hyperoperation on V , i.e.,





W 6= ∅,
∀x, y ∈ W =⇒ x− y ∈ W,
∀a ∈ K, ∀x ∈ W =⇒ a ◦ x ⊆ W.

In this case, we write W 6 V .

Definition 2.4

(i) (Extension principle) Let f : X −→ Y be a mapping and µ ∈ FS(X)
and ν ∈ FS(Y ). Then we define f(µ) ∈ FS(Y ) and f−1(ν) ∈ FS(X)
respectively as follows:

f(µ)(y) =





∨
x∈f−1(y)

µ(x) if f−1(y) 6= ∅,

0 otherwise,
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(ii) f−1(ν)(x) = ν(f(x)), ∀x ∈ X.

Definition 2.5 [22] Let S be a nonempty set. F ∗(S) denotes the set of all fuzzy
subsets of S. A fuzzy hyperoperation on S is a mapping ◦ : S × S 7−→ F ∗(S)
written as (a, b) 7−→ a ◦ b. In other words the fuzzy hyperoperation ”◦”, assigns
to every pair (a, b) in H2 , a nonempty fuzzy subset of H. S together with a fuzzy
hyperoperation ◦ is called a fuzzy hypergroupoid.

Definition 2.6 [22] A fuzzy hypergroupoid (S, ◦) is called a fuzzy hypersemigroup if

∀a, b, c ∈ S, (a ◦ b) ◦ c = a ◦ (b ◦ c),

where for any fuzzy subset µ of S and for all r ∈ S:

(1) (a ◦ µ)(r) =
∨
t∈S

((a ◦ t)(r) ∧ µ(t)), (µ ◦ a)(r) =
∨
t∈S

((t ◦ a)(r) ∧ µ(t)),

(2) If A is a nonempty subset of S and x ∈ S, then for all t ∈ S we have

(x ◦ A)(t) =
∨
a∈A

(x ◦ a)(t) and (A ◦ x)(t) =
∨
a∈A

(a ◦ x)(t),

(3) Let µ, ν be two fuzzy subsets of a fuzzy hypergroupoid (S, ◦) then

(µ ◦ ν)(t) =
∨

p,q∈S

(µ(p) ∧ (p ◦ q)(t) ∧ ν(q)), for all t ∈ S.

3. Fuzzy hypervector space

In this section, we introduce a new type of fuzzy hyper vector spaces dealing with
the new definition of fuzzy hyperstrucures [22], and obtain some basic properties
of such spaces.

Definition 3.1 Let K be a field and (V, +) an abelian group. A fuzzy hypervector
space over K is a quadruple (V, +,¯, K), where ”¯” is a fuzzy hyper operation

¯ : K × V −→ F ∗(V )

(a, v) 7−→ a¯ v

such that for all α, β ∈ K and a, b ∈ V the followings hold:

(FH1) α¯ (a + b) ⊆ (α¯ a) + (α¯ b);

(FH2) (α + β)¯ a ⊆ (α¯ a) + (β ¯ a);

(FH3) α¯ (β ¯ x) = (αβ)¯ x;

(FH4) a¯ (−x) = (−a)¯ x = −(a¯ x);

(FH5) χ
x ⊆ 1¯ x.
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Remark.

(i) In the right hand side of the right distributivity law (FH1) the sum is meant
in the sense of fuzzy sum, that is for fuzzy subsets µ and ν of V

(µ + ν)(z) =
∨

z=x+y

(µ(x)
∧

ν(y)).

Similarly, we have for left distributivity law (H2).

(ii) We say that (V, +,¯, K) is anti-left distributive if

∀a, b ∈ K, ∀x ∈ V, (a + b)¯ x ⊇ a¯ x + b¯ x,

and strongly left distributive, if

∀a, b ∈ K, ∀x ∈ V, (a + b)¯ x = a¯ x + b¯ x,

(iii) Let ΩV = 0 ¯ 0, where 0 is the zero of (V, +). It can be easily shown that
if V is either strongly right or left distributive, then ΩV is a subgroup of
(V, +).

Here, we present examples of fuzzy hypervector spaces.

Example 3.2 Let (V, +) be an arbitrary abelian group and K be a field. Define
fuzzy hyperoperation: ¯ : K × V −→ F ∗(V ) by

∀a ∈ V, r ∈ K, r ¯ a = χ{ra}

where χ{ra} is the characteristic function. It is easy to verify that (V, +,¯, K) is
a fuzzy hypervector space over the field K.

This example shows that every fuzzy hypervector space is a generalization of
a classic hypervector space.

Example 3.3 Let (V, +) be a an abelian group and K be a field. Define following
fuzzy hyperoperation ”¯” by

∀a ∈ V, r ∈ K, (r ¯ a)(t) =
1

2
if t ∈ r ◦ a

and 0 otherwise. Then (V, +,¯, K) is a fuzzy hypervector space over the field K.

Example 3.4 Let (V, +) be an abelian group and µ be a nonzero fuzzy semigroup
of V , then for a, b ∈ V , we define the fuzzy hyperoperation

(a¯ b)(t) =

{
µ(a) ∧ µ(b) if t = ab,

0 otherwise,

then (V, +,¯) is a fuzzy hypervector space over field K.
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Definition 3.5 A nonempty subset W of V is a subfuzzy hypervector space if W is it-
self a fuzzy hypervector space with the fuzzy hyper operation on V , that is,





W 6= ∅,

∀x, y ∈ W =⇒ x− y ∈ W,

(∀a ∈ K, ∀x ∈ W, (a¯ x)(v) > 0) =⇒ v ∈ W.

Lemma 3.6 A nonempty subset W of V is a subfuzzy hypervector space if and
only if, ∀a, b ∈ K, ∀u, v ∈ W , we have

(a¯ u + b¯ v)(t) > 0 =⇒ t ∈ W.

Proof. Let W be a subfuzzy hypervector space of V . Suppose that for a, b ∈ K
and u, v ∈ W , we have

(a¯ u + b¯ v)(t) > 0.

On the other hand,

(a¯ u + b¯ v)(t) =
∨

t=t1+t2

((a¯ u)(t1) ∧ (b¯ v)(t2))(t) > 0.

Then, there exists u1, u2 ∈ V such that t = u1+u2 and (a¯u)(u1) > 0, (b¯v)(u2) >
0, by Definition 3.5 we obtain u1 ∈ W,u2 ∈ W and hence t ∈ W .

Conversely, for u, v ∈ W then by Definition 3.5 we have χ
u ⊆ 1 ¯ u and

χ
v ⊆ 1¯ v, so (χu + χ

v)(u + v) ⊆ (1¯ u + 1¯ v)(u + v) > 0 then u + v ∈ W .

Also, if (a¯x)(t) > 0, then (a¯x+χ
0)(t) > 0, which means (a¯ x + 1¯ x)(t) > 0

and implies that t ∈ W.

Definition 3.7 Let V,W be two fuzzy hypervector spaces over a field K. Then,
the mapping T : V −→ W is called

(i) weak linear transformation if
T (x + y) = T (x) + T (y) and T (a¯ x) ∩ a¯ T (x) 6= φ.

(ii) linear transformation if
T (x + y) = T (x) + T (y) and T (a¯ x) ⊆ a¯ T (x).

(iii) good linear transformation if
T (x + y) = T (x) + T (y) and T (a¯ x) = a¯ T (x).

Theorem 3.8 Let (V, +,¯, K) be a fuzzy hypervector space over a field K and S
be a vector space over the field K. If we consider the mapping T : V → S which
is onto, then (T (V ), +,¯, K) is a fuzzy hypervector space where a¯ν = T (a¯ ν),
a ∈ K, v ∈ V .
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Proof. For α ∈ K, a, b ∈ V we have

(α¯(a + b))(t) = T (α¯ (a + b))(t)

=
∨

T (x)=t

(α¯ (a + b))(x)

⊆
∨

T (x)=t

((α¯ a) + (α¯ b))(x))

=
∨

T (x)=t

(
∨

x=u+v

((α¯ a)(u) ∧ (α¯ b)(v))

=
∨

t=T (u+v)=T (u)+T (v)

((α¯ a)(u) ∧ (α¯ b)(v))

On the other hand we have:

((α¯a) + (α¯b)(t) =
∨

t=r+s

((α¯a)(r) ∧ (α¯b)(s))

=
∨

t=r+s

(T (α¯ a)(r) ∧ T (α¯ b)(s))

=
∨

t=r+s

(
∨

T (u)=r

(α¯ a)(u)) ∧ ( sup
T (v)=s

(α¯ b)(v))

=
∨

t=T (u+v)=T (u)+T (v)

((α¯ a)(u) ∧ (α¯ b)(v)).

Similarly, we can prove conditions (FH2), (FH3), (FH4) and (FH5).

Let (V, +,¯, K) be a fuzzy hypervector space (resp. strong left distribu-
tive) and W be a subfuzzy hypervector space of V . Let π : V −→ V/W be
the projection map. Define the fuzzy hyperoperation ”∗ ” on the abelian group
(V/W, +) by

∗ : K × V/W −→ F ∗(V/W )

(a, v + W ) 7−→ a¯ v

in which (a¯ v) = π(a¯ v). Note that by Theorem 3.8, (V/W, +, ∗, K) is a fuzzy
hypervector space (resp. strong left distributive).

The next result immediately follows:

Corollary 3.9 Let (V, +,¯) be a fuzzy hypervector space over a field K and W
be a subfuzzy hypervector space of V . Then (V/W, +, ∗, K) is a fuzzy hypervector
space.

Definition 3.10 If µ is a nonempty subset of V , then the smallest sub-fuzzy
hypervector space of V containing µ is called fuzzy linear space generated by µ

and is denoted by 〈µ〉. In other words, 〈µ〉 =
⋂

µ⊆ν≤V

ν.
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Lemma 3.11 If µ is a nonempty subset of V then

〈µ〉 =

{
t ∈ V : χ

t ⊆
n∑

i=1

(ai ¯ si), ai ∈ K, si ∈ V, µ(si) > 0, n ∈ N

}
.

Proof. Let A =

{
t ∈ V |χt ⊆

n∑
i=1

(ai ¯ si), ai ∈ K, si ∈ V, µ(si) > 0, n ∈ N

}
.

We will show that A is the smallest subfuzzy hypervector space of V con-
taining S. First, we show that A is a subfuzzy hypervector space of V containing
S. Let t1, t2 ∈ A; then there exists ai, ái ∈ K, si, śi ∈ V such that

χ
t1 ⊆

n⋃
i=1

ai ¯ si, χ
t2 ⊆

m⋃
i=1

ái ¯ śi.

Then,

χ
t1−t2 = χ

t1 − χ
t2 ⊆

n∑
i=1

ai ¯ si −
m∑

j=1

áj ¯ śj =
m+n∑

k=1

bk ¯ lk,

where bk = ak, bk+j = aj́, lk = sk and lk+j = sj́, for 1 ≤ k ≤ n, and 1 ≤ j ≤ m.
Thus, t1 − t2 ∈ A.

Also, let us suppose that, for t ∈ A, k ∈ K, we have (k ¯ t)(x) > 0. We will
show that x ∈ A. For this, we have

(k ¯ χ
t)(x) = sup

s∈V
((k ¯ s)(x) ∧ χ

t(s)) = (k ¯ t)(x) > 0.

On the other hand, we have

0 < (k ¯ t)(x) = (k ¯ χ
t)(x) ⊆ k ¯

(
n∑

i=1

ai ¯ si

)
(x)

=
n∑

i=1

((kai)¯ si)(x) =
m∑

i=1

(b¯ si)(x) > 0

=⇒
∨

x=

m∑
i=1

xi

((b¯ si) ∧ ... ∧ (b¯ sm))(xm) > 0

=⇒ ∃x1, ..., xm ∈ W ; x =
n∑

i=1

xi and (b¯ si)(xi) > 0 for 1 ≤ i ≤ m

=⇒ xi ∈ A =⇒ x ∈ A.

Thus, A is a subfuzzy hypervector space of V .
Now, let θ be a subfuzzy hypervector space of V containing µ and t ∈ A.

Then, χ
t ⊆

n∑
i=1

ai ¯ si, for ai ∈ K, µ(si) > 0, n ∈ N . Since θ is a subfuzzy
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hypervector space containing µ, so for si ∈ V, θ(si) > 0 we have
n∑

i=1

ai ¯ si ⊆ θ.

Thus, A ≤ θ. Hence, A is the smallest and for all s ∈ V such that µ(s) > 0, we
have χ

s ⊆ 1k ¯ a then s ∈ A and so µ ≤ A.

Definition 3.12 Let V, W be two fuzzy hypervector space over a field K, and
T : V −→ W be a linear transformation. Then the kernel of T is denoted by kerT
and defined by

KerT = {x ∈ V | χ
T (x) ⊆ ΩW}

where ΩW = 0K ¯ 0W .

Theorem 3.13 Let U, V be two fuzzy hypervector spaces (resp.strongly left) over
K and T : V −→ U be a linear transformation. Then, KerT is a subfuzzy
hypervector space of V .

Proof. T (ΩV ) = T (0¯ 0V ) ⊆ 0¯ T (0V ) = 0¯ 0U = ΩU . Therefore, KerT 6= φ.
Also, for all a, b ∈ K, x, y ∈ KerT , we have χ

T (x) ∈ ΩU and χ
T (y) ∈ ΩU so

χ
T (a¯x+a¯y) = χ

T (a¯x) + χ
T (b¯y) ⊆ χ

a¯T (x) + χ
b¯T (y)

⊆ a¯ χ
T (x) + b¯ χ

T (x) ⊆ a¯ ΩU + b¯ ΩU = ΩU .

Now, by Lemma 3.6 since (a ¯ x + b ¯ y)(v) > 0, we have χ
T (v) ⊆ ΩU . Hence,

v ∈ KerT and so KerT is subfuzzy hypervector space of U.

It is easy to see that, if W is a subfuzzy hypervector space of V over a field
K, then

Π : V −→ V/W

x 7−→ x + W

is a good linear transformation, such that ΩV ⊆ KerT and it is called projection
or canonical transformation.

Theorem 3.14 Let V, U be two fuzzy hypervector spaces and T : V −→ U be a
good linear transformation:

(i) if W is a subfuzzy hypervector space of V , then T (W ) is a subfuzzy hyper-
vector space of U .

(ii) if L is a subfuzzy hypervector space of U , then T−1(L) is a subfuzzy hyper-
vector space of V containing kerT .

Proof. (i) Let a ∈ K and x′, y′ ∈ T (W ), such that x′ = T (x), y′ = T (y) for
x, y ∈ W . Then x + y ∈ W and if (a ¯ x)(t) > 0 =⇒ t ∈ W . So, x′ − y′ =
T (x)− T (y) = T (x− y) ∈ T (W ).

Now, let (a¯x′)(t) > 0. Then, (a¯T (x))(t) > 0, and hence T (a¯x)(t) > 0.
Thus, by extension principle, we have sup

T (z)=t

(a¯ x)(z) > 0 so, there exists y such
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that (a¯x)(y) > 0, T (y) = t. Then, y ∈ W , and so T (y) ∈ T (W ), thus t ∈ T (W ),
and hence T (W ) ≤ U .

(ii) The first part can be proved in a similar way as in (i). Now, if x ∈ KerT ,
then T (x) ∈ 0U ⊆ 0¯ L ⊆ L. Therefore, x ∈ T−1(L) and so KerT ⊆ T−1(L).

Theorem 3.15 Let V and U be two left distributive fuzzy hypervector spaces
and T : V −→ U be a good linear transformation. Then there is an one-to-
one correspondence between subfuzzy hypervector spaces of V containing KerT
and subfuzzy hypervector spaces of U .

Proof. Let A = {W |W ≤ V,W ⊇ T} and B = {L|L ≤ U}. We will show that
the following map is one-to-one and onto:

ϕ : A −→ B

W 7−→ T (W )

Then, T (W ) is an element of B for all W ∈ A. Let W1,W2 be two elements of
A, such that W1 6= W2 then there exists w1 ∈ W1 − W2 or w2 ∈ W2 − W1. If
w1 ∈ W1 − W2 then T (w1) ∈ T (W1) − T (W2), and so T (W1) 6= T (W2), and if
w2 ∈ W2 −W1, similarly T (W1) 6= T (W2). Also, for an arbitrary L ∈ B, suppose
W = T−1(L). Then, by Theorem 3.10, W ∈ A and T (W ) ∈ B. Hence ϕ is
one-to-one and onto.

The next result follows immediately from Theorem 3.15:

Corollary 3.16 If V is a left distributive fuzzy hypervector space, then every
subfuzzy hypervector space of V/W , is of the form L/W , in which L is a subfuzzy
hypervector space V containing W.

4. Connections between fuzzy hypervector spaces and hypervector
spaces

Connections between fuzzy hyperoperations and hyperoperations on fuzzy hyper-
semigroups, fuzzy hyperrings and fuzzy hypermodules have been studied in [22],[17].

Now, in the next theorem, we establish a similar result for hypervector spaces.

Theorem 4.1 If (V, +,¯) is a fuzzy hypervector space over a field K, then (V, +, ◦)
is a hypervector space over the field K.

Proof. For all x ∈ V, α ∈ K define a hyperoperation ”◦” on V as α◦x = {z ∈ V |
(α¯x)(z) > 0}. We have to check the conditions of Definition 2.1. First, for all
x, y ∈ V , α ∈ K, we have:

t ∈ α(x + y) ⇐⇒ (α¯(x + y))(t) > 0.
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This means that

(α¯(x + y))(t) ⊆ ((α¯x) + (α¯y))(t) =
∨

t=u+v

((α¯x)(u) ∧ (α¯y)(v)) > 0.

Hence, there exists u, v ∈ V such that ((α¯x))(u) > 0, and so u ∈ α ◦ x and
((α¯y))(v) > 0. Thus v ∈ α ◦ y, and so t = u + v ∈ α ◦ x + α ◦ y.

Similarly, we can obtain other conditions of Definition 2.1. Therefore, (V, +, ◦)
is a hypervector space over field K, as desired.

Hence, the exists a map ψ : FHV → HV with ψ((V, +,¯)) = (V, +, ◦),
where HV denotes the class of all hypervector spaces and FHV the class of all
fuzzy hypervector spaces.

Now, we will obtain a fuzzy hypervector space from a hypervector space
(V, +, ◦).

Theorem 4.2 If (V, +, ◦) is a hypervector space over a field K, then (V, +,¯) is
a fuzzy hypervector space over the field K.

Proof. We will show that for all x, y, t ∈ V , α ∈ K we have α¯(x+y) ⊆ (α¯x)+
(α¯y). Let (V, +, ◦) is a hypervector space over a field K, then ∀x ∈ V, ∀α ∈ R
we define the fuzzy hyperoperation: α¯x = χ

α◦x. Now,

(α¯(x + y))(t) = χ
α◦(x+y)(t) ⊆ χ

α◦x+α◦y(t)

=

{
1 if t = α ◦ x + α ◦ y,

0 otherwise,

On the other hand,

((α¯ x) + (α¯ y))(t) =
∨

t=u+v

((α¯ x)(u) ∧ (α¯ y)(v))

=
∨

t=u+v

(χα◦x(u) ∧ χ
α◦y(v))

=

{
1 if t = u + v = α ◦ x + α ◦ y,

0 otherwise,

Similarly, we obtain other conditions of Definition 3.1.

Therefore, there exists a map ϕ : HV → FHV such that

ϕ((V, +, ◦)) = (V, +,¯).

Recall that if V, W are two fuzzy hypervector spaces, the map f : V → W is
called a homomorphism if T : V → W is a linear transformation and if T is an
one to one correspondence then it is called an isomorphism.

The next two theorems will make connections between homomorphisms of
fuzzy hypervector spaces and homomorphism of hypervector spaces.
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Theorem 4.3 Let (V1, +,¯1) and (V2, +,¯2) be fuzzy hypervector spaces over a
field K and (V1, +, ◦1) = ψ(V1, +,¯1) , (V2, +, ◦2) = ψ(V2, +,¯2) be the associated
hypervector spaces over the field K. If f : V1 → V2 is a homomorphism of fuzzy
hypervector spaces, then f is a homomorphism of hypervector spaces, too.

Proof. For all x, y ∈ V, α ∈ K we have f(α¯1x) ≤ α¯2f(x). If u ∈ α ◦1 x, then
(α¯1x)(u) > 0. Denote v = f(u). We have

(f(α¯1x))(v) =
∨

f(s)=v

(α¯1x)(s) ≥ (α¯1x)(u) > 0.

Hence, (α¯2f(x))(v) > 0 and so v ∈ α ◦2 f(x), which means that f(α ◦1 x) ⊆
α ◦2 f(x). And obviously, f(x + y) = f(x) + f(y).

Theorem 4.4 Let (V1, +, ◦1) and (V2, +, ◦2) be two hypervector spaces over field
K and (V1, +,¯1) = ψ(V1, +, ◦1) , (V2, +,¯2) = ψ(V2, +, ◦2) be the associated
hypervector spaces over field K. The map f : V1 → V2 is a homomorphism
of fuzzy hypervector spaces if and only if it is a homomorphism of hypervector
spaces.

Proof. Suppose that f is a homomorphism of hypervector spaces. Let x ∈ V ,
α ∈ K. For all t ∈ Imf we have

(f(α¯1x))(t) =
∨

f(r)=t

(α¯1x)(r) =
∨

f(r)=t

χ
α◦1x(r)

=

{
1 if t ∈ f(α ◦ x1),

0 otherwise,

= χ
f(α◦1x)(t) ≤ χ

α◦2f(x)(t) = (α¯2 f(x))(t).

Obviously, f(x + y) = f(x) + f(y).
Conversely, let x, y ∈ V1, α ∈ K. We have f(α¯1x) ≤ α¯2f(x), whence

χ
f (α ◦1 x) ≤ χ

α◦2f(x). This means f(α ◦1 x) ⊆ α ◦2 f(x).

The next theorem establishes a connection between subfuzzy hypervector
spaces of a fuzzy hypervector spaces and subhypervector spaces of the correspond-
ing hypervector space.

Theorem 4.5 (i) If (V ′, +,¯) is a subfuzzy hypervector space of (V, +,¯)
over a field K, then (V ′, +, ◦) = ψ(V ′, +,¯) is a subhypervector space of
(V, +, ◦) = ψ(V, +,¯) over the field K.

(ii) (V ′, +, ◦) is a subhypervector space of (V, +, ◦) over a field K if and only
if (V ′, +,¯) = ϕ(V ′, +, ◦) is a subfuzzy hypervector space of (V, +,¯) =
ψ(V, +, ◦).
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Proof. (i) For all x ∈ V ′, α ∈ K we will show that α ◦ x ⊆ V ′. since (V ′, +,¯) is
a subfuzzy hypervector space of (V, +,¯) so if for all x ∈ V ′, α ∈ K, (α¯x)(t) > 0
⇒ t ∈ V ′. This means that t ∈ α ◦ x ⇒ t ∈ V ′. Hence, α ◦ x ⊆ V ′.

(ii) It can be shown by a similar way as in (i).

The above theorem is a connection between subfuzzy hypervector spaces of a
fuzzy hypervector spaces and subhypervector spaces of the corresponding hyper-
vector space.
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