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1. Introduction

In 1935, G. Griiss [19] proved the following integral inequality which gives an
approximation of the integral of the product in terms of the product of the integrals
as follows:

’bia/abf(x)g(x)daj_ﬁ/abf(m)dx.bia/abg(;wdx
(@ —0) (' =7),

<

A~ =

where f, g : [a,b] — R are integrable on [a, b] and satisfy the condition
(1.1) 6<f(x) < y<gx)<T

for each x € [a,b] , where ¢, ®,~,T are given real constants.

Moreover, the constant 1 is sharp in the sense that it cannot be replaced by

a smaller one.
In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewski [22, Chapter X]
established the following discrete version of Griiss’ inequality:
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Let a = (ay,...,a,), b = (b1,...,b,) be two n—tuples of real numbers such
that r <a; < Rand s < b; < S for i =1,...,n. Then one has

b Yw Yol < 1[5 (15 5] r-nis )

where [z] denotes the integer part of z, z € R.

For a simple proof of (1.1) as well as for some other integral inequalities of
Griiss type, see Chapter X of the recent book [22]. For other related results see
the papers [1]-[3], [4]-[6], [7]-[9], [10]-[17], [18], [25], [27] and the references therein.

2. Operator inequalities

Let A be a selfadjoint linear operator on a complex Hilbert space (H;(.,.)).
The Gelfand map establishes a x-isometrically isomorphism ® between the set
C(Sp(A)) of all continuous functions defined on the spectrum of A, denoted
Sp(A), an the C*-algebra C* (A) generated by A and the identity operator 1y
on H as follows (see for instance [20, p. 3]):

For any f,g € C'(Sp(A)) and any «, 5 € C we have

(i) @ (af + Bg) = a® (f) + 5P (9);
(ii) @ (fg) =@ (f)®(g) and @ (f) =@ (f)";
(iii) [| (NI = ILF] = supespay [f ()]
) ©(fo) =1y and ®(f;) = A, where fo(t) =1 and f, (t) =t, fort € Sp(A).

(iv
With this notation we define
f(A) = (f) forall feC(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on
Sp(A), then f(t) > 0 for any t € Sp(A) implies that f(A) > 0, i.e. f(A) is a
positive operator on H. Moreover, if both f and g are real valued functions on
Sp (A) then the following important property holds:

(P) f(t)>g(t) for any t € Sp(A) implies that f (A) > g (A)

in the operator order of B (H).

For a recent monograph devoted to various inequalities for functions of self-
adjoint operators, see [20] and the references therein. For other results, see [24],
[21] and [26].

The following operator version of the Griiss inequality was obtained by Mond
& Pecari¢ in [23]:
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Theorem 2.1 (Mond-Pecarié, 1993, [23]) Let C;, j € {1,...,n} be selfadjoint
operators on the Hilbert space (H,(.,.)) and such that m; -1y < C; < M; -1y
for j € {1,...,n},, where 1y is the identity operator on H. Further, let g;, h; :
[m;, Mj] =R, j€{l,...,n} be functions such that

(2.1) 0 -1p <gj(C;) <P -1y and vy -1y < h; (C;) <T'-1y

for each j € {1,...,n}.
Ifzj€ H,j €{l,...,n} are such that Y77, |z;||* = 1, then

n n n

22) > g5 (Cy) by (C) wjoag) =Y (g5 (Cy)ajoay) - > (hy (C) ay, ;)
2.2 7j=1 j=1 j=1
<1(@—9) =),

If C;,7 € {1,...,n} are selfadjoint operators such that Sp(C;) C [m, M]
for j € {1,...,n} and for some scalars m < M and if g,h : [m, M] — R are
continuous then by the Mond-Pecari¢ inequality we deduce the following version
of the Griiss inequality for operators

. > (g (CH(Ch ajay =Y Ag(Ch)ag,ay) - Y (R (C)xj,ay)
S%(q)—w)(F—v),

. 2 .
where z; € H, j € {1,...,n} are such that ; llz;]|” =1 and ¢ = tel[%l%]g(t)a
® = ma t = min h(t) and [' = max h(t).
Jax g (1), y= min h(t)an Sax h(t)
In particular, if the selfadjoint operator C' satisfy the condition Sp(C') C

[m, M| for some scalars m < M, then

(24)  [g(O)h(C)z,z) = (g (C),x) - (h(C)z, 1) < (2 =) (' =),

>~ =

for any x € H with ||z| = 1.
We say that the functions f, g : [a,b] — R are synchronous (asynchronous)
on the interval [a, b] if they satisfy the following condition:

(f (t) = f(5) (g (t) —g(s)) = ()0 for each t, 5 € [a,b].

It is obvious that, if f, g are monotonic and have the same monotonicity on
the interval [a,b], then they are synchronous on [a, b] while if they have opposite
monotonicity, they are asynchronous.

In the recent paper [15] the following Cebysev type inequality for operators
has been obtained:
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Theorem 2.2 (Dragomir, 2008, [15]) Let A be a selfadjoint operator on the
Hilbert space (H,(.,.)) with the spectrum Sp (A) C [m, M] for some real numbers
m < M. If f,g: [m, M] — R are continuous and synchronous (asynchronous)
on [m, M], then

(2.5) (F(A)g(A)z,2) > (<) (f(A)z,2) - (g (A) 2, )

for any x € H with ||z|| = 1.
This can be generalized for n operators as follows:

Theorem 2.3 (Dragomir, 2008, [15]) Let A; be selfadjoint operators with
Sp(4;) € [m,M] for j € {1,...,n} and for some scalars m < M. If f,g :
[m, M] — R are continuous and synchronous (asynchronous) on [m, M|, then

n n n

(26) D (F(A)g(A)ajay) = ()Y (f (A zjx;) - Y (g (Ay) zy,5),

j=1 J=1 J=1
for each z; € H,j € {1,....,n} with }7_, lz;])* = 1.
Another version for n operators is incorporated in:

Theorem 2.4 (Dragomir, 2008, [15]) Let A; be selfadjoint operators with
Sp(4;) € [m,M] for j € {1,...,n} and for some scalars m < M. If f,g :
[m, M] — R are continuous and synchronous (asynchronous) on [m, M], then

(2.7) <ijf (A5) 9 (A) I,$> > (<) <ijf (Aj)90=$> : <ijg (4;) Ial’>,

for any p; > 0,5 € {1,...,n} with ij =1 and z € H with ||z|| = 1.
j=1

Motivated by the above results we investigate in this paper other Griiss’
type inequalities for selfadjoint operators in Hilbert spaces. Some of the obtained
results improve the inequalities (2.3) and (2.4) derived from the Mond-Pecarié
inequality. Others provide different operator versions for the celebrated Griiss’
inequality mentioned above. Examples for power functions and the logarithmic
function are given as well.

3. An inequality of Griiss’ type for one operator

The following result may be stated:
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Theorem 3.1 Let A be a selfadjoint operator on the Hilbert space (H;(.,.)) and
assume that Sp (A) C [m, M| for some scalars m < M. If f and g are continuous

on [m, M] and ~ := tEI[nlr]{ﬂf()andF ten[lﬂ?ﬁ}f()then

(f(ADg(A)y,y) = (F(A)y.y) - (g(A)z,2) — —=[{g (A) y,y) = (9 (4) 2, 7)]

1

<5 (0= [lg (AP + (g (A) 2.2)* =2 g (A) 2,2) (g (A) y. )] "

(3.1)

for any x,y € H with ||z|| = ||y|]| = 1.

Proof. First of all, observe that, for each A € R and x,y € H, ||z| = |jy|]| = 1 we
have the identity

(f(A) =A-1u)(g(A) = (g (A) z,2)  1u) y,y)
(3.2) =(f(A)g(A)y,y) — A [{g(A)y,y) —(g(A)z,2)]
—(g(A)z,2) (f (A) y,y) .

Taking the modulus in (3.2) we have

(f(A)g(A)y,y) —A-[g(A)yy) —(g(A)z,2)]
—(9(A)z,z) (f(A)y,y)]
=[{(g(A) = (g (A)z,2) - 1)y, (f (A) = X-1g)y)|
lg (A)y — (g (A)z,z)yll |f (A)y — My

<

33 = Tlg (Aol + (g (A) 2.2)* — 2 (g (A),2) (g (A) )] ">
<1 (A)y - Al
< [llg Ayl + (g (A) 2,2 — 2 (g (A) 2,) (g (A) g 9)]
<L (4) — A- 1]

for any @,y € H, o]l = Iyl = 1.

Now, since vy = min f(t) and I' = max f (), then by the property (P)
te[m, M| te[m,M]

we have that v < (f (A)y,y) < T for each y € H with ||y|| = 1 which is clearly

equivalent with
1

<5

\<(f<A>—$1H) yy>] <209

for each y € H with [|y|| = 1.
Taking the supremum in this inequality we get

I'—7)

s A

or with
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r
which together with the inequality (3.3) applied for A = % produces the
desired result (3.1). n

As a particular case of interest we can derive from the above theorem the
following result of Griiss’ type that improves (2.4):

Corollary 3.1 With the assumptions in Theorem 3.1 we have

(3.4) [{f (A)g(A)z,x) — {f (A) z,z) - (g (A) z, 7)]
(=) [llg (A) =]* = (g (A) 2, 2)7] (S Lr—y)(a- 5))

l\DI»—t

4

hae H with ||z|| = 1, where § = dA = ).
for each x with ||z|| where ter[rrlnl%]g()an ten[f}??’)j&]g()

Proof. The first inequality follows from (3.1) by putting y = =.
Now, if we write the first inequality in (3.4) for f = g we get

), 2)? = (% (A) 7, 7) — (g (A) z, )’
(A =3) [llg (A) z]* = (g (A) ,2)2] "

0<lg(A)z]”—(g(A
<1
=2

which implies that

12 1
[lg (A)z|* = (g (A)z,2)"] "~ < 5 (8 =9)
for each x € H with ||z|| = 1.
This together with the first part of (3.4) proves the desired bound. n

The following particular cases that hold for power function are of interest:

Example 3.1 Let A be a selfadjoint operator with Sp(A) C [m, M] for some
scalars m < M.
If A is positive (m > 0) and p,q > 0, then

(3.5) ) (AP 2y — (APx, x) - (A2, x)

MI'— I/\

(- >mmW—meWﬂs-Wmethﬂ

1
4

for each x € H with ||z| = 1.
If A is positive definite (m > 0) and p, ¢ < 0, then

(3.6) (0 <) (APtig, x> — (APx,x) - (A%, x)

MT =Ty g2 — (a9 @T”F

<—
M—-Prm~—p

P _m P M1 — mq}

l\'JIH
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for each x € H with ||z|| = 1.
If A is positive definite (m > 0) and p < 0, ¢ > 0 then

(3.7) (0 <) (APz,x) - (Alz,z) — (APT9z, 1)

1 M»—m , sz [ 1 M —mr
SV T nAdel? — Al LD VL R
= 2 M—Pm~—p [HA :EH <A x’x> } [S 4 M—Pm—p (M m )}
for each x € H with ||z| = 1.
If A is positive definite (m > 0) and p > 0, ¢ < 0 then
(3.8) (0 <) (APz,x) - (Alz,z) — (APT 9z, 2)
1 2 211/2 1 M1 —m™1
_ . P _ p q _ q — . P _ p
< 5 O =) [lavel? = gt 2] |< 3 (o7 ) S

for each x € H with ||z|| = 1.

We notice that the positivity of the quantities in the left hand side of the
above inequalities (3.5)-(3.8) follows from the Theorem 2.2.

The following particular cases when one function is a power while the second
is the logarithm are of interest as well:

Example 3.2 Let A be a positive definite operator with Sp(A) C [m, M] for
some scalars 0 <m < M.
If p > 0 then

(3.9) (0<)(APIn Ax,z) — (APz,z) - (In Az, x)

1
5 (M7 =) [[[In Az = {In Az, 2)’] 12
1 M
< < = (MP —mP)Iny/ —
/2 [ Are)? = (Are, 2] ’ "
m )
for each x € H with ||z|| = 1.
If p < 0 then
(3.10) (0 <) (APxz,z) - (In Az, x) — (AP In Az, x)
1 M7?—m>
S (|| Ax]f” — (In Az, 2)?]
2 Mmm7e 1 M7P—m™ _[M
< < Z. n4/—
-2 M—Pm~pP m

M
Iny /= - [l 47z | = (472, 2)*]"*

for each x € H with ||z| = 1.
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4. An inequality of Griiss’ type for n operators
The following multiple operator version of Theorem 3.1 holds:

Theorem 4.1 Let A; be selfadjoint operators with Sp(A;) C [m,M] for j €
{1,...,n} and for some scalars m < M. If f,g : [m, M| — R are continuous and
v:= min f(t) and ' := max f(t) then

tem, M te[m,M]
Z (f (A7) 9 (A7) vjy5) — Z (f (A5) Y, v5) - ‘ (9 (4j) zj, ;)
- # Z (9 (Aj) v, 95) — Z (g (Aj)xj7$j>] |
(4.1) = o ,
% I'—7) [Z lg (A7) y;* + (Z (9 (Aj)fﬂj,ﬂcﬁ)

n

1/2
_QZ Drine) > (g (Aj)yj,yﬁ]

Jj=1

for each x;,y; € H,j € {1,...,n} with Z ;|| = Z lly;]1> = 1.
Proof. As in [20, p. 6], if we put
A1 ce 0 T hn
A= : and r = ) Y =
An Tn Yn
ﬂmmm%@g[}w|wﬂ

(5 (s ()7) -

<f <g> v, §> = Zn: (f (A7) Yz, 950 <g (21) v, §> =2 (9 (A1) v y5) s

|'M:

(F (A7) g (A wisu) (9 (A) 7.7) = D (g (A ay, )

j=1 j=1

and
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Applying Theorem 3.1 for A, 7 and § we deduce the desired result (4.1). .

The following particular case provides a refinement of the Mond—Pecari¢ re-
sult from (2.3).

Corollary 4.1 With the assumptions of Theorem 4.1 we have

(4.2)
Z (f (A7) g (Aj) xj,25) — Z (f (Aj) @y, 2)) - Z (9 (45) zj, ;)
1 " P i 1
<5 - (=) ZHQ(AJ)%H —(Z (g (Ag)l”m%)) << —(T'—7) (A—5))

for each x; € H,j € {1,...,n} with Z”%HQ = 1 where 6 := min ¢ (t) and

te(m,M)|
A = t).
Jax g (t)

Example 4.1 Let A;, j € {1,...,n} be a selfadjoint operators with Sp(A4;) C

[m, M],5 € {1,...,n} for some scalars m < M.
If A; are positive (m > 0) and p,q > 0, then

(0<) > (AT ) =y (Afwy,ay) - > (Al a;)
=1 j=1 j=1

97 1/2

(VAN
[\DI»—t

o) | Sl - (3 g

7=1
<

for each z; € H,j € {1,...,n} with Z 1% = 1.

P ) (417 = )

-1

If A; are positive definite (m > 0) and p,q < 0, then

(0<) Y (A my) = > (Afwj ) - > (Al a;)
j=1 Jj=1 Jj=1

o7 1/2

IN

b M [l - (3 (a5

< 1 MP—mPM9—m™1
—4 M-Pm—Pr M-Im—4




214 S.S. DRAGOMIR

for each z; € H,j € {1,...,n} with Z ;| = 1.

]:
If A; are positive definite (m > 0) and p < 0, ¢ > 0 then

(0 S) Z <A§;Uj,ﬂj‘j> . Z <A?xj7$j> — Z <A§+q£l}j, Zlfj>
j=1 7=1 j=1
9 1/2

< % : MM Z A3 | (Z <A§"%”%‘>)

Jj=1
1 M™P—m™P
-z q_ 4
[S 4 M—Pm—p (M mn )}

for each z; € H,j € {1,...,n} with Z ;| = 1.

]:
If A; are positive definite (m > 0) and p > 0, ¢ < 0 then

(0 S) Z <A§J}j,xj> . Z <A?$J‘,£Cj> — Z <A§+q$j, Zlfj>
j=1 7=1 j=1

97 1/2

(VAN
N | —

MP — mP) Z HAgijQ — <Z <A§mj,xj>>
j=1

j=1
-9 _ —-q
|:< i (Mp _ mp) u}

M—a9m—4
for each z; € H,j € {1,...,n} with Z | z;])* = 1.

We notice that the positivity of the quantities in the left hand side of the
above inequalities (4.3)-(4.6) follows from the Theorem 2.3.

The following particular cases when one function is a power while the second
is the logarithm are of interest as well:

Example 4.2 Let A; be positive definite operators with Sp (A4;) C [m, M], j €
{1,...,n} for some scalars 0<m< M.

If p > 0 then
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(0 S) Z <A§ hlAjLUj,Ij> — Z <A§~)$]’, ZL’j> . Z <111Aj$j, Ij>
j=1 j=1 j=1

;

07 1/2
1 n n
5 (MP —m?) > I Aja|* - (Z <1T1Aj93j>$j>)
j=1 j=1
<
07 1/2
Iy [ 3[Rl = | D (AT, @)
\ j=1 j=1
1 M
— . P P =
[g 5 (MP —mP)In m]

for each z; € H,j € {1,...,n} with Z |z ])* = 1.
If p < 0 then
(02) > (Afwgo ;) - 3 (nAjzjows) = 3 (ATIn Ay, )
j=1 j=1 i=1

( o7 1/2

1M? —m~ n
2 M-rmr ZHlnAx]H - (Z <111ij17ij>>

j=1
— mfp M]

IA

97 1/2

oL S = (3 )

1 M™P |
- In
-2 M-—Prm~p m

for each z; € H,j € {1,...,n} with Z lz;])* = 1.

5. Another inequality of Griiss’ type for n operators
The following different result for n operators can be stated as well:
Theorem 5.1 Let A; be selfadjoint operators with Sp(A;) C [m,M] for j €

{1,...,n} and for some scalars m < M. If f and g are continuous on [m, M| and

vy o= r[nln f(t) and T := r{laﬁ}f(t) then for any p; > 0,7 € {1,...,n} with
te te\m,

ij =1 we have

j=1
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‘<Zpkf (Ap) 9 (Ar)y, y>

<Zpkg (Ak)y,y> - <ijg (A;) x:v>]
- <Zpkf (Ak)y,y> : <ijg (4;) wx>‘

< F— [Zpkz lg (Ax) yll? —2<Zpkg (Ark) v, y> <ij9 (Aj)x,x>

k=1

_’y+F
2

o7 1/2

+<ijg(Aj)l’,l‘> ’

Proof. Follows from Theorem 4.1 on choosing z; = \/p; -z, y; = /Pj - ¥,

for each x,y € H with ||z|| = ||y|| = 1.

Jj € {l,..,n}, where p; > 0,5 € {1,...,n}, ij =1 and z,y € H, with
j=1
llz|| = ||yl = 1. The details are omitted. n

Remark 5.1 The case n = 1 (therefore p = 1) in (5.1) provides the result from
Theorem 3.1.

As a particular case of interest we can derive from the above theorem the
following result of Griiss’ type:

Corollary 5.1 With the assumptions of Theorem 5.1 we have

‘<Zpkf (Ar) g (A) :1:> <Zpkf (Ap) >-<Zpkg(z4k)x,w>‘
:12 1/2
> ol (Ax) x| - <Zpk9 (Ak)xa$>

<ir-m@-s)

h H with =1, where § := dA:= t).
for each x € H with ||| , where ter[r#%}g()an tgﬁ}ﬂ;}g()

Proof. It is similar with the proof from Corollary 3.1 and the details are omitted. m

The following particular cases that hold for power function are of interest:
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Example 5.1 Let A;, j € {1,...,n} be a selfadjoint operators with Sp(A;) C
m,M],j7 € {1,...,n} for some scalars m < M and p; > 0,5 € {1,...,n} with

Y op=1
j=1

If A;, je{l,..,n} are positive (m > 0) and p,q > 0, then

(5.3) (0<) <ZpkAi+qx,x> <ZpkAkx x> ZpkAzx,w>
k=1 k=1
5 1/2

1 n n
< S —m?) | gl Al - <ZpkAzx,x>
k=1 k=1

< 5O ) (07 = )

for each x € H with ||z|| = 1.
If A;,je€{l,...,n} are positive definite (m > 0) and p,q < 0, then

(5.4) (0<) <ZpkAi+qx,a:> - <ZpkAzx,x> : <ZpkAZx,x>
k=1 k=1 k=1

97 1/2

1 M—»
- q _
<2 Mpmp g pk||Ax|| <E pkA$x>
S

M_p_m_pM_q _m_q
e e

for each x € H with ||z| = 1.
If A;, je{l,...,n} are positive definite (m > 0) and p < 0, ¢ > 0 then

(5.5) (0<) <Zn:pkA£x,a:> <ZpkAkJ: x> <Zn:pkA£+qx,x>

97 1/2

1Mp mP
4 M-Pm-p

1 M —mP
< 5 e |3 el - <ZmA )
S

(o1 = )

for each x € H with ||z| = 1.
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If Aj,je{l,..,n} are positive definite (m > 0) and p > 0, ¢ < 0 then

0 <) <Zpkz4£x,x> . <ZpkAZx,x> — <ZpkAZ+qx,x>
k=1 k=1 k=1

97 1/2
1 & 2
g Q0 =m) |3 pe el —<§jpkAkx x>
1 M~ —m~9
_ py_ -~ @
S WM ]

for each x € H with ||z|| = 1.

We notice that the positivity of the quantities in the left hand side of the
above inequalities (5.3)-(5.6) follows from the Theorem 2.4.

The following particular cases when one function is a power while the second
is the logarithm are of interest as well:

Example 5.2 Let A;, j € {1,...,n} be positive definite operators with Sp (A4;) C
[m, M], j € {1,...,n} for some scalars 0 < m < M and p; > 0,j € {1,...,n} with

j=1

If p > 0 then

(5.7) (0<) <ZpkAilnAk:v,x> <ZpkAkx ZB> <2pklnAkx,m>

k=1 k=1
( 1/2
n n 2 /

1
5 (MP —mP) - Zpk |In Agz||* — <Zpk lnAkx,x>
k=1 k=1

)7 1/2
M n n
In 4/ —- Zpk | APz |)* — <ZpkAZ:L‘,x>
k=1 k=1

VAN

for each x € H with ||z| = 1.
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If p <0 then
(5.8) (0<) <ZpkAix,x> : <Zpk lnAka:,x> — <ZpkAz lnAkx,w>
k=1 k=1 k=1
( 7 1/2

I M™P—m™P|& 5 i
o A—p—p Zpk |In Agz||” — <Zpk lnAkx,x>
2  M—Pm~p o e

o 1/2
M n n
In 4/ —- Zpk | AP z||* — <ZpkA£x,x>
k=1 k=1

[ 1 M7 —m M]
<= 1

IA

2 Mrmr " \'m
for each x € H with ||z| = 1.

The following norm inequalities may be stated as well:

Corollary 5.2 Let A; be selfadjoint operators with Sp(A;) C [m, M| for j €
{1,...,n} and for some scalars m < M. If f,g : [m, M| — R are continuous,

then for each p; > 0,j € {1,...,n} with ij = 1 we have the norm inequality:

j=1
n n n 1
(5.9) (D> pif (A) g (AN[ < (D pif (A1 pig (4)) +1 = (A=4d),
j=1 j=1 j=1
h ‘= mi t), I := t), d:= mi t dA = t).
where 7 ter[g%]f(); terﬁ@]f(), ter[gl%g()an téﬁf‘,ﬁ]g()

Proof. Utilising the inequality (5.2) we deduce the inequality

‘<Zpkf (Ak)g(Ak)$,$> < <Zpkf(z4k)$,$> "<Zpkg(f4kz)$,$>‘
k=1 k=1 k=1
1
PO (A-0)
for each x € H with ||z|| = 1. Taking the supremum over ||z|| = 1 we deduce the
desired inequality (5.9). .

Example 5.3 a. Let A;, j € {1,...,n} be a selfadjoint operators with Sp (A4;) C
[m,M],j € {1,...,n} for some scalars m < M and p; > 0,5 € {1,...,n} with

ij =1.
j=1
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If Aj,je{l,...,n} are positive (m > 0) and p,q > 0, then

Zp AT <Y e AR 1Y prAY
k=1 k=1

If Aj,je{l,..,n} are positive definite (m > 0) and p,q < 0, then

(5.10) —mP) (M?—m?) .

1 M™P—m™PM1—m1

(5.11) Ty e

" AP-HI

p q
kAk kAk

b. Let A;, j € {1, ...,n} be positive definite operators with Sp (4;) C [m, M],
Jj € {1,..,n} for some scalars 0 < m < M and p; > 0,5 € {1,....,n} with

j=1

If p > 0 then
(5.12) ZpkA In Ay, Zn:pkAg Zn:pkhlAk + X e~ eym [
k=1 k=1 2 m
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