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1. Introduction

The graph theory and algebraic notation and terminology follow from [9] and [7],
respectively. Let F = {Si : i ∈ I} be an arbitrary family of sets. The intersection
graph G(F ) of F is the graph whose vertices are Si, i ∈ I and in which the vertices
Si and Sj (i, j ∈ I) are adjacent if and only if Si 6= Sj and Si∩Sj 6= ∅. It is known
that every simple graph is an intersection graph, [8].

Let G = (V,E) be a graph. The (open) neighborhood N(v) of a vertex
v ∈ V is the set of vertices which are adjacent to v. For a subset S of vertices,

N(S) =
⋃
v∈S

N(v) and N [S] = N(S) sup S. A set of vertices S in G is a dominating

set, (or just DS), if N [S] = V (G). The domination number, γ(G), of G is the
minimum cardinality of a dominating set of G. For references on Domination
Theory, see [6].

It is interesting to study the intersection graphs G(F ) when the members of
F have an algebraic structure. Bosak [1], in 1964, studied graphs of semigroups.
Then Csákány and Pollák [3], in 1969, studied the graphs of subgroups of a finite
group. Zelinka [10], in 1975, continued the work on intersection graphs of nontri-
vial subgroups of finite abelian groups. Recently, Chakrabarty et al. [2] studied
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intersection graphs of ideals of rings. Jafari Rad et al. [4] considered intersection
graph of subspaces of a vector space. They also studied the intersection graphs of
submodules of a module [5].

In this paper, we study domination in the intersection graphs of ideals of rings
and domination in the intersection graphs of submodules of modules. In section
2, we determine domination number in the intersection graphs of ideals of rings.
In section 3, we determine the domination number in the intersection graphs of
submodules of modules.

Throughout this paper, R is a commutative ring R with 1. For a ring R the
intersection graph of ideals of R, denoted by Γ(R), is the graph whose vertices
are in a one-to-one correspondence with proper nontrivial ideals of R and two
distinct vertices are adjacent if and only if the corresponding ideals of R have a
nontrivial (nonzero) intersection. For an R-module M , the intersection graph of
submodules of M , denoted by Γ(M), is the graph whose vertices are in a one-
to-one correspondence with proper nontrivial submodules of M and two distinct
vertices are adjacent if and only if the corresponding submodules have a nontrivial
(nonzero) intersection.

For a ring R, we define γ(Γ(R)) = 0 if R is a field, and for an R-module M ,
we define γ(Γ(M)) = 0 if M is simple.

2. Ring

In this section we determine the domination number in the intersection graphs of
ideals of rings. We begin with the following obvious lemma.

Lemma 2.1 Let R1, R2 be two rings with 1. Then I E R1 × R2 if and only if
I = I1 × I2, where Ii E Ri for i = 1, 2.

Lemma 2.2 Let R1, R2 be two rings with 1. Then γ(Γ(R1 ×R2)) ≤ 2.

Proof. Notice that {R1 × 0, 0×R2} is a DS of Γ(R1 ×R2).

Theorem 2.3 Let R1, R2 be two rings with 1. Then γ(Γ(R1 × R2)) = 1 if and
only if γ(Γ(R1)) = 1 or γ(Γ(R2)) = 1.

Proof. (=⇒) Let {I × J} be a DS for Γ(R1 × R2). Since R1 × 0 and 0× R2 are
dominated by {I×J}, we obtain that I or J is a nontrivial proper ideal. Without
loss of generality, assume that I is a nontrivial proper ideal. Now each ideal I1 of
R1, (I1× 0)∩ (I × J) 6= 0. So I ∩ I1 6= 0. This implies that {I} is a DS for Γ(R1),
and so γ(Γ(R1)) = 1.

(⇐=) Let γ(Γ(R1)) = 1, and {I} be a DS for Γ(R1). It follows that {I ×R2}
is a DS for Γ(R1 ×R2). This completes the proof.

A ring R is indecomposable if, for any pair of nontrivial rings R1, R2,

R 6∼= R1 ×R2.

Lemma 2.4 If R is an indecomposable ring with 1 such that Γ(R) 6= ∅, then
γ(Γ(R)) = 1.
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Proof. Let M be a maximal ideal of R. Let I be an arbitrary proper nontrivial
ideal of R. If I ∩M = 0 then I + M = R and so R ' I ×M , a contradiction. So
I ∩M 6= 0. We conclude that {M} is a DS for Γ(R).

Corollary 2.5 Let R be a ring with 1. Then γ(Γ(R)) ≤ 2.

Proof. The result follows from Lemmas 2.2 and 2.4.

Theorem 2.6 Let R be an Artinian commutative ring with 1. Then γ(Γ(R)) = 2
if and only if R = R1×R2× ...×Rt, where t ≥ 2 and Ri is a field for i = 1, 2, ..., t.

Proof. (=⇒) Since R is Artinian, we have R = R1 × R2 × ... × Rt, where Ri is
a local ring for i = 1, 2, ..., t. By Theorem 2.3, γ(Γ(Ri)) 6= 1. This implies that
Γ(Ri) is the null graph, and so Ri is a field. But γ(Γ(R)) = 2. So Γ(R) 6= ∅, and
then t ≥ 2.

(⇐=) Follows from Theorem 2.3.

3. Module

In this section we determine the domination number in the intersection graphs of
submodules of modules. An R-module M is semisimple if M ∼= M1×M2×...×Mk,
where Mi is a simple R-module for i = 1, 2, ..., k.

Lemma 3.7 Let M be an Artinian R-module and N =< {K : K is a minimal
submodule of M} >. Then N ∼= K1×K2× ...×Kt, where Ki is minimal (simple).

Proof. Assume to the contrary that N 6∼= K1×K2×...×Kt, for any t and minimal
submodules Ki. Let K1 be a minimal submodule of M . Since M 6= K1, there exists
a minimal submodule K2 such that K1 ∩K2 = 0. Since N 6= K1⊕K2, then there
exists a minimal submodule K3 such that (K1 +K2)∩K3 = 0. By continuing this
method, we obtain minimal submodules K1, K2, ... such that

∑
i∈NKi =

⊕
i∈NKi.

Since
⊕

i∈NKi is not Artinian R-module, we obtain a contradiction. Notice that
Ki is simple, since it is minimal, for each i.

Lemma 3.8 If M is a semisimple module, then γ(Γ(M)) 6= 1.

Proof. If M is simple, then γ(Γ(M)) = 0. So we assume that M = M1 ⊕M2 ⊕
...⊕Mk, where Mi is simple and t ≥ 2. Assume that {N} is a DS for Γ(M). For
any i, N ∩Mi 6= 0, and so Mi ⊆ N . Then M ⊆ N , a contradiction.

Corollary 3.9 Let M be an Artinian R-module. Then γ(Γ(M)) = 1 if and only
if M is not semisimple.

Proof. The result follows from Lemmas 3.7 and 3.8.
So in the rest of this section we consider semisimple modules.

Theorem 3.10 ([4]) If V is a vector space of dimension d ≥ 2 over a filed F of
order q, then γ(G(V )) = q + 1.

Lemma 3.11 Let M be finite semisimple and M = M1 ⊕M2 ⊕ ... ⊕Mk, where
k ≥ 1 and Mi is simple for i = 1, 2, ..., k. If for any i, j, Ann(Mi) = Ann(Mj),
then γ(Γ(M)) = |M1|+ 1.
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Proof. Let m = Ann(M1). Since M1 is simple , m is maximal. By assump-
tion, M is an R

m
-module, and so is a vector space over R

m
. By Theorem 3.10,

γ(Γ(M)) =
∣∣ R
m

∣∣ + 1 = |M1|+ 1.

Lemma 3.12 Let M be a semisimple R-module and M = M1 ⊕M2 ⊕ ... ⊕Mk,
where k ≥ 1 and Mi is simple for i = 1, 2, ..., k. If Ann(M1) = Ann(M2) = ... =
Ann(Mt) and Ann(M1) 6= Ann(Mi) for t + 1 ≤ i ≤ k, where t < k, then any
submodule N of M is in the form N1 + N2, where N1 ≤ M1 + M2 + ...Mt and
N2 ≤ Mt+1 + ... + Mk.

Proof. Let x ∈ N and x = x1 +x2, where x1 ∈ M1 +M2 + ...Mt and x2 ∈ Mt+1 +
... + Mk. Let Ann(Mi) = mi for each i. Then m1 + (mt+1 ∩mt+2 ∩ ...∩mk) = R.
This implies that there are a ∈ m1 and b ∈ mt+1 ∩ mt+2 ∩ ... ∩ mk such that
a + b = 1. Now bx = (1− a)x1 + bx2 = x1 − ax1 + 0 = x1 and then x1 ∈ N . This
implies that x2 ∈ N . This completes the proof.

Corollary 3.13 Let M be a semisimple R-module and M = M1 ⊕ M2 ⊕ ... ⊕
Mk, where k ≥ 1 and Mi is simple for i = 1, 2, ..., k. Assume that Ann(M1) =
Ann(M2) = ... = Ann(Mt) and Ann(M1) 6= Ann(Mi) for t + 1 ≤ i ≤ k, where
t < k. Then γ(Γ(M)) = 2.

Proof. By Corollary 3.9, γ(Γ(M)) ≥ 2, and by Lemma 3.12, {M1 + M2 + ... +
Mk,Mk+1 + ... + Mt} is a DS for Γ(M). We conclude that γ(Γ(M)) = 2.
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