A NOTE ON QUASI k-IDEALS AND BI k-IDEALS IN TERNARY SEMIRINGS

M.K. Dubey
S.A.G, DRDO
Metcalfe House Complex
Delhi 110054
India
e-mail: kantmanish@yahoo.com

Abstract. Dutta and Kar [3] have introduced the concept of ternary semiring. In this paper, the notion of quasi k–ideals and bi k–ideals of a ternary semiring is introduced and characterizations k–regular ternary semirings has been given.

Keywords:

2000 Mathematics Subject Classification: 16Y30.

1. Introduction and preliminaries

Ternary semiring is a generalization of a ternary ring which is introduced by Lister [6]. T.K. Dutta and S. Kar have initiated the notion of ternary semiring and studied their properties. Recall ([3], [4]) the followings. A non-empty set S together with binary operation, called addition and ternary multiplication, denoted by juxtaposition, is said to be a ternary semiring if S is an additive commutative semigroup satisfying the following conditions:

(i) $abc \in S$,

(ii) $(abc)de = a(bcd)e = ab(cde)$,

(iii) $(a + b)cd = acd + bcd$,

(iv) $a(b + c)d = abd + acd$,

(v) $ab(c + d) = abc + abd$

for all $a, b, c, d, e \in S$.

Let S be a ternary semiring. An element $0 \in S$ such that $0 + x = x$ and $0xy = x0y = xy0 = 0$ for all $x, y \in S$, then '0'is called the zero element.
of the ternary semiring S. In this case, S is called ternary semiring S with zero. Through out this paper, S will always denote a ternary semiring with zero. An additive subsemigroup I of S is called left (right, lateral) ideal of S if s_1s_2a (respectively as_1s_2, s_1as_2) $\in I$ for all $s_1, s_2 \in S$ and $a \in I$. If I is a left, a right and a lateral ideal of S then I is called an ideal of S. An ideal I of S is called a k–ideal if $x + y \in I, x \in S, y \in I$ imply that $x \in I$. If A is an ideal of a ternary semiring S then $\overline{A}=\{a \in S : a + x \in A \text{ for some } x \in A\}$ is called k–closure of A. It can easily verified that an ideal A of S is k–ideal if and only if $A=\overline{A}$ and also $A \subseteq \overline{A}, A \subseteq B$ implies $\overline{A} \subseteq \overline{B}$. Let A, B, C be three subsets of S. Then ABC denotes the set of all finite sums of the forms $\sum a_ib_ic_i$, where $a_i \in A, b_i \in B, c_i \in C$. An element $a \in S$ is called regular if there exists $x \in S$ such that $a = axa$. If all the elements of S are regular then S is called regular ternary semiring. An additive subsemigroup Q of a ternary semiring S is called a quasi-ideal of S if $QSS \cap (SQS + SSQSS) \subseteq SSQ \subseteq Q$. Clearly, every quasi ideal of ternary semiring S is a ternary subsemiring of S.

2. Main results

Proposition 2.1. Let S be a ternary semiring and X be a nonempty subset of S. Then

(i) $\langle X \rangle_l = Z_0^+X + SSX$ is the smallest left ideal generated by X,

(ii) $\langle X \rangle_r = Z_0^+X + XSS$ is the smallest right ideal generated by X,

(iii) $\langle X \rangle_t = Z_0^+X + SSX + XSS + SSXSS$ is the smallest two sided ideal generated by X,

(iv) $\langle X \rangle_m = Z_0^+X + SXS + SSXSS$ is the smallest lateral ideal generated by X,

(v) $\langle X \rangle_i = Z_0^+X + SSX + XSS + SXS + SSXSS$ is the smallest ideal generated by X,

where $SSX, XSS, SXS, SSXSS, Z_0^+X$ the set of all finite sum of the form $\sum r_is_ix_i, \sum x_ip_iq_i, \sum u_ix_iv_i, \sum p_iq_ix_ir_is_i, \sum n_ix_i$, where $r_i, s_i, p_i, q_i, u_i, v_i, p_i', q_i', r_i', s_i' \in S$, $x_i \in X, n_i \in Z_0^+$, and Z_0^+ is the set of all positive integer with zero.

The following corollary can be easily proved by the above proposition.

Corollary 2.2. If X is a subsemigroup of $(S, +)$, then

$\langle X \rangle_l = X + SSX$,

$\langle X \rangle_r = X + XSS$,

$\langle X \rangle_t = X + SSX + XSS + SSXSS$,

$\langle X \rangle_m = X + SXS + SSXSS$,

$\langle X \rangle_i = X + SSX + XSS + SXS + SSXSS$.
Proposition 2.3. [4] Let S be a ternary semiring and $a \in S$. Then the principal

(i) left ideal generated by a is given by

$$\langle a \rangle_l = \left\{ \sum r_i s_i a + na : r_i, s_i \in S : n \in Z_0^+ \right\}$$

(ii) right ideal generated by a is given by

$$\langle a \rangle_r = \left\{ \sum ar_i s_i + na : r_i, s_i \in S : n \in Z_0^+ \right\}$$

(iii) two sided ideal generated by a is given by

$$\langle a \rangle_t = \left\{ \sum r_i s_i a + \sum p_k' q_k' r_k' s_k' + na : r_i, s_i, p_i, q_i, r_k', s_k' \in S : n \in Z_0^+ \right\}$$

(iv) lateral ideal generated by a is given by

$$\langle a \rangle_m = \left\{ \sum r_i a s_i + \sum p_j q_j r_j s_j + na : r_i, s_i, p_j, q_j, r_j, s_j \in S : n \in Z_0^+ \right\}$$

(v) ideal generated by a is given by

$$\langle a \rangle_i = \left\{ \sum r_i s_i a + \sum p_k q_k r_k s_k + na : r_i, s_i, p_k, q_k, r_k, s_k \in S : n \in Z_0^+ \right\}$$

where \sum denote the finite sum and Z_0^+ is the set of all positive integer with zero.

Proposition 2.4. If Q is a quasi-ideal of a ternary semiring S, then

$$Q = Q + (SSQ \cap (SQS + SSQSS) \cap QSS).$$

Proof. The proof is obvious.

Let X be a non empty subset of a ternary semiring S. The smallest quasi-ideal containing X and generated by X is denoted by $(X)_q$, that is, the intersection of all quasi-ideal of S containing X.

Proposition 2.5. Let S be a ternary semiring and X be nonempty subset of S. Then $(X)_q = Z_0^+ X + (SSX \cap (SXS + SSXSS) \cap XSS)$.

Proof. Let $Q = Z_0^+ X + (SSX \cap (SXS + SSXSS) \cap XSS)$. Clearly, Q is a non empty additive subsemigroup of S. Now,

$$(SSQ \cap (SQS + SSQSS) \cap QSS) \subseteq SSQ$$

$$= SS(Z_0^+ X + (SSX \cap (SXS + SSXSS) \cap XSS))$$

$$\subseteq Z_0^+ SSX + SS(SSX) \subseteq SSX.$$
Similarly, \((SSQ \cap (SQS + SSQSS) \cap QSS) \subseteq (SX + SSXSS)\) and \((SSQ \cap (SQS + SSQSS) \cap QSS) \subseteq XSS\). Therefore

\[
(SSQ \cap (SQS + SSQSS) \cap QSS) \subseteq (SSX \cap (SX + SSXSS) \cap XSS) \subseteq Q.
\]

Hence \(Q\) is a quasi-ideal of \(S\) containing \(X\). Also, it is easy to show that \(Q\) is smallest quasi-ideal of \(S\) containing \(X\). Hence

\[
Q = (X)_q = Z_0^+X + (SSX \cap (SX + SSXSS) \cap XSS).
\]

Theorem 2.6. If \(Q\) is a quasi-ideal of a ternary semiring \(S\) and if \(Q \subseteq QSS\) and \(Q \subseteq SSQ\) and \(QSS\), \(SSQ\) are \(k\)-ideals of \(S\), then \(Q\) is the intersection of the left ideal \(Q + SSQ\), lateral ideal \(Q + SQS + SSQSS\), and right ideal \(Q + QSS\).

Proof. Let \(D = (Q + QSS) \cap (Q + SQS + SSQSS) \cap (Q + QSS)\). Clearly, \(Q \subseteq D\).

To show \(D \subseteq Q\). Now, \(Q \subseteq QSS\) and \(Q \subseteq SSQ\). Therefore

\[
D = QSS \cap (Q + SQS + SSQSS) \cap SSQ.
\]

Let \(d \in D\). Then \(d \in QSS\), \(d \in SSQ\) and

\[
d = q + \Sigma s'_i q'_i s_i + \Sigma p'_i q''_i q'''_i p'''_i
\]

for \(s'_i, s_i, p'_i, p''_i, p'''_i \in S\) and \(q'_i, q''_i \in Q\).

Since \(q \in Q \subseteq QSS\) and \(QSS\) is a \(k\)-ideal of \(S\), therefore

\[
\Sigma s'_i q'_i s_i + \Sigma p'_i q''_i q'''_i p'''_i \in QSS.
\]

Similarly,

\[
\Sigma s'_i q'_i s_i + \Sigma p'_i q''_i q'''_i p'''_i \in SSQ.
\]

Therefore,

\[
\Sigma s'_i q'_i s_i + \Sigma p'_i q''_i q'''_i p'''_i \in QSS \cap (SQS + SSQSS) \cap SSQ \subseteq Q.
\]

So,

\[
\Sigma s'_i q'_i s_i + \Sigma p'_i q''_i q'''_i p'''_i \in Q,
\]

which implies that \(d = q + \Sigma s'_i q'_i s_i + \Sigma p'_i q''_i q'''_i p'''_i \in Q\). Thus \(D \subseteq Q\). Hence \(D = Q\). ■

Definition 2.7. An additive subsemigroup \(Q\) of a ternary semiring \(S\) is called a quasi \(k\)-ideal of \(S\) if \(QSS \cap (SQS + SSQSS) \cap SSQ \subseteq Q\). Clearly, every quasi \(k\)-ideal is a quasi-ideal of \(S\).

It is easy to see that if \(R\) be right \(k\)-ideal, \(M\) be lateral \(k\)-ideal and \(L\) be left \(k\)-ideal of \(S\), then \(Q = R \cap M \cap L\) is a quasi \(k\)-ideal of \(S\), because \((R \cap M \cap L)SSS \cap SSSS(R \cap M \cap L)SSS \cap SS(R \cap M \cap L)SSS \cap SSL = R \cap M \cap L = R \cap M \cap L\).
Lemma 2.8. Let S be a ternary semiring and $A, B, C \subseteq S$, then

$$ABC = \overline{AB}C.$$

Proof. Since $A \subseteq \overline{A}$, $B \subseteq \overline{B}$ and $C \subseteq \overline{C}$, therefore $ABC \subseteq \overline{AB}C$. Hence, $\overline{ABC} \subseteq \overline{AB}C$. Again, let $x \in \overline{A}$, $y \in \overline{B}$ and $z \in \overline{C}$. Then there exist $a_1, a_2 \in A$, $b_1, b_2 \in B$ and $c_1, c_2 \in C$ such that $x + a_1 = a_2$, $y + b_1 = b_2$ and $z + c_1 = c_2$. Now,

\[
xyz + a_2 b_2 c_1 + a_2 b_1 c_2 + a_1 b_2 c_2 + a_1 b_1 c_1 \\
= xyz + (x + a_1)(y + b_1)c_1 + a_2 b_1 c_2 + a_1 b_2 c_2 + a_1 b_1 c_1 \\
= xyz + xyc_1 + xb_1 c_1 + a_1 yc_1 + a_1 b_1 c_1 + a_2 b_1 c_2 \\
+ a_1 b_2 c_2 + a_1 b_1 c_1 \\
= xyc_1 + xb_1 c_1 + a_1 yc_1 + a_1 b_1 c_1 + (x + a_1)b_1 c_2 \\
+ a_1 b_2 c_2 + a_1 b_1 c_1 \\
= x(y + b_1)c_2 + xb_1 c_1 + a_1(y + b_1)c_1 + a_1 b_1 c_2 \\
+ a_1 b_2 c_2 + a_1 b_1 c_1 \\
= xb_2 c_2 + (x + a_1)b_1 c_1 + a_1 b_2 c_1 + a_1 b_1 c_2 + a_1 b_2 c_2 \\
= (x + a_1)b_2 c_2 + a_2 b_1 c_1 + a_1 b_2 c_1 + a_1 b_1 c_2 \\
= a_2 b_2 c_2 + a_2 b_1 c_1 + a_1 b_2 c_1 + a_1 b_1 c_2.
\]

As $a_i b_j c_k(i,j,k = 1,2) \in ABC$, therefore we can prove that $xyz \in \overline{ABC}$, for $x \in \overline{A}, y \in \overline{B}, z \in \overline{C}$. Suppose $t = \sum_{finite} a_i b_j c_k$ for some $a_i \in \overline{A}$, $b_j \in \overline{B}$ and $c_k \in \overline{C}$. Thus $t \in \overline{ABC}$, i.e. $\overline{AB} \subseteq \overline{ABC}$. Therefore $\overline{ABC} \subseteq \overline{AB} = \overline{ABC}$. Hence $\overline{ABC} = \overline{ABC}$.

Definition 2.9. [4] Let S be a ternary semiring. Then S is called k–regular if for each $a \in S$ there exist $x, y \in S$ such that $a + axa = aya$.

Theorem 2.10. If a ternary semiring S is k–regular, then every quasi k–ideal Q of S is of the form $Q = \overline{QSQS} = \overline{QSS} \cap \overline{SQS} + \overline{SSQS} \cap \overline{SSQ}$.

Proof. Let Q be a quasi k–ideal of S. Then $\overline{QSS} \cap \overline{SQS} + \overline{SSQS} \cap \overline{SSQ} \subseteq Q$. Let $a \in Q$ and S is k–regular, then there exist $x, y \in S$ such that $a + axa = aya$. This implies that $axa + axaxa = ayaxa$. Since $axaxa, ayaxa \in \overline{QSSQ}$, therefore $axa \in \overline{QSSQ}$. Similarly, $aya \in \overline{QSSQ}$. Therefore $a \in \overline{QSSQ} = \overline{QSSQ}$ (as \overline{QSSQ} is k–closed). Therefore $Q \subseteq \overline{QSSQ}$. Again $\overline{QSSQ} \subseteq Q(SSS)S \subseteq QSS$ and $\overline{QSSQ} \subseteq \overline{SSQ}$, therefore $Q \subseteq \overline{QSSQ} \subseteq \overline{QSSQ} \subseteq \overline{SSQS} \cap \overline{SSQ} \subseteq \overline{SSQS} \subseteq \overline{QSS}$, which shows that $\overline{QSSQ} \subseteq \overline{QSS}$, $\overline{QSSQ} \subseteq \overline{SSQ}$ and $\overline{QSSQ} \subseteq \overline{SSQS} \cap \overline{SSQ}$. Thus we have $Q \subseteq \overline{QSSQ} \subseteq \overline{QSS} \cap \overline{QSSQ} \subseteq \overline{QSSQ} \cap \overline{SSQS} \subseteq \overline{Q}$ (as Q is a quasi k–ideal of S). Hence $\overline{QSSQ} = \overline{QSS} \cap \overline{QSSQ} \cap \overline{SSQS} \cap \overline{SSQ}$.

Theorem 2.11. A ternary semiring \(S \) is \(k \)-regular if and only if \(R \cap M \cap L = RML \) holds for each right \(k \)-ideal \(R \), lateral \(k \)-ideal \(M \), and left \(k \)-ideal \(L \) of \(S \).

Proof. Since \(R \) is right \(k \)-ideal, therefore \(RML \subseteq RSS \subseteq R \) which shows that \(RML \subseteq R = R \). Again, since \(M \) is a lateral \(k \)-ideal of \(S \), then \(RML \subseteq M \subseteq M \) and so \(RML \subseteq M = M \). Similarly, we obtain that \(RML \subseteq L \). Therefore we have \(RML \subseteq R \cap M \cap L \).

Again, suppose that \(a \in R \cap M \cap L \). Since \(S \) is \(k \)-regular therefore there exist \(x, y \in S \) such that \(a + axa = aya \). This implies that \(axa + a(xax)a = a(yax)a \).
Since \(a(xax)a, a(yax)a \in RML \) therefore \(axa \in RML \). Similarly, \(aya \in RML \). Therefore \(a \in RML = RML \) (as \(RMS \) is \(k \)-closed). Hence \(R \cap M \cap L \subseteq RML \). Thus \(R \cap M \cap L = RML \).

Conversely, let \(a \in S \). Then principal right \(k \)-ideal generated by \(a \) of \(S \) is given by \(aSS + Z^+_0a \). Now,

\[
\begin{align*}
 aSS + Z^+_0a &= aSS + Z^+_0a \cap S \cap S \\
 &= aSS + Z^+_0aSS \text{ (as } S \text{ is itself (lateral, left) } k \text{-ideal of } S) \\
 &= (aSS + Z^+_0a)SS \text{ (by Lemma 2.8)} \\
 &= aSS.
\end{align*}
\]

Also, \(a = a0S + 1.a \in aSS + Z^+_0a \subseteq aSS + Z^+_0a = aSS \). Therefore \(a \in aSS \). Similarly, it can easily be shown that \(a \in SSa \) and \(a \in (SaS + SSaSS) \).

Therefore, we have

\[
\begin{align*}
 a \in aSS \cap (SaS + SSaSS) \cap SSa &= aSS (SaS + SSaSS) SSa \\
 &= aSS (SaS + SSaSS) SSa = aSa.
\end{align*}
\]

Therefore there exist \(x, y \in S \) such that \(a + axa = aya \). Thus \(S \) is \(k \)-regular. \(\blacksquare \)

Definition 2.12. A ternary subsemiring \(B \) of a ternary semiring \(S \) is called a bi \(k \)-ideal of of \(S \) if \(BSBSB \subseteq B \).

Result 2.13. Every quasi \(k \)-ideal of a ternary semiring is a bi \(k \)-ideal of \(S \).

Proof. It is obvious by Theorem 2.10. \(\blacksquare \)

Result 2.14. Let \(S \) be a \(k \)-regular ternary semiring. Then every bi \(k \)-ideal \(B \) of a ternary semiring is a quasi \(k \)-ideal of \(S \) if \(\overline{B} = B \) and \(BSB \subseteq B \).
Proof. Let B be a bi k–ideal of S. Then

\[
BSS \cap (SBS + SSBSS) \cap SSB
= BSS(SBS + SSBSS)SSB \quad \text{(by Theorem 2.11)} \\
= BSS(SBS + SSBSS)SSB \quad \text{(by Lemma 2.8)} \\
= B(SSI)B(SSI)B + B(SSI)SBS(SSI)SB \\
\subseteq BSBSB + BSSBSSB \\
\subseteq BSBSB + B(SSI)SSB \\
\subseteq B + BSSB \quad \text{(as B is a bi k–ideal of S)} \\
\subseteq B + B \quad \text{(by hypothesis).} \\
\subseteq B = B \quad \text{(by hypothesis).}
\]

Hence B is a quasi k–ideal of S. □

Theorem 2.15. The following conditions in a ternary semiring S are equivalent

(i) S is k–regular.

(ii) for every bi k–ideal B of S, $B = BSBSB$.

(iii) for every quasi k–ideal Q of S, $Q = QSQSQ$.

Proof. (i) \Rightarrow (ii) Let $a \in B$. Since S is k–regular, then there exist $x, y \in S$ such that $a + axa = aya$. This implies that $axa + axaxa = aya$. Since $axaxa, aya \in BSBSB$, therefore $axa \in BSBSB$.

Similarly, $aya \in BSBSB$. Therefore, $a \in BSBSB$. Thus, $B \subseteq BSBSB$. Since B is bi k–ideal of S therefore $BSBSB \subseteq B$. Hence $B = BSBSB$.

(ii) \Rightarrow (iii) By Result 2.13.

(iii) \Rightarrow (i) Let the condition (iii) holds. Suppose R be right k–ideal, M be lateral k–ideal and L be left k–ideal of S, then $Q = R \cap M \cap L$ is a quaisik–ideal of S. By hypothesis, we have

\[
R \cap M \cap L = (R \cap M \cap L)S(R \cap M \cap L)S(R \cap M \cap L) \\
\subseteq RSMML \subseteq RML.
\]

But $RML \subseteq R \cap M \cap L$. Therefore, $R \cap M \cap L = RML$. Therefore, by Theorem 2.11, we have S is k–regular. □

Theorem 2.16. Let S be a ternary semiring. Then the following are equivalent

(i) S is k–regular.

(ii) $B \cap M = BMBMBM$ for every lateral k–ideal M and brik–ideal B of S.

(iii) $Q \cap M = QMQMQ$ for every lateral k–ideal M and quasik–ideal Q of S.
Proof. (i) ⇒ (ii) Let \(a \in B \cap M \). Then \(a \in B \) and \(a \in M \). Since \(S \) is \(k \)--regular then there exist \(x, y \in S \) such that \(a + axa = aya \). This implies that \(axa + axaxa = ayaxa \). Also, \(axaxa + axaxaxa = ayaxaxa \) and \(axaxaxa + axaxaxaxa = ayaxaxaxa \). Since \(axaxaxaxa, ayaxaxaxa, axaxaxaxaxa \in BSMSBSMB \subseteq BMBMB \), therefore by property of \(k \)--closure it is easy to show that \(a \in BMBMB \). Therefore, \(B \cap M \subseteq BMBMB \).

Again, as \(BMBMB \subseteq BSBSB \), therefore \(BMBMB \subseteq BSBSB \subseteq B \) (as \(B \) is bi \(k \)--ideal of \(S \)). Therefore, \(BMBMB \subseteq B \). Also, \(BMBMB \subseteq SM(SSS) \subseteq M, BMBMB \subseteq M = M \) (as \(M \) is lateral \(k \)--ideal of \(S \)). Whence \(BMBMB \subseteq B \cap M \). Therefore, \(B \cap M = \overline{BMBMB} \).

(ii) ⇒ (iii) By Result 2.13, (iii) holds.

(iii) ⇒ (i) Since \(S \) is itself a lateral \(k \)--ideal of \(S \), therefore \(Q = Q \cap S = QSQSQ \). Therefore, by the above theorem the result holds.

Acknowledgment. The author wish to express his deep gratitude to the learned referee for his valuable comments and suggestions.

References

Accepted: 24.04.2009