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1. Introduction

One of the basic problems in submanifold theory is to find simple relationships
between the extrinsic and intrinsic invariants of a submanifold. In [1] and [4],
B.Y. Chen established inequalities in this respect, called Chen inequalities. The
main extrinsic invariant is the squared mean curvature and the main intrinsic
invariants include the classical curvature invariants namely the scalar curvature
and the Ricci curvature; and the well known modern curvature invariant namely
Chen invariant [2]. In 1993, Chen obtained an interesting basic inequality for
submanifolds in a real space form involving the squared mean curvature and the
Chen invariant and found several of its applications. This inequality is now well
known as Chen’s inequality; and in the equality case it is known as Chen’s equality.
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In [6], Dillen, Petrovic and Verstraelen studied Einstein, conformally flat and
semisymmetric submanifolds satisfying Chen’s equality in Euclidean spaces. In [8],
the first author and M.M. Tripathi studied the same problems for a submanifold
of a real space form.

In this paper, we study submanifolds satisfying Chen’s equality and the con-
ditions R · P = 0 and P · P = 0 in an Euclidean space.

The paper is organized as follows. In Section 2, we give some known results
about Riemannian submanifolds and Chen’s inequality which will be used in the
next sections. In Section 3, we study projectively semi-symmetric submanifolds
satisfying Chen’s equality in an Euclidean space. We also study submanifolds
satisfying the condition P · P = 0.

2. Chen’s inequality

Let M be an n-dimensional submanifold of an (n + m)-dimensional Euclidean
space En+m. The Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + σ (X, Y ) and ∇̃XN = −ANX +∇⊥
XN

for all X,Y ∈ TM and N ∈ T⊥M , where ∇̃, ∇ and ∇⊥ are respectively the
Riemannian, induced Riemannian and induced normal connections in M̃ , M and
the normal bundle T⊥M of M respectively, and σ is the second fundamental form
related to the shape operator A by 〈σ (X, Y ) , N〉 = 〈ANX, Y 〉. The equation of
Gauss is given by

(2.1) R(X,Y, Z, W ) = 〈σ(X, W ), σ(Y, Z)〉 − 〈σ(X,Z), σ(Y,W )〉
for all X,Y, Z,W ∈ TM , where R is the curvature tensors of M.

The mean curvature vector H is given by H =
1

n
trace(σ). The submanifold

M is totally geodesic in Em+n if σ = 0, and minimal if H = 0 [3].
Let {e1, ..., en} be an orthonormal tangent frame field on M . For the plane

section ei ∧ ej of the tangent bundle TM spanned by the vectors ei and ej (i 6= j)

the scalar curvature of M is defined by κ =
n∑

i,j=1

K(ei ∧ ej) where K denotes the

sectional curvature of M . Consider the real function inf K on Mn defined for
every x ∈ M by

(inf K)(x) := inf{K(π) | π is a plane in TxM
n}.

Note that since the set of planes at a certain point is compact, this infimum is
actually a minimum.

Lemma 2.1. [1] Let M , n ≥ 2, be any submanifold of En+m. Then

(2.2) inf K ≥ 1

2

{
κ− n2(n− 2)

n− 1
|H|2

}
.
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Equality holds in (2.2) at a point x if and only if with respect to suitable local
orthonormal frames e1, ..., en ∈ TxM

n, the Weingarten maps At with respect to
the normal sections ξt = en+t, t = 1, ..., p are given by

A1 =




a 0 0 0 · · · 0
0 b 0 0 · · · 0
0 0 µ 0 · · · 0
0 0 0 µ · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · µ




,

(2.3) At =




ct dt 0 · · · 0
dt −ct 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




, (t > 1),

where µ = a + b for any such frame, inf K(x) is attained by the plane e1 ∧ e2.

The inequality (2.2) is well known as Chen’s inequality. In case of equality, it
is known as Chen’s equality. For dimension n = 2, the Chen’s equality is always
true.

Let M be an n-dimensional (n ≥ 3) submanifold of an Euclidean space En+m

satisfying Chen’s equality. Then, from Lemma 2.1 we immediately have the fol-
lowing

(2.4) K12 = ab−
m∑

r=1

(c2
r + d2

r),

(2.5) K1j = aµ,

(2.6) K2j = bµ,

(2.7) Kij = µ2,

(2.8) S(e1, e1) = K12 + (n− 2)aµ,

(2.9) S(e2, e2) = K12 + (n− 2)bµ,

(2.10) S(ei, ei) = (n− 2)µ2,

where i, j > 2. Furthermore, R(ei, ej)ek = 0 if i, j and k are mutually different [6].
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Projective curvature tensor of submanifolds satisfying Chen’s equality

In this section, we consider projectively semi-symmetric submanifolds satisfying
Chen’s equality in an Euclidean space. We also consider submanifolds satisfying
the condition P · P = 0.

The projective curvature tensor P of an n-dimensional Riemannian manifold
(M, g) is defined by [9]

(3.1) P (X, Y )Z = R(X, Y )Z − 1

n− 1
[S(Y, Z)X − S(X, Z)Y ].

It is well-known that if the condition R · P = 0 holds on M , then M is said
to be projectively semi-symmetric.

So from (2.4)-(2.10) we have the following corollary:

Corollary 3.1. Let M be an n-dimensional (n ≥ 3) submanifold in an Euclidean
space satisfying Chen’s equality, then

(3.2) P122 =
n− 2

n− 1
(K12 − bµ)) e1,

(3.3) P133 = µ

(
a− n− 2

n− 1
µ

)
e1,

(3.4) P131 =
1

n− 1
(K12 − aµ) e3,

(3.5) P233 = µ

(
b− n− 2

n− 1
µ

)
e2,

(3.6) P211 =
n− 2

n− 1
(K12 − aµ) e2

(3.7) P232 =
1

n− 1
(K12 − bµ) e3,

and

(3.8) Pijk = 0 if i, j, k are mutually different.

Theorem 3.2. Let M be an n-dimensional (n ≥ 3) submanifold of an Euclidean
space En+m satisfying Chen’s equality. If M is projectively semi-symmetric then

(i) M is totally geodesic, or

(ii) M is minimal, or
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(iii) M is a round hypercone in some totally geodesic subspace En+1 of En+m, or

(iv) infK = 0, or

(v) a = b, in this case if n = 3 then M is totally geodesic, if n = 4 then M is a
pseudosymmetric hypersurface of E5 which has a shape operator of the form

(3.9) A1 =




a 0 0 0
0 a 0 0
0 0 2a 0
0 0 0 2a


 ,

or

(vi) M is a submanifold in some totally geodesic subspace En+m−1 which has
shape operators of the form (2.3).

Proof. Assume that the condition R · P = 0 holds on M . Then, we can write

(3.10)

(R(e1, e3) · P ) (e2, e3, e1) = R(e1, e3)P (e2, e3)e1

−P (R(e1, e3)e2, e3)e1 − P (e2, R(e1, e3)e3)e1

−P (e2, e3)R(e1, e3)e1 = 0

and

(3.11)

(R(e2, e3) · P ) (e1, e3, e2) = R(e2, e3)P (e1, e3)e2

−P (R(e2, e3)e1, e3)e2 − P (e1, R(e2, e3)e3)e2

−P (e1, e3)R(e2, e3)e2 = 0.

Then, using (2.4)-(2.7) and (3.2)-(3.8), we get

(3.12) aµ

[
bµ− (n− 2)ab + (n− 2)

m∑
r=1

(c2
r + d2

r)

]
= 0

and

(3.13) bµ

[
aµ− (n− 2)ab + (n− 2)

m∑
r=1

(c2
r + d2

r)

]
= 0.

Case I. If M is totally geodesic, the condition R · P = 0 holds trivially.

Case II. If µ = 0 then M is minimal.

Case III. If µ 6= 0 and a = 0 then µ = b. Hence, from (3.13), we get

(n − 2)
m∑

r=1

(c2
r + d2

r) = 0. This gives us cr = dr = 0. So, by [5], M is a round

hypercone in some totally geodesic subspace En+1 of En+m.
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Case IV. If µ 6= 0 and b = 0, then we obtain again the same result in Case III.

Case V. a, b, µ 6= 0, then from (3.12) and (3.13) we obtain a = b, or µ = 0, or
K12 = 0. If µ = 0, then M is minimal. If K12 = 0 then inf K = 0. Assume that
a = b. Then, from (3.13) we have

(4− n)a2 + (n− 2)
m∑

r=1

(c2
r + d2

r) = 0.

In this case, if n = 3, then cr = dr = 0. Hence, M is totally geodesic. If n = 4,
then cr = dr = 0, so by Theorem 2.12 of [7], M is a pseudosymmetric hypersurface
in some totally geodesic subspace En+1 of En+m, which has a shape operator of
the form (3.9).

Case VI. If a = b = 0, then M is a submanifold in some totally geodesic subspace
En+m−1, which has shape operators of the form (2.3).

This completes the proof of the theorem.

Theorem 3.3. Let M be an n-dimensional (n ≥ 3) submanifold of an Euclidean
space En+m satisfying Chen’s equality. If the condition P · P = 0 holds on M ,
then

(i) M is minimal, or

(ii) M is totally geodesic, or

(iii) M is 3-dimensional, or

(iv) a = b.

Proof. Since the condition P · P = 0 holds on M we have

(3.14)

(P (e1, e3) · P ) (e2, e3, e1) = P (e1, e3)P (e2, e3)e1

−P (P (e1, e3)e2, e3)e1 − P (e2, P (e1, e3)e3)e1

−P (e2, e3)P (e1, e3)e1 = 0

and

(3.15)

(P (e2, e3) · P ) (e1, e3, e2) = P (e2, e3)P (e1, e3)e2

−P (P (e2, e3)e1, e3)e2 − P (e1, P (e2, e3)e3)e2

−P (e1, e3)P (e2, e3)e2 = 0.

So, in view of (3.2)-(3.8), we obtain

(3.16) µ [K12 − aµ]

[(
a− n− 2

n− 1
µ

)
(n− 2) +

(
b− n− 2

n− 1
µ

)]
= 0
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and

(3.17) µ [K12 − bµ]

[(
b− n− 2

n− 1
µ

)
(n− 2) +

(
a− n− 2

n− 1
µ

)]
= 0

Case I. If µ = 0, then M is minimal.

Case II. If K12−aµ = 0, K12−bµ = 0, then we obtain a = b. Since K12−aµ = 0,

from (2.4) we get a2 +
m∑

r=1

(c2
r + d2

r) = 0, which gives us a = cr = dr = 0. Hence,

M is totally geodesic.

Case III. If (
a− n− 2

n− 1
µ

)
(n− 2) +

(
b− n− 2

n− 1
µ

)
= 0

(
b− n− 2

n− 1
µ

)
(n− 2) +

(
a− n− 2

n− 1
µ

)
= 0,

and µ 6= 0 and K12 − aµ 6= 0, then either n = 3 or a = b.

Case IV. If

K12 − aµ = 0 and
(
b− n−2

n−1
µ
)
(n− 2) +

(
a− n−2

n−1
µ
)

= 0,

then, from (2.4), we get a = cr = dr = 0, which gives us a = cr = dr = 0. Hence,
M is totally geodesic.

Case V. If

K12 − bµ = 0 and
(
a− n−2

n−1
µ
)
(n− 2) +

(
b− n−2

n−1
µ
)

= 0,

then, from (2.4), we get a = b = cr = dr = 0, which gives us M is totally geodesic.
This proves the theorem.
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