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1. Introduction

In [3], S.S. Dragomir introduced the following Cebysev functional for the Riemann-
Stieltjes integral:

b
(1L1) T(f,g;u) =m / £ (t)g () du (1)

1 b 1 b
_M/a f(t)du(t>'m/a g (t)du(t),

provided u (b) # u (a) and the involved Riemann-Stieltjes integrals exist.

In order to bound the error in approximating the Riemann-Stieltjes integral of
the product in terms of the product of the integrals, as described in the definition
of the Cebysev functional (1.1), the first author obtained the inequality:

(1.2) |T'(f, g;u)|

g%(M—m)-MHg—m/:g(s)dU@)
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provided u is of bounded variation, f, g are continuous on [a, bl and m < f (t) < M

for any t € [a,b]. The constant 3 is best possible in the sense that it cannot be

replaced by a smaller quantity.

Moreover, if f, g are as above and w is monotonic nondecreasing on [a, b],
then

(1.3) [T(f, g;u)]

1
and the constant 3 here is also sharp.

Finally, if f and g are Riemann integrable and w is Lipschitzian with the
constant L > 0, then also

(1.4) [T (f, g;u)]

dt,

provided m < f (t) < M, t € [a,b] . The multiplicative constant % is best possible
n (1.4).

For results concerning bounds for the Cebysev functional T'(f, g;u) see [4]
and [5]. For other recent results on inequalities for the Riemann-Stieltjes integral,
see [1], [2] and [6].

The main aim of this paper is to provide an upper and a lower bound for
the functional T'(f, g;u) under the monotonicity assumption on the function f.
An application for the Cebysev inequality for Riemann-Stieltjes integrals that is
related to Steffensen’s result from [8] is given as well.

2. The results

The following result providing upper and lower bounds for the quantity

[ (b) = h(a)] T (f, 9, h;a,b)

can be stated:

Theorem 2.1 Let f,g,h: [a,b] — R be such that h(a ) and the Riemann-
b
Stieltjes z’ntegmls/ f(t)dh (t),/ t)dh (t and/ f(t (t) exist. If f
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1s monotonic nondecreasing, then

b B b
21) [f(b) - f(a)] inf {/ g(s)dh(s)—M-/ g<r>dh<7>}

t€(a,b] h(b) — h(a)
< [1w0s0an0) -t [ romo- [
b b= h(t) [
<l (b)—f(a)]til[ﬁ]{/ s an(s) - = [ ann).

If f is monotonic nonincreasing, then:

22) 1f @)~ f 0] i {ﬂ@ﬂh@)—%-/ o (r)dn ()}

te(a,b)
b
< [10s0an - ot [ 100 [a@ao
— su t s 8——h(t)_h(&)- ’ T T
<1/ (a) f(b)]te[fb]{/g()dh() i [ emamt

Inequalities (2.1) and (2.2) are sharp.

Proof. We use the following Abel type inequality obtained by Mitrinovi¢ et al.
in [7, p. 336]:
Let u be a nonnegative and monotonic nondecreasing function on [a, b] and

b
v,w : [a,b] — R such that the Riemann-Stieltjes integrals / v (t) dw (t) and

/bu (t) v (t) dw (t) exist. Then

(2.3) u (b) inf]{/tbv(t)dw(t)} g/abu(t)v(t)dw(t)

t€lab
< u(b)til[g)b]{/tbv(t)dw (t)}.

We also use the representation (see [3])

(2.4) T(f,g,h;a,b)

which holds for any v € R.
Now, if we choose v = f (a), then we observe that the function wu(t) =
f(t) — f(a) is nonnegative and monotonic nondecreasing on [a, b] and applying
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1

b
m/ g (s)dh (s) we deduce:

) b 1 b
@5 Uo-r@liat { [ o6 5ot [s@anm|ao)
h6)~h (@) (1,9, 50.)

<01 @) s { / b [g (5) —m- / o () dh m]dh <s>},

which is equivalent with the desired inequality (2.1).

For the second inequality, we use (2.4) with v = f (b) and the following Abel
type result for functions v which are monotonic nonincreasing and nonnegative
(see [7, p. 336)):

(2.3) for w (t) = h(t) and v (t) = g (t) —

IA

(2.6) u@%&&é%@ﬂw@}ﬁl%@ﬂ@ﬂw@

t
< wu(a) sup {/ v(t)dw(t)}.
t€la,b] a
The details are omitted.

Let us prove for instance the sharpness of the second inequality in (2.1).
b
If we choose h(t) =t and g (t) = sgn (t - %) , t € [a,b] then we have to

show that the inequality:

21 [7 05 (=37 )ar<iro)-sta) s [ (s 1" s}

is sharp provided f is monotonic nondecreasing on [a, b] .
Notice that

b
X ) t—a ifte{a,a;_ }
)\(t)::/ sgn(s—a; )ds: )
: b—t if te(a+ ,b}
2
b—a
and then sup A (t) =
tela,b] 2
Therefore (2.7) becomes
a+b b—a
2.5) /f sgn( ! )dt )~ f (@] -5

e e : a+b o :
Now, if in this inequality we choose f () = sgn <t - ) which is monotonic

nondecreasing on [a, b], we get in both sides of (2.8) the same quantity b — a.
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The sharpness of the other inequalities can be shown in a similar way. The
details are omitted.

Remark 2.1 We observe that
[ o@rine - =S [amane
/ () (5) = =

Q) [ B ;
aitg O i [ 9
:[h<t> (@) [0 (5) (1)
A )~ h(a)

<Jioria [ 1086 -t [ @]

Therefore, if we denote by A (g, h;t,a,b) the difference
1 b 1 t
= | 1O — i | e,
provided h (t) # h(a),h (b) for t € [a,b], then from (2.1) we get

29 0@l it { [h(t) = h (<;>] [h ((l;))— PO (g1t a, b)}

I
b b b
</ f(t)g(t)dh(t)—m/ f@yan- [ g@ane

provided f is monotonic nondecreasing on |a, b .
A similar result can be stated from (2.2) on noticing that

/g(s)dh(s)—%-/ g (7)dh (1)

Indeed, since

1, ) {00 —Ei [owmo)

= inf (é%%) - Z(&f )
) [P 10
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then from (2.2) we get

(@)= 5 )] . { [ (t) _hh((l)C)L>]—[l;z ((l;))— DOIA (g1t b)}

<o [0 [somo- [ 1o

o [BO @O @)
<17 (0) = £ ) s { ORI O R0 (g i b)}

provided that f is monotonic nonincreasing on [a, b] .

The following corollary gives a particular result of interest for Riemann weighted
integrals.

Corollary 2.1 Let f,g,w : — R be such that the Riemann integrals
b
/f w ( / t)dt, /f t)dt and/ w (t)dt exist, and
ab a
w(t)dt # 0.

a
If f is monotonic nondecreasing, then

(2.10)  [f(b) = f(a)] inf {/Q(S)W(S) ds — ft,, 5)ds ‘/9(7’)w(7')d7'}

te(a,b]

<[ ®s@wa Fyw e [o0w o
/ —— [rem o [o0

—f (a)] su bsws S—M'bTMTT
U f()]te[a%]{/tg() s 5 [o <>d}.

If f is monotonic nonincreasing, then

21) (@ - f0) inf]{/g@)w(s)ds—%-/gmww}

t€fa,b f;

(s)ds Ja
/f £ dt — f”w /b (t)dt./ag(t)w(t)dt
;uapﬂ{/ o= G [y

Remark 2.2 If we define

b t
A (g, w;it,a,b) = fbwl(s)ds/t g(s)w(s)ds—m/ g (s)w(s)ds,
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t b
provided / w (s)ds, / w (s)ds # 0, then, under the assumptions of Corollary
a t

2.1, we have:

t b
(212) [f(4)— f(a) teil[}fb] { fow (;Z fé‘l) ;"S(S) © Algwita, b)}
1 b b
/f w(t) d fbw(s)ds'/a f(t)w@)dt-/ag(t)w(t)dt
fw(s)dsfbw(s)ds < }
b) — a)|l su 2 & -A , W ,&,b 5
<[f () — f(a)] te[ag]{ T (s)ds (9, w;t,a,b)

provided f is monotonic nondecreasing on |[a, b] , and

213)  [f (@)~ f O] nt {fa v (j?,f(f) v 4 <g,w;t,a,b>}

b b b
ts)d(‘f/ f@w(t)dt-/ g(t)w(t)dt—/ () g(t)w(t)dt

ftw(s)dsfbw(s)ds
a) — f(b)] su & <
< [f (@) f<>1te[a;;b]{ R

if f is monotonic nonincreasing on [a, b] .

'A(g,w;t,a,b)}

Remark 2.3 In the particular case where w (t) = 1, t € [a,b], we get the simpler
inequalities:

21 10— @ [owas- 1=t @)

te(a,b)
b
/ g (t)dt
b—t [°

b
/f dt——/f(t)dt
b
<o -s@lsw { [aas-3=1 [oar)
tela,b] t —a Jg
in the case where f is monotonic nondecreasing on [a, b] .
If f is monotonic nonincreasing on |a, b] , then

21 if@- sl { [owa- 1= [ df}

< [rsoa gty froa oo

< (7@ - 7o) s { [ <>ds—2“‘/abg<f>df}.

tela,b] —a
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If we denote

1 b 1 ¢
Agita) =5 oG ds—— [g()as

then we get from (2.14)

L () = f(a)] inf {(t—a)(b—1t)A(g;t,a,b)}

b—a tela,b]

/f i [ 1o [

f(a)] sup {(t—a) (b—t)A(g;taa>b)}’

N b —a tela,b]

provided f is monotonic nondecreasing and from (2.15)

%te[afb { t)A(g;t,a, b)}
<t [roa [ (t)dt—/f<t)g(t)dt
SM sup { t—a) (b—t)A(g;t,a,b)}

b—a t€la,b]

if f is monotonic nonincreasing on [a, b] .

3. Applications for the Cebysev inequality

Let f,g : [a,b] — R be integrable functions, both increasing or both decreasing.
Furthermore, let p : [a,b] — [0, 00) be an integrable function, then [7, p. 239]:

s [pwar [ r@r@e@arz [ [ @@

This inequality in known in the literature as Cebysev’s inequality.
For various other results related to this classical fact, see Chapter IX of the
book [7] .

Proposﬂslon 3.1 Let f g,h :la,b] — R be such that the Riemann-Stieltjes inte-

gmls/ f(t)dh(t), / t)dh(t and/ f(t h(t) exist. If h (b) > h(a),

f s monotonic nondecreasing (nomncreasmg) and

(32 [h(b) - h(a)] / g (s)dh (s) > [h(B) — o (1) / g(s)dh (s)

for any t € [a,b], then

b b b
(33)  [h(b) - h(a) / f (g ) dh(t) > (<) / £ () dh(t) - / g (t)dh (t).
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The proof follows by Theorem 2.1 by using

b h()~h() [

[ o - [ sane

t (b)_h<a> a
—[[s@ae - LGS [ae ).

Remark 3.4 The above proposition implies the following Cebysev type inequa-
lity for weighted integrals (with not necessarily positive weights).

b
Let f,g,w : [a,b] — R be such that the Riemann integrals, / w (t) dt,

/ftw / (1) w dtand/f (1) dt exist.

/ (t)dt > 0, f is monotonic nondecreasing (nonincreasing) and

(3.4) /abw(s)ds/tbg(s)w(s)dsz/tbw(s)ds/abg(s)w(s)ds
la,b

for any t € [a,b], then

b b b b
35 [wwa [ r0o0umaz© [ foumd [ oo

In particular (i.e., if w(s) = 1), if f is monotonic nondecreasing (nonincreasing)

and if

t b
(3.6) (b—a)/ g(s)dsZ(b—t)/ g(s)ds
for any ¢ € [a,b], then

(3.7) b—a/f Bt > ( /f dt/ (t) dt

Remark 3.5 Notice that, the weighted inequality (3.5), as pointed out in
[7, p. 246], can be also obtained from the Steffensen result [8] which states that:
if G, H are integrable functions on [a, b] such that for all z € [a, b]

/G o
[ows” [ o
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provided F' is monotonic nondecreasing on [a, b] .

The choice F'(t) = f(t), H(t) = w(t), and G (t) = g (t)w (t) in (3.8) pro-

duces (3.5) under the condition that (3.4) holds and f is monotonic nondecreasing.
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