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1. Introduction

Hilbert algebras [7] represent the algebraic counterpart of the implicative fragment
of Intuitionistic Propositional Logic. In [7] Diego gives a topological representa-
tion for Hilbert algebras and he proves that every Hilbert algebra is isomorphic
to a subalgebra of the implicative reduct of a Heyting algebra generated by a
certain topological space. Also, Hilbert algebras, or positive implication algebras
[14], are the duals of Henkin algebras called by him implicative models in [9].
Positive implicative BC' K-algebras [11] are actually another version of Henkin al-
gebras. As a matter of fact, these algebras are an algebraic counterpart of positive
implicational calculus. Various expansions of Hilbert algebras by a conjunction-
like operation have also been studied in the literature. The most extensively
investigated among them are implicative semilattices, which are known also as
Brouwerian semilattices.
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Now, in this paper we give a generalization of positive implicative BC'K-
algebras and Hilbert algebras which is called a generalized Hilbert algebra that it
is in form of variety. In follow, we obtain some properties of generalized Hilbert
algebra and we show that any branch in commutative generalized Hilbert algebras
is a Boolean algebra.

2. Generalized Hilbert algebras

Definition 2.1. [7] A Hilbert algebra is a triplet (H, —,1) of type (2,0), where H
is a nonempty set, “—” is a binary operation which satisfies the following axioms:

(H1) z — (y — z) = 1,

H2) z = (y—2) = ((z =y = (—2) =1,

(H3) x = y=1and y — x =1 imply = = y,

for all z,y,2 € H.

Proposition 2.2. [8] If (H,—,1) be a Hilbert algebra, then,

forallz,y,z € H.

Definition 2.3. A generalized Hilbert algebra (or briefly, g-Hilbert algebra) is an
algebra (G, —,1) of type (2,0) which satisfies the following axioms;

(GH1) 1 - z =z,

(GH2)

(GH3) 2z = (y = 2) =y — (2 — ),
(GH4) z = (y = 2) = (z = y) — (z = @),
for all z,y, z € Gy.

7

Example 2.4. Let (X, <,1) be a unital poset and implication 7 — ” on X is

defined as follows:
{1, if v <y,
r—y=

v, otherwise.

Then (X, —,1) is a g-Hilbert algebra.
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Example 2.5. Let (X, <) be a poset. Then Y C X is called increasing subset
if it is closed under <, i.e for every x € Y and every y € X if x < y then
y € Y. Now, let P;(X) be the set of all increasing subset of X and for any y € X,
[y) = {r € X : y < x}. Then it is easy to see that (P;(X),—, X) is a g-Hilbert
algebra where the implication 7 — 7 is defined by

U—-V={reX:[zx)NUCV}
for U,V € Pi(X).
Theorem 2.6. Any Hilbert algebra is a g-Hilbert algebra.

Proof. The proof is clear by Proposition 2.2. u

Note. The converse of Theorem 2.6 is not correct in general.

Example 2.7. Let Gy={a,b,1} and operation — on Gy is defined as follows

It is routine to check Gg={a,b,1} is a g-Hilbert algebra but it is not a Hilbert
algebra, sincea - b=0— a =1 but a # b.

Proposition 2.8. Let (Gy,—,1) be a g-Hilbert algebra. Then:

(vii) y = ((y = =) = 2) = 1.

forall x,y,z € Gy.

Proof. (i) Let © € Gy. Then, by (GH2) and (GH4),
l=1-1l=@—2)—m(r—z)=2x— (r—z)=0— 1.

(ii) Let z,y,z € Gy. Then,
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(y—2) = ((z—=2) = (y—2)
=(z—=2) =y —2) =y —uwx) (by(GH3))
=(E—1) = —(z—2) (by (GH4))
y—((z—=2) = (=), (by (GH3))
y— 1, (by (GH2))
1 (by (1)).
(iii) Let z,y, 2 € Gy. Then by (GH3) and (ii);

(z—2)=((y—=2)>Wy—2)=@y—2)—-((z—-2)=(y—2)=1
(iv) Let z,y,z € Gy. Then by (GH4) and (GH2);

(z=(y—2) = (r—y) = (z—2)

=((@z—=y) —=@@—2)—-((r—-y —(—2)=1
(v) Let z,y, 2 € Gy. Then by (GH4) and (GHL);
ro@—y=@@—r)m@@—y=1-(z-y)=r—y
(vi) Let 2,9, 2 € Gg. Then by (GH4) and (i);
r—(y—z)=(—y - (@—a)=(@—-y) —1=1
(vii) Let z,y, 2 € Gy. Then by (GH3) and (GH2);
y—=((y— 2)—a)=y—2z)—(y—z)=1 .

Definition 2.9. Let (G, —, 1) be a g-Hilbert algebra, then, G is called a proper
g-Hilbert algebra if it is not a Hilbert algebra.

Proposition 2.10. If Gy is a proper g-Hilbert algebra of order n, then n > 3.
Proof. By Definition 2.3, Proposition 2.8 and Example 2.7, the proof is clear. =

Theorem 2.11. Let (Gy,—, 1) be a proper g-Hilbert algebra and a ¢ Gy. Then
Gy = Gy U {a} with the following operation is a proper g-Hilbert algebra.

x—vy , z,y€ Gy,
a , T=19=a,
1 , ze€Gy—{1},y=a,
Yy , r=a,y € Gy.

T—y =
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Proof. The proof of axioms (GH1), (GH2) and (GH3) are clear. So, we should
only prove the axiom (GH4). For this case, we consider the following cases:

Case 1. z,y € Gy and z = a:
o @—y=a—(r—y)=z—y

—(a—2) = (e =)= (e —a) = (= = p).

Case 2. z,2 € Gy and y = a:
If x #1 and z # 1, then

zo(r—oy)=z2—-(r—a)=1=(z—2)—1

=(z—r)=(z—=a)=(z—2)—=(z—>y).
If x#41and z =1, then

z—=(r—y)=z—-(r—a)=1l=r—a=x—y

=(l—-2)= 1=y =(E—2z)—(E—>y).
If z=1and z # 1, then
zo@—oy)=z2-y=1-(—-y) =rE—-z)—(z—-y).
If xr=1and z =1, then
ooy =y=1l-y=01-1)—>01—-y =(EF—2)—(—y).

Case 3. y,z2 € Gy and = = a.
The proof is similar to the proof of Case 2, by some modification.

Case 4. r € Gy and y = z = a.
If x # 1, then

o (t—y)=a—(r—y)=r—y
=(a—z)=(a—y =(z—1)—=(z—y)
If x =1, then
z—=(rt—y)=a—(l—-a)=a—a=1=1—1

=(a=1)—=(a—=a)=(z=12)=(z—=y)

Caseb. yc Ggandx=z=a or z€Gandy=x=a:
The proof is similar to the proof of Case 4, by some modification.

Case 6. r =y =2=a:

z—=(r—y)=a—(a—a)=a—1=1=1—-1

—(@—a) = (a—a)= (=)~ (e~ )

Hence, (G, —, 1) is a g-Hilbert algebra. .
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Corollary 2.12. For any natural number n > 3, there exist at least one proper
g-Hilbert algebra of order n.

Definition 2.13. Let (Gy,—,1) be a g-Hilbert algebra and a € Gg. Then, the
set B(a) ={z € Gyla — x = 1} is called a branch of X.

It is clear that 1,a € B(a) and so B(a) # (.

Theorem 2.14. Let (Gy,—, 1) be a g-Hilbert algebra such that for all x,y € Gy,
B(z)NB(y) = {1} and v — y #vy. Then Gy is a proper g-Hilbert algebra.

Proof. Let Gy be a Hilbert algebra, by contrary. By Proposition 2.2(iv) and (i),
y— ((y—2) —xz)=1andso (y — x) — = € B(y). Now, let z =y — =. Then,
by Proposition 2.2(iv), (i) and (iii),

r—(z—or)=z—(r—x)=2—1=1
and so, (y — x) — =z — x € B(z). Hence,
(y = x) —x € B(z) N B(y) = {1}

and so, (y — z) — x = 1. On the other hand, by (GH4) and (GH2) and
Proposition 2.2(iii),

r=(y—r)=@@—y - @—r)=(r—-y —1=1

and so, by (H3) we get that, y — x = x, which is a contradiction. Therefore, Gy
is a proper g-Hilbert algebra. n

3. Generalized Hilbert algebra induced by a quasi ordered set

From now one in this paper, Gy denote a g-Hilbert algebra, unless otherwise
mentioned.

Proposition 3.1. Let relation < on Gy be defined as follows:
r=y ifandonlyif r—y=1
Then “ <7 1is a quasi order relation.

Proof. Reflexive condition is clear. Now, we should prove the transitive condition.
Let z,y,2 € Gyg. f x K yand y <X 2z, then z — y =1 and y — z = 1 and so by
(GH1) and (GHA4),

r—oz=1-o(r—2)=r—y) o(r—2)=2—>(y—2)=0—1=1
Then z < z. "

Proposition 3.2. Let x <y, for x,y € Gg. Then, for all z € Gy,

)y—2z=1xr—2
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(i) z—ax=2z—>uy.
Proof. (i) Since © — y = 1, then

Yy—2)—(—2 = 1=(y—=

) )
(z—y) = (y—2) —(z
(y—=2) = ((z—y) —(z
= (y—=2)—=@@—(y—=

)
r— ((y—2)—(y—2)

= rx—1=1

Hence, y — 2z <z — 2.
(ii) Since x — y = 1, then by (GH4),

(=)= (zoy)=z—@—y =2—1=1
Hence, z —» x Xz — y. .
We define © on Gy as follows:
0y <=z =y, y=z

Then, © is a congruence relation on Gg. It is clear that © is an equivalence
relation on Gy. Let x,y,u,v € Gy, such that vOy and uOv. Then =z =< v,
y =z, u X v and v X u. By Proposition 3.2, we obtain x — v < x — v and
r — v 2y — v. Now, by transitivity of <, we get + — u < y — v. Similarly, we
have y — v < ¢ — wu and so © is a congruence relation on Gg.

Now, let %{ = {[z]e|r € Gu} and < on & is defined as follows:

[z] < [y] <= 20y.

It is clear that (<2, <) is a poset.
Furthermore, (%{, <, [1]e) is a g-Hilbert algebra with the following operation,

[zle — [yle = [z — yle

Theorem 3.3. Suppose that (P, 0) is a quasi ordered set, 1 ¢ P and Gy = PU{1}.
Let “—=7 on Gy is defined as follows:

- _{1 , xby,
Y y , x py.

Then (Gg,—,1) is a g-Hilbert algebra.

Proof. Since @ is reflexive, obviously © — z = 1, for all x € Gy. Since 1 ¢ P,
then 1 Ax for every x € Gy and so 1 — x = z. Hence we have (GH1) and (GH2).
Now, we should prove (GH3). Let x,y, 2 € Gg. We consider the following cases:
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Case 1. y fx and z px:
zo(y—ax)=z—ozr=x=y—z=y— (2 — ).
Case 2. yfx and z fux:
z—=(y—a)=z2—-1l=1l=y—zx=y— (2 > x).
Case 3. y fz and z0x:
zoy—ax)=z—oz=1=y—1=y— (2 - x).
Case 4. yfx and z0x:
z—=(y—ax)=z2—-1l=1=y—1=y— (2> x).

Hence, we have (GH3).
Now, we will prove (GH4). Let x,y, 2 € Gg. Then, we consider the following
cases:

Case 1. z0y and z0zx:
If 20y, then:

(z—y)—(z—-a)=1-1l=1=z2—-1=2— (y — x).
If z py, then:
(z—=y)—m(z—a)=1—-1l=1=z—o0=2— (y — z).

Case 2. z fy and z0x:
If 20y, then:

(zoy—-o(Gz—oar)=y—l=1=z—-1=2z— (y — x).
If z Py, then:
(z—y —(z—or)=y—l=1l=z—o2=2—(y — ).

Case 3. z0y and z pux:
If 20y, then by transitive condition zfz, which is not impossible.
If z Py, then:

(z—y —m(z—ar)=1l-ax=x=z—-0=2—(y — ).

Case 4. z fy and z fux:
If 26y, then:

(z—y)—(z—-a)=y—zr=1=z—-1=2— (y — x).
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If x py, then
(z—y - (z—ar)=y—r=r=z—x=2—(y — ).

Hence, we have (GH4). Therefore, Gy is a g-Hilbert algebra. .

4. Relation between generalized Hilbert algebras and implication
algebras

Definition 4.1. [1] An implication algebra is a set X with a binary operation
“—” which satisfies the following axioms:

1) (z —=y) »r=uz,
(12) (z —y) —y=(y =) =,
(13) 2 = (y — 2) =y — (z — 2),

for all x,y,z € X.
In any implication algebra (X, —), we have

(4) 2 = (. —y) =z —y,
(15) z =z =y —y,
(I6) there exists a unique element 1 in X such that, for all x € X,

(a) x—=zx=1,1-z=zandz —1=1,
(b) ifr - y=1and y — x =1 then z =y,
() z—(y—a)=1

for all z,y € X.
Definition 4.2. Gy is called commutative if for all z,y € Gg,
(y =) —e=(x—y —y
Lemma 4.3. Let Gy be commutative. If v — y=y — x =1, then x = y.

Proof. Let t - y=y — o =1, for z,y € G. Since Gy is commutative, then by
(GH1),

r=l—oz=Hy—u)—r=(@—y —y=1-y=y .
Lemma 4.4. [1] Let (X, —,1) be an implication algebra. Then,
(i) z <y, implyy — z<x — 2
(il) x <y, imply z >z <z —y

i) r—y<(y—z)—(r—2) andy—2<(r —y) — (v — 2).



80 R.A. BORZOOEI, J. SHOHANI

Theorem 4.5. (X, —,1) is an implication algebra if and only if (X,—,1) is a
commutative g-Hilbert algebra.

Proof. (=) Let (X,—,1) be an implication algebra. By Theorem 2.6, it is
enough to prove that X is a Hilbert algebra. By (I6)(b) and (c), we have (H1)
and (H3). It is enough to prove (H2). Let z,y,z € X. Then, by (I4), (I3) and
Lemma 4.4,
(= (y—2)—=(r—=y) —(@—2)
(e (= 2) = (&) = £ o ),

(= (y—=2) = (y— (= 2)),
= —(y—2)—(—(y—2),

1

v

Hence, by (I6)(a),(b), we have (z — (y — 2)) — ((x = y) — (r — z))) =1, and
so (H2) is hold. Hence, (X, —,1) is a Hilbert algebra and so, by Theorem 2.6, it
is a g-Hilbert algebra. Moreover, by (I2) it is commutative.

(<) Let (X,—,1) be a commutative g-Hilbert algebra. Since X is commu-
tative, then we have (I2). Moreover, by (GH3), we have (I3). Now, it is enough
to prove that (I1). Let z,y € X. Then, by (GH3), (GH2) and Proposition 2.8(i),

==y —r)=(—y = @@—-r)=@—-y —1=1

Hence,
(1) z—((z—y) —z)=1
Moreover,
(z—y) —2x)—2x = (r— (r—vy)) — (r—y), Since X is commutative
= (#z—=2)=(z—y) = (z—y), by (GH4)
= (I=(—y)—(r—y) by (GH2)
= @@=y = (r—-y)
= 1.
Hence,
) (@—w)—o) =1
and so, by (1), (2) and Lemma 4.3 we have (I1). Therefore, (X,—,1) is an
implication algebra. u

Example 4.6. Let Gy = {a,b,c,1} and operation “—” on Gy is defined as
follows:

) @@l
Q = ==
S = = | o
A = o= =0
= |
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Then, (Gy,—,1) is a g-Hilbert algebra which is not an implication algebra, since
(b — ¢) — ¢ # (¢ — b) — b. Hence, a commutative condition is necessary in the
last theorem.

5. Lattice structure on commutative generalized Hilbert algebras
Proposition 5.1. If Gy is commutative, then
(i) >y —z=uz,
(i) o — (@ —y) =z —y,
forall z,y € Gg.
Proof. (i) Let 2,y € Gg. Then,

= ((z—=y)—z) =(
(

On the other hand,

— (. —y)) — (r —y), (since Gy is commutative)
(z —2) = (x—y) = (x—y), (by(GH4))

— (x—y)) — (z—y), (by (GH2))
= (z—y)—(@—y), (by (GHI))
= 1 (by (GH2)).

=y —a)—a =

(
= (
=

(

Hence, by Lemma 4.3 we obtain (z — y) — = = x.
(ii) By using (i) twice, we have

r— -y =((z—y —r)>(@—>y =2—>y .

Corollary 5.2. Let Gy be commutative and relation < on G, is defined by x <y
if and only if x — y = 1. Then, “ <7 is a partial order on Gp.

Proof. By (GH2), Proposition 5.1(i) we get that < is reflexive and anti symmet-
ric. Let x - y=1and y — 2 =1, then

r—oz=1-(r—2)=(r—y) »(r—2)=r—>(y—2)=x—1=1.
Thus, < is a partial order on Gg. .
Proposition 5.3. For any p € Gy, B(p) is a subalgebra of Gy.

Proof. It is clear that 1 € B(p). Now, let a,b € B(p). Then, p < a and p <b
and so by (GH4)and (GH2),

p—>(a—>b):(p—>a)—>(p—>b):1_>1:1
Hence, p < (a — b) and so a — b € B(p). Therefore, B(p) is a subalgebra of Gy. m
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Theorem 5.4. If Gy is commutative, then the following are hold:
(i) (Gy,V) is a V—semi lattice, when aV b= (a — b) — b, for any a,b € Gy,

(ii) For any p € Gg, (B(p),\) is a A—semi lattice, when a Nb = ((a — p) V
(b —p)) — p, for any a,b € B(p),

(iii) For any p € Gg, (B(p),A,V) is a complemented lattice.

Proof. By Corollary 5.2, (G, <) and so (B(p), <), for any p € Gy is a partial
ordered set. (i) Let a,b € Gy. First we should prove that (a — b) — b is an
upper bound of a,b. By (GH3) and (GH2), a — ((a — b) — b) = (a — b) —
(a —b) =1, and so a <X (a — b) — b. Moreover, by (GH3), b < (a — b) — b.
Hence, (¢ — b) — b is an upper bound of a,b. Now, let ¢ € G such that a,b =< c.
Then a — ¢ =1 and so by commutative condition and (GH1),

(1) (c—a)—a=(a—c)—c=1—-c=c

), (by commutative condition)
), (by (GH3))
, (by (GH2))
— (b—a)), (by Proposition 2.8(i))
)

Therefore, (a4 — b) — b < cand so aVb= (a — b) — b. Hence, (Gy,V) is a
V—semi lattice.

(ii) Let p € Gy and a,b € B(p). Then p < a,b.
Since a — p = (a — p)V(b — p) then, by Proposition 3.2,

((a—=p)V(b—p)—p=<(a—p —p=aVp=a.

Similarly, we can prove that ((a — p) vV (b — p)) — p = b. Hence, ((a — p)
V(b — p)) — pis a lower bound of a and b. Now, let ¢ € Gy such that
¢ = a,b. Then, by Proposition 3.2, a - p <c—pand b — p <X ¢ — p and so
((a — p) vV (b — p)) = ¢ — p. Hence, by Proposition 3.2, ¢c <¢Vp=(¢c —p) —
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p =2 la—p)V(b— p) — p. Therefore, ((a — p)V (b — p)) — p is a greatest
lower bound of a and b and so

aNb=((a—p)V(b—p)—p
Now, since a A b € B(p), then (B(p),A) is a A—semilattice.
(iii) Let p € Gy. Then, for any a € B(p),

(a—pVa = ((a—=p)—a)—a

p) — (a — p), (by Proposition 2.8(v))

(
= (a— (a—p)) — (a—p), (by commutative condition)
(@ —
1, (by (GH2))

Moreover, by commutative condition,

al(a—p) =

Therefore, (B(p), A, V) is a complemented lattice. .

Lemma 5.5. Let Gy be a commutative g-Hilbert algebra and p € Gy. Then, for
any a.b € B(p),

(a=p)V(b—p) =(anb) —p.
Proof. Let p € Gy and a,b € B(p). Since a Ab < a and a Ab < b, then, by
Proposition 3.2, a — p =< (aAb) — pand b — p < (aAb) — p and so (aAb) — pis
an upper bound of @ — p and b — p. Now, let v € B(p) be an other upper bound
ofa —pand b — p. Then, a — p < u and b — p < u and so, by Proposition 3.2,
u—p=(a—p —pandu—p=(b—p)— p. Hence,u —p=<aVp=aand
u—p=33bVp=>bandsou—p=<aANb. Thus,

aNb—=p=<(u—p) —p=uVp=u
Therefore, a A b — p is last upper bound of a — p and b — p, that is,
(@ —p)V(b—p) =(anb)— p. .

Theorem 5.6. If Gy is commutative, then for any p € Gy, (B(p),V,A) is a
distributive lattice.
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Proof. Let p € Gy and a,b,c € B(p). We have to prove that a A (bV ¢) =
(aAD)V (aAc). Since p < b, then by Proposition 3.2, a — p < a — b. Moreover,
by Proposition 2.8(vi), b < @ — band so (a — p)Vb <a — b. Let ¢ = (a — p)Vb.
Then

(1) c=<a—band b=<candsoc=bVc=(c—0b) —b
Moreover, by the proof of Theorem 5.4(iii),

(2) (a—¢c)—c=aVe=aV(a—p Vb=1Vb=1
Moreover,

(a—b) —c = (a—b) —

( (1 —c¢), (by (GHI))

( (((a—=¢)—=c)—c) (by(2)

( ((a—=c) Vo),
(a —b) — (a—c¢), (by Proposition 2.8(vi))
(@a—=b)—(a—((c—=b)—b), (by(1))
( (
( (
(
1.

a—b)—

a—b)—

a—b)— ((c—=0b)—(a—0)), (by (GH3))
(a—b) — (a—10)), (by (GH3))
(by (GHL))

c—b)—
) —

c—b
and this implies that a — b < ¢. Hence, by (1) and Proposition 5.1(i),

(2) a—b=c=(a—p) Vb

Now, since (2) holds for any a,b € B(p) and since B(p) is a subalgebra, then
a,b — p € B(p) and so, by (2),
(3) (a—(b—=p)—p=~(a—=pV(—p)—p=and
Hence,
—(and) = a—=((a—=(b—=p)—p), (byB3))

= (a— (b—p)) — (a—p), (byProposition 2.8(v))

= (b—(a—p))—(a—p), (by (GH3))

= bV(a—np),

a—b, (by (2))

and this implies that
(4) a— (aANb)=a—0b.

Now, let k£ = (a Ab) V (a A ¢). Since, a A b = k, then by Proposition 3.2, (GH1),
(GH2), (GH3) and (4),

l=a—1l=a—-(b—-b=b—(a—b)=b—(a—(aNb) Xb— (a—k)
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and so, by Proposition 2.8(i), b — (a — k) = 1 and this implies that b < a — k.
Similarly, ¢ < a — k and so

(5) bVe=<a—k.

and, by Proposition 3.2,

(6) (a—k)—k=2(bVe) —k.

Now, since aAb < a and aAc =< a, then k = (aAb)V(aAc) R aand so k — a = 1.
Hence, by (6) and the commutative condition,

(7) a=1—a=(k—a) —wa=(a—k)—k=(bVc)—k.

Hence, by (5), (7) and the commutative property,
(a—k)V((bVe)—k)=(a—k)Va=((a—k)—a) —wa=a—a=1.

Now, since (@ — k) V ((bV ¢) — k) < 1, then, by Proposition 5.1(i),

(8) (a—k)V(bVe)—k)=1.

Moreover, since a Ab<bVcand aANc<2bVe¢, thenk=(aAb)V(aNc)2bVe.
Now, since we proved that k < a. Hence by (8),

aN(bVe)=((a—k)V((bVe)—k)—k=1—-k=k=(aNb)V(aAec).
Therefore, (B(p), A, V) is a distributive Lattice. .

Corollary 5.7. If Gy is commutative, then for any p € Gy, (B(p),V,N\) is a
Boolean lattice.

Proof. By Theorems 5.4 and 5.6, the proof is clear. u
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