SOME RESULTS ON ANALOGOUS CONTINUED FRACTION OF RAMANUJAN

Bhaskar Srivastava
Department of Mathematics and Astronomy Lucknow University
India

Abstract. We give a differential for $\frac{1}{C(q)}$ and prove an identity which is analogous to Ramanujan's Entry 3.2.7. We also give a simpler proof for Entry 9(v).
2000 Mathematics Subject Classification: 33D15.
Key words and phrases: continued fraction, q-hypergeometric series.

1. Introduction

The Rogers-Ramanujan continued fraction, defined by

$$
\begin{equation*}
R(q)=\frac{q^{\frac{1}{5}}}{1+} \frac{q}{1+} \frac{q^{2}}{1+} \frac{q^{3}}{1+} \cdots, \quad|q|<1 . \tag{1.1}
\end{equation*}
$$

first appeared in a paper by L.J. Rogers [6] in 1894. In his first two letters to G.H. Hardy [5, pp xxvii, xxviii], Ramanujan communicated several theorems on $R(q)$. Ramanujan's major work on continued fraction centres around the continued fraction $R(q)$. I find the analogous continued fraction $C(q)$ defined by

$$
\begin{equation*}
C(q)=\frac{1}{1+} \frac{1+q}{1+} \frac{q^{2}}{1+} \frac{q+q^{3}}{1+} \frac{q^{4}}{1+} \cdots=\frac{\left(q ; q^{4}\right)_{\infty}\left(q^{3} ; q^{4}\right)_{\infty}}{\left(q^{2} ; q^{4}\right)_{\infty}^{2}} \tag{1.2}
\end{equation*}
$$

equally interesting. In this paper, we have given some results for $C(q)$ notably a differential for the reciprocal for $C(q)$ which is analogous to Entry 9(v) [4, p.258] for $R(q)$. In [2, p. 259], Berndt has proved this Entry. I have given a simpler proof of this Entry. Further I have considered two sets of relations which are equivalent and have proved an identity which is analogous to Ramanujan's Entry 3.2.7 [1, p.89].

2. Notations

We shall be using the customary q-product notation. Thus

$$
\text { For }|q|<1
$$

$$
\begin{aligned}
& (a)_{0}=(a ; q)_{0}=1 \text { and for } n \geq 1 \\
& (a)_{n}=(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right)
\end{aligned}
$$

Furthermore,

$$
(a)_{\infty}=(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right), \quad|q|<1 .
$$

If the base q is understood we use $(a)_{n}$ and $(a)_{\infty}$ instead of $(a ; q)_{n}$ and $(a ; q)_{\infty}$, respectively.

Ramanujan's general theta function $f(a, b)$,

$$
\begin{equation*}
f(a, b)=\sum_{n=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}=(-a ; a b)_{\infty}(-b ; a b)_{\infty}(a b ; a b)_{\infty}, \quad|a b|<1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(-q)=f\left(-q,-q^{2}\right)=(q ; q)_{\infty}, \quad|q|<1 \tag{2.2}
\end{equation*}
$$

3. A result for the differential of $\frac{1}{C(q)}$

By definition,

$$
\begin{equation*}
C(q)=\frac{1}{1+} \frac{1+q}{1+} \frac{q^{2}}{1+} \frac{q+q^{3}}{1+} \frac{q^{4}}{1+\ldots}=\frac{\left(q ; q^{4}\right)_{\infty}\left(q^{3} ; q^{4}\right)_{\infty}}{\left(q^{2} ; q^{4}\right)_{\infty}^{2}} \tag{3.1}
\end{equation*}
$$

Let $F(q)=q^{-\frac{1}{8}} C(q)$ and $A(q)=\frac{1}{F(q)}$. Then

$$
\begin{equation*}
8 q \frac{d}{d q}\left(\log \frac{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}{\left(q ; q^{4}\right)_{\infty}\left(q^{3} ; q^{4}\right)_{\infty}}\right)=1-\frac{(q ; q)_{\infty}^{4}}{(-q ; q)_{\infty}^{4}} \tag{3.2}
\end{equation*}
$$

Proof. Now

$$
A(q)=q^{\frac{1}{8}} \frac{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}{\left(q ; q^{4}\right)_{\infty}\left(q^{3} ; q^{4}\right)_{\infty}}
$$

Taking logarithmic differentiation with respect to q, we get

$$
\begin{equation*}
\frac{8 q}{A(q)} \frac{d}{d q} A(q)=1+8 \sum_{n=0}^{\infty}\left\{\frac{(4 n+1) q^{4 n+1}}{1-q^{4 n+1}}-\frac{2(4 n+2) q^{4 n+2}}{1-q^{4 n+2}}+\frac{(4 n+3) q^{4 n+3}}{1-q^{4 n+3}}\right\} \tag{3.3}
\end{equation*}
$$

Using the result Srivastava [7],

$$
1-8 \sum_{n=0}^{\infty}\left\{\frac{(4 n+1) q^{4 n+1}}{1-q^{4 n+1}}-\frac{2(4 n+2) q^{4 n+2}}{1-q^{4 n+2}}+\frac{(4 n+3) q^{4 n+3}}{1-q^{4 n+3}}\right\}=\frac{(q ; q)_{\infty}^{4}}{(-q ; q)_{\infty}^{4}}
$$

equation (3.3) becomes

$$
\frac{8 q}{A(q)} \frac{d}{d q}\left(q^{\frac{1}{8}} \frac{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}{\left(q ; q^{4}\right)_{\infty}\left(q^{3} ; q^{4}\right)_{\infty}}\right)=1+1-\frac{(q ; q)_{\infty}^{4}}{(-q ; q)_{\infty}^{4}}
$$

or

$$
\frac{8 q}{A(q)}\left[\frac{1}{8 q}+\frac{d}{d q}\left(\log \frac{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}{\left(q ; q^{4}\right)_{\infty}\left(q^{3} ; q^{4}\right)_{\infty}}\right)\right] A(q)=1+1-\frac{(q ; q)_{\infty}^{4}}{(-q ; q)_{\infty}^{4}}
$$

or

$$
8 q \frac{d}{d q}\left(\log \frac{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}{\left(q ; q^{4}\right)_{\infty}\left(q^{3} ; q^{4}\right)_{\infty}}\right)=1-\frac{(q ; q)_{\infty}^{4}}{(-q ; q)_{\infty}^{4}},
$$

which proves (3.2).

Simpler proof of Entry 9(v) [4, p. 258]

Entry 9(v):

If

$$
R(q)=\frac{1}{1+} \frac{q}{1+} \frac{q^{2}}{1+} \frac{q^{3}}{1+\ldots,}
$$

then

$$
\begin{equation*}
1-\frac{f^{5}(-q)}{f\left(-q^{5}\right)}=5 q \frac{d}{d q} \log \frac{f\left(-q^{2},-q^{3}\right)}{f\left(-q,-q^{4}\right)} \tag{3.4}
\end{equation*}
$$

Proof. By [1, eq. (1.1.1), p. 9],

$$
\begin{equation*}
R(q)=\frac{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}}=\frac{f\left(-q,-q^{4}\right)}{f\left(-q^{2},-q^{3}\right)} . \tag{3.5}
\end{equation*}
$$

Let $G(q)=q^{-\frac{1}{5}} R(q)$ and $B(q)=\frac{1}{G(q)}$, then

$$
B(q)=q^{\frac{1}{5}} \frac{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

Taking logarithmic differentiation of (3.5) with respect to q, we have

$$
\begin{align*}
\frac{5 q}{B(q)} \frac{d}{d q}[B(q)] & =1+5 \sum_{n=0}^{\infty}\left\{\frac{(5 n+1) q^{5 n+1}}{1-q^{5 n+1}}\right. \tag{3.6}\\
& \left.-\frac{(5 n+2) q^{5 n+2}}{1-q^{5 n+2}}-\frac{(5 n+3) q^{5 n+3}}{1-q^{5 n+3}}+\frac{(5 n+4) q^{5 n+4}}{1-q^{5 n+4}}\right\} .
\end{align*}
$$

Using the following formula of Ramanujan [2]

$$
\begin{align*}
1-5 \sum_{n=0}^{\infty} & \left\{\frac{(5 n+1) q^{5 n+1}}{1-q^{5 n+1}}-\frac{(5 n+2) q^{5 n+2}}{1-q^{5 n+2}}\right. \tag{3.7}\\
& \left.-\frac{(5 n+3) q^{5 n+3}}{1-q^{5 n+3}}+\frac{(5 n+4) q^{5 n+4}}{1-q^{5 n+4}}\right\}=\frac{(q ; q)_{\infty}^{5}}{\left(q^{5} ; q^{5}\right)_{\infty}}=\frac{f^{5}(-q)}{f\left(-q^{5}\right)},
\end{align*}
$$

equation (3.6) can be written as

$$
\begin{equation*}
\frac{5 q}{B(q)} \frac{d}{d q}[B(q)]=1+1-\frac{f^{5}(-q)}{f\left(-q^{5}\right)} \tag{3.8}
\end{equation*}
$$

or

$$
\frac{5 q}{B(q)}\left[\frac{1}{5 q}+\frac{d}{d q} \log \frac{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}\right] B(q)=1+1-\frac{f^{5}(-q)}{f\left(-q^{5}\right)}
$$

or

$$
5 q \frac{d}{d q} \log \frac{f\left(-q^{2},-q^{3}\right)}{f\left(-q,-q^{4}\right)}=1-\frac{f^{5}(-q)}{f\left(-q^{5}\right)}
$$

we have the Entry 9(v)[4, p.258].

4. A transformation formula for $C(q)$

Ramanujan in the "lost" note book has stated the formula

$$
\frac{f\left(-\lambda^{2} q^{3},-\lambda q^{6}\right)+q f\left(-\lambda,-\lambda^{2} q^{9}\right)}{f\left(-\lambda q^{3}\right)}=\frac{f\left(-q^{2},-\lambda q\right)}{f\left(-q,-\lambda q^{2}\right)} .
$$

This formula is extensively used by Ramanujan in his note book, but the statement is found only in the "lost" note book.

Take $\lambda=q$

$$
\begin{equation*}
\frac{f\left(-q^{5},-q^{7}\right)+q f\left(-q,-q^{11}\right)}{f\left(-q^{4}\right)}=\frac{f\left(-q^{2},-q^{2}\right)}{f\left(-q,-q^{3}\right)} . \tag{4.1}
\end{equation*}
$$

Using (2.1) and then (1.2), we get

$$
\begin{equation*}
\frac{f\left(-q^{5},-q^{7}\right)+q f\left(-q,-q^{11}\right)}{f\left(-q^{4}\right)}=\frac{\left(q^{2} ; q^{4}\right)_{\infty}^{2}}{\left(q ; q^{4}\right)_{\infty}\left(q^{3} ; q^{4}\right)_{\infty}}=\frac{1}{C(q)} . \tag{4.2}
\end{equation*}
$$

5. Two equivalent relations

Let $u=C(q)$ and $v=C\left(q^{4}\right)$.
(i) $2 u=B+2^{8} q \frac{f^{8}\left(-q^{4}\right)}{f^{8}(-q)}$

$$
\begin{align*}
& \text { and } \tag{5.1}\\
& 2 u=B+\frac{f^{8}(-q)}{q f^{8}\left(-q^{4}\right)} \tag{5.2}
\end{align*}
$$

are equivalent.
(ii) $2 v=K+4 q^{\frac{5}{8}} \frac{f\left(-q^{16}\right)}{f(-q)}$
and

$$
2 v=K+\frac{f\left(-q^{\frac{1}{4}}\right)}{q^{\frac{5}{32}} f\left(-q^{4}\right)}
$$

are equivalent.

Proof of (i)

We shall use Ramanujan's transformation formula [2, p. 270, eq. 12.10]

$$
\begin{equation*}
e^{-\frac{a}{12}} a^{\frac{1}{4}} f\left(-e^{-2 a}\right)=e^{-\frac{b}{12}} b^{\frac{1}{4}} f\left(-e^{-2 b}\right) \tag{5.5}
\end{equation*}
$$

twice, first by taking $a=\frac{\alpha}{2}, b=\frac{\beta}{2}$ and then by taking $a=2 \alpha, b=\frac{\beta}{8}$ to get

$$
\begin{equation*}
e^{-\frac{\alpha}{24}}\left(\frac{\alpha}{2}\right)^{\frac{1}{4}} f\left(-e^{-a}\right)=e^{-\frac{\beta}{24}}\left(\frac{\beta}{2}\right)^{\frac{1}{4}} f\left(-e^{-\beta}\right) \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{-\frac{4 \alpha}{24}}\left(\frac{4 \alpha}{2}\right)^{\frac{1}{4}} f\left(-e^{-4 a}\right)=e^{-\frac{\beta}{96}}\left(\frac{\beta}{8}\right)^{\frac{1}{4}} f\left(-e^{-\frac{\beta}{4}}\right) \tag{5.7}
\end{equation*}
$$

By (5.6) and (5.7), we have

$$
\begin{equation*}
e^{\frac{\alpha}{8}} \frac{f\left(-e^{-\alpha}\right)}{f\left(-e^{-4 \alpha}\right)}=2 e^{-\frac{\beta}{32}} \frac{f\left(-e^{-\beta}\right)}{f\left(-e^{-\frac{\beta}{4}}\right)} . \tag{5.8}
\end{equation*}
$$

Putting $q=e^{-\alpha}$ and $Q=e^{-\frac{\beta}{4}}$ in (5.8), we have

$$
\begin{equation*}
\frac{f(-q)}{q^{\frac{1}{8}} f\left(-q^{4}\right)}=2 Q^{\frac{1}{8}} \frac{f\left(-Q^{4}\right)}{f(-Q)} . \tag{5.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{f^{8}(-q)}{q f^{8}\left(-q^{4}\right)}=2^{8} Q \frac{f^{8}\left(-Q^{4}\right)}{f^{8}(-Q)} \tag{5.10}
\end{equation*}
$$

Writing Q for q in (5.1), we have (5.2). Thus (5.1) and (5.2) are equivalent.
Proof of (ii)
Applying transformation formula (5.5) twice, first with $a=\frac{\alpha}{8}, b=2 \beta$ and then with $a=2 \alpha, b=\frac{\beta}{8}$ and then taking $q=e^{-\alpha}, Q^{4}=e^{-\beta}$, we get

$$
\begin{equation*}
q^{-\frac{5}{32}} \frac{f\left(-q^{\frac{1}{4}}\right)}{f\left(-q^{4}\right)}=4 Q^{\frac{5}{8}} \frac{f\left(-Q^{16}\right)}{f(-Q)} . \tag{5.11}
\end{equation*}
$$

Replacing q by Q in (5.3), we have (5.4). Thus (5.3) and (5.4) are equivalent.

6. Another identity

We prove the following identity which is analogous to Ramanujan's Entry 3.2.7 (p 364) [1, p 89].

If

$$
\begin{equation*}
q^{-1} C^{8}(q)-\frac{2}{q^{-1} C^{8}(q)}=-2 \mu \tag{6.1}
\end{equation*}
$$

then

$$
\begin{equation*}
q^{-\frac{1}{8}} C(q)=\left[\left(\mu^{2}+2\right)^{\frac{1}{2}}-\mu\right]^{\frac{1}{8}} . \tag{6.2}
\end{equation*}
$$

Proof. Let

$$
J=q^{-1} C^{8}(q),
$$

then (6.1) is

$$
J-\frac{2}{J}=-2 \mu, \quad \text { or } \quad J^{2}+2 \mu J-2=0
$$

Solving for J

$$
\begin{aligned}
& J=\left(\mu^{2}+2\right)^{\frac{1}{2}}-\mu \\
& {\left[q^{-\frac{1}{8}} C(q)\right]^{8}=\left(\mu^{2}+2\right)^{\frac{1}{2}}-\mu} \\
& q^{-\frac{1}{8}} C(q)=\left[\left(\mu^{2}+2\right)^{\frac{1}{2}}-\mu\right]^{\frac{1}{8}}
\end{aligned}
$$

References

[1] Andrews, G.E. and Berndt, B.C., Ramanujan's Lost Notebook, Part I, Springer-Verlag, New York, 2005.
[2] Bailey, W.N., A note on two of Ramanujan's formulae, Quart. J. Math., Oxford Ser., 3 (1952), 29-31.
[3] Bailey, W.N., A further note on two of Ramanujan's formulae, Quart. J. Math., Oxford Ser., 3 (1952), 158-160.
[4] Berndt, B.C., Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[5] Ramanujan, S., Collected Papers, Cambridge University Press, Cambridge, 1927.
[6] Rogers, L,J., Second memoir on the expansion of certain infinite products, Proc. London Math. Soc., 25 (1894), 318-343.
[7] Srivastava, Bhaskar, A note on an analogous continued fraction of Ramanujan, Kyungpook Math. J., 45 (2005), 603-607.

Accepted: 26.09.2008

