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1. Introduction

Husain and Sehgal [2] proved common fixed point theorems for a family of map-
pings. Khan and Imdad [8] extended result of Husain and sehgal [2] and proved
fixed point theorems for a class of mappings. Imdad, Khan and Sessa [3] extended
above results and proved common fixed points for three mappings defined on a
closed subset of a uniformly convex Banach space.

Rashwan [9] extended result of Imdad, khan and Sessa [3] by employing four
compatible mappings of type (A) instead of weakly commuting mappings and by
using one continuous mapping as opposed to two.

Sharma and Bamboria [11] improved results of Rashwan [9] by removing the
condition of continuity and replacing the compatibility of mappings of type (A)
by weak compatibility.

Sharma and Tilwankar [12] proved a common fixed point theorem for four
mappings under the condition of weak compatible mappings by using the new



94 sushil sharma, alok pande, shilpa kothari

property (E.A). For the study of discontinuous and noncompatible mappings in
fixed point theory we refer to Sharma and Deshpande [13] and Sharma, Deshpande
and Tiwari [14].

Several observations motivated us to prove common fixed point theorem for
ten noncompatible, discontinuous mappings in noncomplete uniformly convex Ba-
nach space. We also extend our results for finite number of mappings. Our main
theorems extend, improve, generalize some known results in uniformly convex
Banach space. We give an example to validate our result.

To prove existence of common fixed point for finite number of mappings some
commutativity conditions are required. How many commutativity conditions are
necessary? We give answer of this question by giving formulas.

Throughout the paper X stands for a Banach space. Let R+ denote the set of
all non-negative real numbers and F be the family of mappings f from (R+)5 into
R+ such that each f is upper-semicontinuous, non-decreasing in each coordinate
variable.

The modulus of convexity of X is a function δ from (0, 2] into (0, 1] defined by

δ(ε) = inf

{
1− 1

2
‖x− y‖, x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
.

Moreover, if X is uniformly convex, then δ is strictly increasing, δ(ε) −→ 0
as ε −→ 0, δ(2) = 1, η(t) < 2 when t < 1 and η is the inverse of δ.

For our theorem we need the following lemma:

Lemma 1.1. ([1]) Let X be uniformly convex Banach space and Br, the closed
ball in X centered at the origin with radius r > 0. If x1, x2, x3 ∈ Br satisfy

‖x1 − x2‖ ≥ ‖x2 − x3‖ ≥ d > 0 and if ‖x2‖ ≥
(

1− 1

2
δ

(
d

`

))
`,

then

‖x1 − x3‖ ≤ η

(
1− 1

2
δ

(
d

`

))
‖x1 − x2‖.

Now, we begin with some known definitions:

Definition 1.1. ([10]) Let S and T be self-mappings on X. Then {S, T} is called
a weakly commuting pair on X if

‖STx− TSx‖ ≤ ‖Sx− Tx‖ for all x ∈ X.

Definition 1.2. ([4]) Let S, T : X −→ X be mappings. S and T are said to be
compatible if

lim
n−→∞

‖STxn − TSxn‖ = 0,

whenever {xn} is a sequence in X such that

lim
n−→∞

Sxn = lim
n−→∞

Txn = t for some t ∈ X.
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Clearly, commuting maps are weakly commuting and weakly commuting maps
are compatible. On the other hand, examples are given by Jungck [4], [5], [6] and
Sessa [10] to show neither of the above implications are reversible.

Definition 1.3. [7] Two self mappings S and T are said to be weakly compatible
if they commute at their coincidence points; i.e., if Tu = Su for some u ∈ X, then
TSu = STu.

2. Common fixed point theorems

In a paper, Imdad, Khan and Seesa [3] proved the following theorem:

Theorem A. Let X be uniformly convex and K a non-empty closed subset of X.
Let A, S and T be three self-mappings of K satisfying the following conditions:

(1) S and T are continuous, AK ⊂ SK ∩ TK,

(2) {A, S} and {A, T} are weakly commuting pairs on K,

(3) there exists a function f ∈ F such that for every x, y ∈ K :

‖Ax−Ay‖ ≤ f(‖Sx−Ty‖, ‖Sx−Ax‖, ‖Sx−Ay‖, ‖Ty−Ax‖, ‖Ty−Ay‖),

where f has the additional requirements:

(a) for t > 0, f(t, t, 0, αt, t) ≤ βt and f(t, t, αt, 0, t) ≤ βt being β < 1 for
α < 2 and β = 1 for α = 2, α, β ∈ R+,

(b) f(t, 0, t, t, 0) < t for t > 0.

Then, there exists a point u in K such that

(c) u is the unique common fixed point of A, S and T .

(d) For any x0 ∈ K, the sequence {Axn} defined by

Tx2n = Ax2n−1, Sx2n+1 = Ax2n, for n = 0, 1, 2...,

converges strongly to u.

Rashwan [9] extended Theorem A for compatible mappings of type (A) and
proved the following:

Theorem B. Let X and K be as in Theorem A. Let A, B, S and T be mappings
on K satisfying the following conditions:

(1) one of A, B, S and T is continuous and AK ⊂ TK, BK ⊂ SK,

(2) {A, S} and {B, T} are compatible of type (A),
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(3) there exists a function f ∈ F such that for every x, y ∈ K :

‖Ax−By‖ ≤ f(‖Sx−Ty‖, ‖Sx−Ax‖, ‖Sx−By‖, ‖Ty−Ax‖, ‖Ty−By‖),
where f satisfies the conditions (a) and (b) as in Theorem Arm.

Then, there exists a point u in K such that

(a) u is the unique common fixed point of A, B, S and T ,

(b) for any x0 ∈ K, the sequence {yn} defined by

y2n = Sx2n = Bx2n−1, y2n+1 = Tx2n+1 = Ax2n, n = 1, 2, 3, ...

converges strongly to u.

Sharma and Bamboria [11] proved the following.

Theorem C. Let X be uniformly convex Banach space and K a non-empty closed
subset of X. Let A, B, S and T be mappings on K satisfying the following condi-
tions:

(1) AK ⊂ TK and BK ⊂ SK,

(2) there exists a function f ∈ F such that for every x, y ∈ K :

‖Ax−By‖ ≤ f(‖Sx−Ty‖, ‖Sx−Ax‖, ‖Sx−By‖, ‖Ty−Ax‖, ‖Ty−By‖),
where f satisfies the conditions (a) and (b) as in Theorem A,

(3) one of AK, BK, SK or TK is complete subspace of X, then

(a) A and S have a coincidence point,

(b) B and T have a coincidence point.

Further if

(4) the pairs {A, S} and {B, T} are weakly compatible, then A, B, S and T have
a common fixed point z in K.

Further, z is the unique common fixed point of A and S and of B and T.

Sharma and Tilwankar [12] proved the following by using (E.A) property.

Theorem D. Let X be uniformly convex Banach space and K a non-empty closed
subset of X. Let A, B, S and T be mappings on K satisfying the following condi-
tions:

(1) AK ⊂ TK and BK ⊂ SK,

(2) {A, S} or {B, T} satisfies the property (E.A),
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(3) for every x, y ∈ K :

‖Ax−By‖ ≤ max(‖Sx− Ty‖, ‖Sx−By‖, ‖Ty −By‖),

(4) one of AK, BK, SK or TK is closed subset of X, then

(a) A and S have a coincidence point,

(b) B and T have a coincidence point.

Further if

(5) the pairs {A, S} and {B, T} are weakly compatible, then

(c) A, B, S and T have a common fixed point z in K.

Further z is the unique common fixed point of A and S and of B and T.

3. Main results

Theorem 3.1. Let X be uniformly convex Banach space and K a non-empty
closed subset of X. Let A, B, S, T, I, J, L, U, P and Q be mappings on K
satisfying the following conditions:

(3.1) P (K) ⊂ STJU(K) and Q(K) ⊂ ABIL(K),

(3.2) there exists a function f ∈ F such that for every x, y ∈ K :

‖Px− Qy‖ ≤ f(‖ABILy − STJUx‖, ‖Px− STJUx‖, ‖Qy − STJUx‖,
‖Px− ABILy‖, ‖Qy − ABILy‖),

(3.3) if one of P (K), ABIL(K), STJU(K) or Q(K) is complete subspace of X,

then

(i) P and STJU have a coincidence point,

(ii) Q and ABIL have a coincidence point,

(3.4) AB = BA, AI = IA, AL = LA, BI = IB, BL = LB, IL = LI,

QL = LQ, QI = IQ, QB = BQ, ST = TS, SJ = JS, SU = US,

TJ = JT, TU = UT, JU = UJ, PU = UP, PJ = JP, PT = TP.

Further if

(3.5) the pairs {P, STJU} and {Q,ABIL} are weakly compatible, then A, B, S,
T, I, J, L, U, P and Q have a common fixed point z in X.

Here f satisfy the following two conditions.
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(a) for t > 0, f(t, t, 0, αt, t) ≤ βt and f(t, t, αt, 0, t) ≤ βt being β < 1 for α < 2
and β = 1 for α = 2, α, β ∈ R+,

(b) f(t, 0, t, t, 0) < t or f(0, t, 0, t, 0) < t for t > 0.

Proof. Let x0 ∈ K, since P (K) ⊂ STJU(K) and Q(K) ⊂ ABIL(K), we can
always define a sequence {yn} such that

y2n = Qx2n−1 = ABILx2n,

y2n+1 = Px2n = STJUx2n+1, n = 1, 2, 3, ....

Let dn = ‖yn − yn+1‖, n = 0, 1, 2, ...

d = lim
n−→∞

dn.

Now, for an even n, we have

(3.6)

dn = ‖yn − yn+1‖ = ‖Pxn −Qxn−1‖
≤ f(‖ABILxn−1 − STJUxn‖, ‖Pxn − STJUxn‖,
‖Qxn−1 − STJUxn‖, ‖Pxn − ABILxn−1‖, ‖Qxn−1 − ABILxn−1‖)
= f(‖yn−1 − yn‖, ‖yn+1 − yn‖, ‖yn − yn‖, ‖yn+1 − yn−1‖, ‖yn − yn−1‖)
= f(‖yn−1 − yn‖, ‖yn+1 − yn‖, 0, ‖yn+1 − yn−1‖, ‖yn − yn−1‖)
≤ f(‖yn−1 − yn‖, ‖yn+1 − yn‖, 0, ‖yn+1 − yn‖+ ‖yn − yn−1‖, ‖yn − yn−1‖)

which implies
dn = f(dn−1, dn, 0, dn + dn−1, dn−1).

Similarly. for an odd n, we obtain

(3.7)

dn = ‖yn − yn+1‖ = ‖Pxn−1 −Qxn‖
≤ f(‖ABILxn − STJUxn−1‖, ‖Pxn−1 − STJUxn−1‖,
‖Qxn − STJUxn−1‖, ‖Pxn−1 − ABILxn‖, ‖Qxn − ABILxn‖)
= f(‖yn − yn−1‖, ‖yn − yn−1‖, ‖yn+1 − yn−1‖, ‖yn − yn‖, ‖yn+1 − yn‖)
= f(‖yn − yn−1‖, ‖yn − yn−1‖, ‖yn+1 − yn−1‖, 0, ‖yn+1 − yn‖)
≤ f(‖yn − yn−1‖, ‖yn − yn−1‖, ‖yn+1 − yn‖+ ‖yn − yn−1‖, 0, ‖yn+1 − yn‖)

dn = f(dn−1, dn−1, dn + dn−1, 0, dn)

If dn > dn−1, for some n ≥ 1, then dn−1 + dn = αdn with α < 2, α ∈ R.
Since f is nondecreasing in each coordinate variable

dn ≤
{

f(dn, dn, 0, αdn, dn), if n is even,

f(dn, dn, αdn, 0, dn), if n is odd.

In both cases, by (a) we get dn ≤ βdn < dn, for some β < 1, β ∈ R+, a
contradiction. Thus, dn−1 ≥ dn for n = 1, 2, 3, ...



common fixed point theorems for finite number of mappings ... 99

Suppose d > 0. Without loss of generality, we can postulate that the origin
of X belongs to K

lim
n−→∞

sup ‖yn‖ = `′ > 0.

Let ` ∈ R+ be chosen in such a way that `′ < 1 and eta
(
1− 1

2
δ
(

d
`

))
< `′,

then there exists a sequence {n(k)}, k = 0, 1, 2, ..., n(0) ≥ 1, of positive integers
such that

‖yn(k)‖ ≥
(

1− 1

2
δ

(
d

`

))
,

where as it is ‖yn‖ ≤ ` for any n ≥ n(0).
Since dn(k)−1 ≥ dn(k) ≥ d > 0, k = 0, 1, 2, ..., from Lemma 1.1 it follows that

(3.8) ‖yn(k)−1 − yn(k)+1‖ ≤ η

(
`′

`

)
dn(k)−1,

where η
(

`′
`

)
< 2 being `′

`
< 1.

Then, by (3.6), (3.7) and (3.8), we have

dn(k) ≤
{

f
(
dn(k)−1, dn(k)−1, 0, η

(
`′
`

)
dn(k)−1, dn(k)−1

)
, if n is even,

f
(
dn(k)−1, dn(k)−1, 0, η

(
`′
`

)
dn(k)−1, dn(k)−1

)
, if n is odd.

In both cases, (a) implies

dn(k) ≤ βdn(k)−1 for some β < 1.

Observing that β does not depend on k, the foregoing inequality gives, as
n −→∞, that d ≤ βd < d, a contradiction. This means that d = 0.

Now, we wish to prove that {yn} is a Cauchy sequence. Since limn−→∞ dn = 0,
it is sufficient to show that the sequence {y2n} is a Cauchy sequence. If not, then
there is an ε > 0 such that for every even integer 2k, k = 0, 1, 2, ..., there exists
two sequences {2n(k)}, {2m(k)} with 2k ≤ 2n(k) ≤ 2m(k) for which

(3.9) ‖yn(k) − ym(k)‖ > ε.

For each even integer 2k, let 2m(k) be the least even integer exceeding n(k) and
satisfying (3.9). Then

‖y2n(k) − y2m(k)−2‖ ≤ ε and ‖y2n(k) − y2m(k)‖ > ε.

For each k = 0, 1, 2, ..., we have

ε < ‖y2n(k) − y2m(k)‖ ≤ ‖y2n(k) − y2m(k)−2‖+ ‖y2m(k)−2 − y2m(k)−1‖
+ ‖y2m(k)−1 − y2m(k)‖
≤ ε + d2m(k)−2 + d2m(k)−1,

which implies

(3.10) lim
k→∞

‖y2n(k) − y2m(k)‖ = ε.
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Further, from the triangular inequality, it follows that

∣∣‖y2n(k) − y2m(k)−1‖ − ‖y2n(k) − y2m(k)‖
∣∣ ≤ d2m(k)−1

and ∣∣‖y2n(k)+1 − y2m(k)−1‖ − ‖y2n(k) − y2m(k)‖
∣∣ ≤ d2m(k)−1 + d2n(k).

Hence, for k −→∞, we find by (3.10) that

(3.11) ‖y2n(k) − y2m(k)−1‖ −→ ε and ‖y2n(k)+1 − y2m(k)−1‖ −→ ε.

On the other hand, using (3.2) we deduce that

(3.12)

‖y2n(k) − y2m(k)‖ ≤ d2n(k) + ‖y2n(k)+1 − y2m(k)‖
≤ d2n(k) + f(‖y2m(k)−1 − y2n(k)‖, d2n(k),

‖y2m(k)−1 − y2n(k)+1‖, ‖y2n(k) − y2m(k)‖, d2n(k)).

By (3.10), (3.11), the upper-semicontinuity and non-decreasing properties of f and
condition (b), we have from (3.12), for k −→∞, ε ≤ f(ε, 0, ε, ε, 0) < ε, which is a
contradiction. Therefore, {y2n} is a Cauchy sequence in K and so is {yn}. But K
is a closed subset of a Banach space X, therefore {yn} converges to a point z in
K. On the other hand, the subsequences {Px2n}, {Qx2n−1}, {STJUx2n+1} and
{ABILx2n} of {yn} also converges to z.

Now, suppose that STJU(K) is complete. Note that the subsequence {y2n+1}
is contained in STJU(K) and has a limit in STJU(K) call it z.

Let u ∈ (STJU)−1z. Then STJUu = z. By (3.2), we have

‖Pu−Qx2n+1‖ ≤ f(‖ABILx2n+1 − STJUu‖, ‖Pu− STJUu‖,
‖Qx2n+1 − STJUu‖, ‖Pu− ABILx2n+1‖, ‖Qx2n+1 − ABILx2n+1‖).

Taking the limit n −→∞, we have

‖Pu− z‖ ≤ f(‖z − z‖, ‖Pu− z‖, ‖z − z‖, ‖Pu− z‖, ‖z − z‖)
‖Pu− z‖ ≤ f(0, ‖Pu− z‖, 0, ‖Pu− z‖, 0),

which is a contradiction and so Pu = z. Therefore, Pu = z = STJUu, i.e., u is a
coincidence point of P and STJU.

Let v ∈ (ABIL)−1z, then ABILv = z. By (3.2), we have

‖Px2n −Qv‖ ≤ f(‖ABILv − STJUx2n‖, ‖Px2n − STJUx2n‖,
‖Qv − STJUx2n‖, ‖Px2n − ABILv‖, ‖Qv − ABILv‖).

Taking the limit n −→∞, we have

(3.13)
‖z −Qv‖ ≤ f(‖z − z‖, ‖z − z‖, ‖Qv − z‖, ‖z − z‖, ‖Qv − z‖)
‖z −Qv‖ ≤ f(0, 0, ‖Qv − z‖, 0, ‖Qv − z‖).
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Let be ‖z−Qv‖ > 0. Being f non-decreasing in each coordinate variable from
(3.13), we obtain

‖z −Qv‖ ≤ f(‖z −Qv‖, ‖z −Qv‖, α‖z −Qv‖, 0, ‖z −Qv‖),
where 1 ≤ α < 2. Applying (a), then we deduce for some β < 1 that

‖z −Qv‖ ≤ β‖z −Qv‖ < ‖z −Qv‖,
which is a contradiction and so Qv = z. Since ABILv = z, thus ABILv = Qv = z,
i.e., v is a coincidence point of ABIL and Q.

If P (K) is complete, then by (3.1), z ∈ P (K) ⊂ STJU(K).
Similarly, if Q(K) is complete, then z ∈ Q(K) ⊂ ABIL(K).
Since the pair {P, STJU} is weakly compatible, therefore P and STJU com-

mute at their coincidence point, i.e., if Pu = STJUu for some u ∈ X, then

P (STJU)u = (STJU)Pu or Pz = STJUz.

Similarly,
Q(ABIL)v = (ABIL)Qv or Qz = ABILz.

Now, we prove Pz = z. By (3.2), we have

‖Pz −Qx2n+1‖ ≤ f(‖ABILx2n+1 − STJUz‖, ‖Pz − STJUz‖,
‖Qx2n+1 − STJUz‖, ‖Pz − ABILx2n+1‖, ‖Qx2n+1 − ABILx2n+1‖).

Taking the limit n −→∞, we have

‖Pz − z‖ ≤ f(‖z − Pz‖, ‖Pz − Pz‖, ‖z − Pz‖, ‖Pz − z‖, ‖z − z‖)
= f(‖z − Pz‖, 0, ‖z − Pz‖, ‖Pz − z‖, 0)

‖Pz − z‖ < ‖Pz − z‖,
which is a contradiction and so Pz = z and, therefore, Pz = z = STJUz.

Similarly, the pair {Q,ABIL} is weakly compatible, therefore Q and ABIL
commute at their coincidence point, i.e., if Qv = ABILv, for some v ∈ X, then
Q(ABIL)v = (ABIL)Qv or Qz = ABILz.

Now, we prove Qz = z. By (3.2), we have

‖Px2n −Qz‖ ≤ f(‖ABILz − STJUx2n‖, ‖Px2n − STJUx2n‖,
‖Qz − STJUx2n‖, ‖Px2n − ABILz‖, ‖Qz − ABILz‖).

Taking the limit n −→∞, we have

‖z −Qz‖ ≤ f(‖Qz − z‖, ‖z − z‖, ‖Qz − z‖, ‖z −Qz‖, ‖Qz −Qz‖)
‖z −Qz‖ ≤ f(‖Qz − z‖, 0, ‖Qz − z‖, ‖z −Qz‖, 0)

‖z −Qz‖ < ‖z −Qz‖,
which is a contradiction and so Qz = z and, therefore, Qz = ABILz = z.
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By (3.2), we have

‖Pz −Q(Lz)‖ ≤ f(‖ABIL(Lz)− STJUz‖, ‖Pz − STJUz‖, ‖Q(Lz)− STJUz‖,
‖Pz − ABIL(Lz)‖, ‖Q(Lz)− ABIL(Lz)‖).

Taking the limit n −→∞, we have

‖z − Lz‖ ≤ f(‖Lz − z‖, ‖z − z‖, ‖Lz − z‖, ‖Lz − z‖, ‖Lz − Lz‖)
≤ f(‖Lz − z‖, 0, ‖Lz − z‖, ‖Lz − z‖, 0)

‖Lz − z‖ < ‖Lz − z‖,
which is a contradiction and so Lz = z. Since ABILz = z, we have ABIz = z.

By using (3.2) and (3.4), we have

‖Pz −Q(Iz)‖ ≤ f(‖ABIL(Iz)− STJUz‖, ‖Pz − STJUz‖, ‖Q(Iz)− STJUz‖,
‖Pz − ABIL(Iz)‖, ‖Q(Iz)− ABIL(Iz)‖).

Taking the limit n −→∞, we have

‖z − Iz‖ ≤ f(‖Iz − z‖, ‖z − z‖, ‖Iz − z‖, ‖z − Iz‖, ‖Iz − Iz|)
≤ f(‖Iz − z‖, 0, ‖Iz − z‖, ‖z − Iz‖, 0)

‖Iz − z‖ < ‖Iz − z‖,
which is a contradiction and so Iz = z. Since ABIz = z, we have ABz = z.

Now, we prove Bz = z. By putting x = z and y = Bz in (3.2) and (3.4), we
have

‖Pz −Q(Bz)‖ ≤ f(‖ABIL(Bz)− STJUz‖, ‖Pz − STJUz‖,
‖Q(Bz)− STJUz‖, ‖Pz − ABIL(Bz)‖, ‖Q(Bz)− ABIL(Bz)‖).

Taking the limit n −→∞, we have

‖z −Bz‖ ≤ f(‖Bz − z‖, ‖z − z‖, ‖Bz − z‖, ‖z −Bz‖, ‖Bz −Bz‖)
≤ f(‖Bz − z‖, 0, ‖Bz − z‖, ‖z −Bz‖, 0)

‖Bz − z‖ < ‖Bz − z‖,
which is a contradiction and so Bz = z. Since ABz = z, we have Az = z.

Now, we prove Uz = z. By using (3.2) and (3.4), we have

‖P (Uz)−Qz‖ ≤ f(‖ABILz − STJU(Uz)‖, ‖P (Uz)− STJU(Uz)‖,
‖Qz − STJU(Uz)‖, ‖P (Uz)− ABILz‖, ‖Qz − ABILz‖).

Taking the limit n −→∞, we have

‖Uz − z‖ ≤ f(‖z − Uz‖, ‖Uz − Uz‖, ‖z − Uz‖, ‖Uz − z‖, ‖z − z‖)
≤ f(‖z − Uz‖, 0, ‖z − Uz‖, ‖Uz − z‖, 0)

‖Uz − z‖ < ‖Uz − z‖,
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which is a contradiction and so Uz = z. Since STJUz = z, we have STJz = z.
Now, we prove Jz = z. By using (3.2) and (3.4), we have

‖P (Uz)−Qz‖ ≤ f(‖ABILz − STJU(Jz)‖, ‖P (Jz)− STJU(Jz)‖,
‖Qz − STJU(Jz)‖, ‖P (Jz)− ABILz‖, ‖Qz − ABILz‖).

Taking the limit n −→∞, we have

‖Jz − z‖ ≤ f(‖z − Jz‖, ‖Jz − Jz‖, ‖z − Jz‖, ‖Jz − z‖, ‖z − z‖)
≤ f(‖z − Jz‖, 0, ‖z − Jz‖, ‖Jz − z‖, 0)

‖Jz − z‖ < ‖Jz − z‖,
which is a contradiction and so Jz = z. Since STJz = z, we have STz = z.

Now, we prove Tz = z. By using (3.2) and (3.4), we have

‖P (Tz)−Qz‖ ≤ f(‖ABILz − STJU(Tz)‖, ‖P (Tz)− STJU(Tz)‖,
‖Qz − STJU(Tz)‖, ‖P (Tz)− ABILz‖, ‖Qz − ABILz‖).

Taking the limit n −→∞, we have

‖Tz − z‖ ≤ f(‖z − Tz‖, ‖Tz − Tz‖, ‖z − Tz‖, ‖Tz − z‖, ‖z − z‖)
≤ f(‖z − Tz‖, 0, ‖z − Tz‖, ‖Tz − z‖, 0)

‖Tz − z‖ < ‖Tz − z‖,
which is a contradiction and so Tz = z. Since STz = z, we have Sz = z.

By combining the above results, we have

Az = Bz = Sz = Tz = Iz = Jz = Lz = Uz = Pz = Qz = z.

That is z is a common fixed point of A,B, S, T, I, J, L, U, P and Q.
For the uniqueness of the common fixed point, let w (w 6= z) be another

common fixed point of A, B, S, T, I, J, L, U, P and Q. Then, by (3.2), we have

‖Pz −Qw‖ ≤ f(‖ABILw − STJUz‖, ‖Pz − STJUz‖,
‖Qw − STJUz‖, ‖Pz − ABILw‖, ‖Qw − ABILw‖).

This gives

‖z − w‖ ≤ f(‖w − z‖, ‖z − z‖, ‖w − z‖, ‖z − w‖, ‖w − w‖)
≤ f(‖w − z‖, 0, ‖w − z‖, ‖z − w‖, 0)

‖w − z‖ < ‖w − z‖,
which is a contradiction and so w = z.

This completes the proof of the Theorem.

If we put P = Q in Theorem 3.1, we have

Corollary 1. Let X be uniformly convex Banach space and K a non-empty closed
subset of X. Let A, B, S, T, I, J, L, U and P be mappings on K satisfying the
following conditions:
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(1) P (K) ⊂ ABIL(K) and P (K) ⊂ STJU(K),

(2) there exists a function f ∈ F such that for every x, y ∈ K :

‖Px− Py‖ ≤ f(‖ABILy − STJUx‖, ‖Px− STJUx‖,
‖Py − STJUx‖, ‖Px− ABILy‖, ‖Py − ABILy‖)

(3) if one of P (K), ABIL(K) or STJU(K) is a complete subspace of X, then

(i) P and STJU have a coincidence point,

(ii) P and ABIL have a coincidence point,

(4) AB = BA, AI = IA, AL = LA, BI = IB, BL = LB, IL = LI,
PL = LP, PI = IP, PB = BP, ST = TS, SJ = JS, SU = US,
TJ = JT, TU = UT, JU = UJ, PU = UP, PJ = JP, PT = TP.

Further, if

(5) the pairs {P, STJU} and {P, ABIL} are weakly compatible, then A, B, S,
T, I, J, L, U and P have a common fixed point z in X.

If we put L = U = Ix (The identity map on X) in Theorem 3.1, we have
Corollary 2. Let X be uniformly convex Banach space and K a non-empty closed

subset of X. Let A, B, S, T, I, J, P and Q be mappings on K satisfying the following
conditions:

(1) P (K) ⊂ ABI(K) and Q(K) ⊂ STJ(K),

(2) there exists a function f ∈ F such that for every x, y ∈ K :

‖Px−Qy‖ ≤ f(‖ABIy − STJx‖, ‖Px− STJx‖,
‖Qy − STJx‖, ‖Px− ABIy‖, ‖Qy − ABIy‖)

(3) if one of P(K), ABI(K), STJ(K) or Q(K) is a complete subspace of X, then

(i) P and STJ have a coincidence point,

(ii) Q and ABI have a coincidence point,

(4) AB = BA, AI = IA, BI = IB, QI = IQ, QB = BQ, ST = TS,
SJ = JS, TJ = JT, PJ = JP, PT = TP.

Further, if

(5) the pairs {P, STJ} and {Q,ABI} are weakly compatible, then A, B, S, T,
I, J, P and Q have a common fixed point z in X.
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If we put P = Q in Corollary 2, we have the following.

Corollary 3. Let X be uniformly convex Banach space and K a non-empty closed
subset of X. Let A, B, S, T, I, J and P be mappings on K satisfying the following
conditions:

(1) P (K) ⊂ ABI(K) and P (K) ⊂ STJ(K),

(2) there exists a function f ∈ F such that for every x, y ∈ K :

‖Px− Py‖ ≤ f(‖ABIy − STJx‖, ‖Px− STJx‖, ‖Py − STJx‖,
‖Px− ABIy‖, ‖Py − ABIy‖)

(3) if one of P (K), ABI(K) or STJ(K) is a complete subspace of X, then

(i) P and STJ have a coincidence point,

(ii) P and ABI have a coincidence point,

(4) AB = BA, AI = IA, BI = IB, PI = IP, PB = BP, ST = TS, SJ =
JS, TJ = JT, PJ = JP, PT = TP.

Further, if

(5) the pairs {P, STJ} and {P, ABI} are weakly compatible, then A, B, S, T,
I, J and P have a common fixed point z in X.

If we put I = J = Ix (the identity map on X) in Corollary 3, we have the
following.
Corollary 4. Let X be uniformly convex Banach space and K a non-empty closed

subset of X. Let A, B, S, T and P be mappings on K satisfying the following
conditions:

(1) P (K) ⊂ AB(K) and P (K) ⊂ ST (K),

(2) there exists a function f ∈ F such that for every x, y ∈ K :

‖Px− Py‖ ≤ f(‖ABy − STx‖, ‖Px− STx‖, ‖Py − STx‖,
‖Px− ABy‖, ‖Py − ABy‖).

(3) if one of P(K), AB(K) or ST(K) is complete subspace of X, then

(i) P and ST have a coincidence point,

(ii) P and AB have a coincidence point,

(4) AB = BA, PB = BP, ST = TS, PT = TP.

Further, if
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(5) the pairs {P, ST} and {P,AB} are weakly compatible, then A, B, S, T and
P have a common fixed point z in X.

Remark 1. If we put P = Ix (the identity map on X) in Corollary 4, we
obtain the results due to Sharma and Bamboria [11], which improves the results
of Rashwan [9].

If we put B = P = Ix (the identity map on X) in Corollary 4, we improve
results of Imdad, Khan and Sessa [3] in the following way.

Corollary 5. Let X be uniformly convex and K a non-empty closed subset of X.
Let A, S and T be three self-mappings of K satisfying the following conditions:

(1) AK ⊂ SK ∩ TK,

(2) {A, S} and {A, T} are weakly compatible pairs,

(3) there exists a function f ∈ F such that for every x, y ∈ K :

‖Ax−Ay‖ ≤ f(‖Sx−Ty‖, ‖Sx−Ax‖, ‖Sx−Ay‖, ‖Ty−Ax‖, ‖Ty−Ay‖),

where f has the additional requirements:

(a) for t > 0, f(t, t, 0, αt, t) ≤ βt and f(t, t, αt, 0, t) ≤ βt being β < 1 for
α < 2 and β = 1 for α = 2, α, β ∈ R+,

(b) f(t, 0, t, t, 0) < t for t > 0.

Then, there exists a point z in K such that z is the unique common fixed point of
A, S and T .

Now, we extend Theorem 3.1 for a finite number of mappings in the following
way:

Theorem 3.2. Let X be uniformly convex Banach space and K a non-empty
closed subset of X. Let A1, A2, ..., An, S1, S2, ..., Sn, P and Q be mappings from X
into itself such that

(3.14) P (K) ⊂ S1S2...Sn(K), Q(K) ⊂ A1A2...An(K),

(3.15) ‖Px−Qy‖ ≤ f(‖A1A2...Any − S1S2...Snx‖, ‖Px− S1S2...Snx‖,
‖Qy − A1A2...Any‖, ‖Qy − S1S2...Snx‖, ‖Px− A1A2...Any‖)

for all x, y ∈ X,

(3.16) if one of P (K), A1A2...An(K), S1S2...Sn(K) or Q(K) is a complete

subspace of X, then

(i) P and S1S2...Sn have a coincidence point and

(ii) Q and A1A2...An have a coincidence point.

Further, if
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(3.17) A1 commutes with A2, A3, ..., An,

A2 commutes with A3, A4, ..., An,

A3 commutes with A4, A5,..., An,

............................................................

An−1 commutes with An.

Similarly,

S1 commutes with S2, S3, ..., Sn,

S2 commutes with S3, S4..., Sn,

S3 commutes with S4, S5..., Sn,

............................................................

Sn−1 commutes with Sn,

P commutes with S2, S3, ..., Sn,

Q commutes with A2, A3, ..., An.

(3.18) the pairs {P, S1S2...Sn} and {Q,A1A2...An} are weakly compatible, then

(iii) A1, A2, ..., An, S1, S2, ..., Sn, P and Q have a unique common fixed

point in X.

Proof. Since P (K) ⊂ S1S2...Sn(K), for any point x0 ∈ X there exists a point
x1 ∈ X such that Px0 = S1S2...Snx1. Since Q(K) ⊂ A1A2...An(K), for this
point x1 we can choose a point x2 ∈ X such that Qx1 = A1A2...Anx2 and so on.
Inductively, we can define a sequence {yn} in X such that for n = 0, 1, 2, ...,

y2n = Qx2n−1 = A1A2...Anx2n,

y2n+1 = Px2n = S1S2...Snx2n+1.

By using the method of the proof of Theorem 3.1, we can see that conclusions (i),
(ii) and (iii) hold.

Observations. Now, we are giving a formula for commutative conditions:

(i) If the number of mappings are even and finite in above theorems and corol-
laries then there will be n2−2n−8

4
commutativity conditions, where n =

4, 6, 8, 10, 12, ... up to finite values. For example, if n = 10, then 18 commu-
tativity conditions are required. (See (3.4)).

(ii) If the number of mappings are odd and finite in above theorems and corolla-
ries, then there will be n2−9

4
commutativity conditions, where n = 5, 7, 9, 11...

up to finite values. For example, if n = 7, then 10 commutativity conditions
are required. (See (4) in Corollary 3).

(iii) If n = 1, 2, 3, 4, then any commutativity condition is not required. (See
Theorem C and Corollary 5.)
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