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1. Introduction

A new mathematics, isomathematics, was proposed by Santilli when he was stu-
dying the mathematical models for electroweak and gravitational theories [8].
The notion of generalized groups, first was introduced by Molaei [4], [5], has an
important role in the construction of a geometric unified theory by use of Santilli’s
isotheory.

Molaei used generalized groups in order to introduce a new kind of dynamics
on top spaces [4]. He showed that each generalized group is isometric to a Rees
matrix semigroup, see [4]. Also, he introduced the notion of topological gene-
ralized groups and proved that if X and Y are Hausdroff topological spaces, G
is a topological group and s : Y × X → G is a continuous mapping, then the
Rees matrix P = X × G × Y is a topological generalized group [4]. Topological
generalized groups can also be used for modelizing the set of genetic codes, for
more details see [5]. Recently, Farhangdoost and Molaei presented a method for
constructing new top spaces by using of universal covering spaces of special Lie
subsemigroups of a top space, see [6]. Moreover, they deduced a generalization
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of the notion of fundamental groups which was a completely simple semigroup.
Here, we extend their results for semilocally simply connected topological gene-
ralized groups. Moreover, we use a generalized notion of universal cover which is
developed by Berestovskii and Plaut in the covering group theory for a category of
coverable topological groups which requires any form of local simple connectivity
[1], [2]. Then, by using of this universal cover for a locally arcwise connected,
locally compact topological generalized group, we construct a new topological
generalized group.

2. Preliminaries and main results

We introduce some common notations and preliminaries. First, we recall the
definition of a generalized group. A generalized group is a non-empty set G
admitting an operation called multiplication with the following properties:

i) (xy)z = x(yz), for all x, y, z ∈ G;

ii) for each x belongs to G, there exists a unique element in G, we denote by
e(x), such that x · e(x) = e(x) · x = x;

iii) for each x ∈ G, there exists y ∈ G such that xy = yx = e(x).

One can see that each x in a generalized group G has a unique inverse in G
[4], we denote it by x−1.

A topological generalized group is a generalized group G equipped with a Haus-
dorff topology such that the mappings m : G×G → G, defined by (g, h) 7→ g · h
and m′ : G → G, defined by g 7→ g−1 are continuous.

A topological generalized group G is called a normal topological generalized
group if G is a normal generalized group, i.e., e(xy) = e(x) · e(y), for all x, y ∈ G.

Now, let G be a normal topological generalized group and let

Ge(g) = {h ∈ G : e(g) = e(h)}, for each g ∈ G. Then, G =
⋃
g∈G

Ge(g).

It is easy to see that, for each g ∈ G, Ge(g) with subspace topology and product
of G is a topological group.

We note that if G and H are two normal topological generalized groups
and f : G → H is an algebraic homomorphism, then f(e(g)) = e(f(g)) and
f : Ge(g) → He(f(g)) is a group homomorphism, for each g ∈ G.

Let G be a topological space. G is called semilocally simply connected, if for
each x ∈ G, there is an open set U of x such that the inclusion of U in G induces
the trivial homomorphism on their fundamental groups. Topological space G is
called simply connected if G is arcwice connected and π1(G) ' {e}, where π1(G)
denotes the (Poincare) fundamental group of G.

If X is a topological space and if C is a collection of subspaces of X whose
union is X, the topology of X is said to be coherent with the collection C, provided
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a set A is closed in X if and only if A ∩ C is closed in C, for each C ∈ C. It is
equivalent to require that U is open in X if and only if U ∩ C is open in C, for
each C ∈ C.

Let G and H be two topological groups and φ : G → H be an open epimor-
phism with discrete kernel. Then φ is called a (traditional) cover. It is easy to
see that, if φ is a cover then φ is a local homeomorphism. A universal cover for a
topological group H is a covering epimorphism φ : G → H such that for any cover
ρ : F → H of topological groups, there is a homomorphism ψ : G → F such that
φ = ρψ. If G and F are connected, it follows easily that ψ is a cover and unique,
see [1].

In [1], Berestovskii and Plaut utilized a generalized notion of cover, namely
an open epimorphism between topological groups whose kernel is central and
prodiscrete, i.e., the inverse limit of discrete groups. They proved that, for a
large category C of topological groups, called coverable topological groups, the
following assertions hold:

(1) For every G ∈ C, there exists a cover φ : G̃ → G.

(2) Covers are morphisms in C, (i.e., the composition of covers between elements
of C is a cover).

(3) The cover φ : G̃ → G has the traditional universal property of the universal
cover in the category C with covers as morphisms.

Here, we define the notion of a cover for topological generalized groups. Let
G and G̃ be two normal topological generalized groups and φ : G̃ → G be an
algebraic homomorphism. So, the restriction of φ to each G̃e(g̃) is a group homo-

morphism from G̃e(g̃) to Ge(φ(g̃)). For simplicity, we denote it by φg̃. We say that
φ is a (traditional) generalized cover of topological generalized groups, if φ is an

open epimorphism with discrete kernel, where ker φ =
⋃

g̃∈G̃

ker φg̃.

Moreover, by using of notion of covers in the sense of Berestovskii and Plaut,
we define another notion of cover for topological generalized groups. We say that
an open epimorphism φ : G̃ → G of normal topological generalized groups G̃ and
G is a generalized cover in the sense of Berestovskii and Plaut, if the restriction
of φ to each G̃e(g̃) is an open epimorphism of topological groups with central and
prodiscrete kernel.

Let G be a normal topological generalized group and φ : G̃ → G be a uni-
versal generalized cover of G. Then we call the pair (G̃, φ) an upper topological
generalized group.

In this article, we present a method for constructing new topological genera-
lized groups by using of two kinds of universal covers, traditional universal covers
and the universal covers in the sense of Berestovskii and Plaut. As a result, gene-
ralization of th notion of fundamental groups, which are generalized fundamental
groups is deduced.
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Theorem 2.1. Let G be a locally acrwise connected and semilocally simply con-
nected normal topological generalized group such that its topology coherent with
the collection {Ge(g) : g ∈ G}. Then there exist a normal topological generalized

group G̃ and a (traditional) generalized universal cover φ : G̃ → G associated

to G. Moreover, G̃e(g̃) is a connected and simply connected topological group for

each g̃ ∈ G̃.

We denote the restriction of φ to G̃e(g̃) by φg : G̃e(g̃) → Ge(g).

Corollary 2.2. With the above assumption, ker φ =
⋃
g∈G

ker φg is a discrete topo-

logical generalized subgroup of G̃. In particular, π1(Ge(g)) is abstractly isomorphic
to ker φg, where π1(Ge(g)) is the (Poincaré) fundamental group of Ge(g).

Also, we have the following results for locally compact topological generalized
groups. In this case, the notion of (traditional) generalized universal cover sub-
stituted by generalized universal cover in the sense of Berestovskii and Plaut.

Theorem 2.3. Let G be a locally arcwise connected, locally compact normal
generalized topological group such that its topology is coherent with the collection
{Ge(g) : g ∈ G}. Then there exist a normal topological generalized group G̃ and

a generalized universal cover (in the sense of Berestovskii and Plaut) φ : G̃ → G

associated to G. Moreover, G̃e(g̃) is connected and simply connected topological

group for each g̃ ∈ G̃.

Corollary 2.4. With the above assumptions, ker φ =
⋃
g∈G

ker φg is a prodiscrete

topological generalized subgroup of G̃. In particular, π1(Ge(g)) is abstractly iso-
morphic to ker φg.

3. Proof of Theorem 2.1

In this section, we will prove Theorem 2.1 and Corollary 2.2. Let G be a topo-
logical group. If G is connected, locally arcwise connected and semilocally simply
connected, then G has a universal cover φ : G̃ → G. Moreover, G̃ is a connected,
locally arcwise connected and simply connected topological group. In fact, we
have the following results (see [9] and [1]):

Proposition 3.1. Let G be connected and locally arcwise connected. G admits
a universal cover φ : G̃ → G if and only if it is semilocally simply connected.
Moreover, φ is unique up to isomorphism.

Also, we need the following proposition of [1], (Proposition 81).

Proposition 3.2. Let G, G̃ be topological groups and φ : G̃ → G be a cover.
Suppose that X is a connected, locally arcwise connected and simply connected
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topological space. If f : (X, p) → (G, e) is a continuous function, then there is a

unique lift g : (X, p) → (G̃, ẽ) such that f = φ ◦ g.

Proposition 3.3. Assume that G is a locally arcwise connected and semilocally
simply connected topological generalized group such that its topology coherent with
{Ge(g) : g ∈ G}. Then each Ge(g) has a universal cover, φg : G̃g → Ge(g), which is
unique up to isomorphism.

Proof. Let G be a normal topological generalized group. Then the mapping
g 7→ e(g) is continuous, see [4]. Therefore, Ge(g) is a closed subspace of G. If we

put G =
⋃
g∈G

Ge(g), then for each g, h ∈ G, the topological groups Ge(g) and Ge(h)

are either disjoint or identical, i.e., Ge(g) = Ge(h).
Suppose that the topology of G is coherent with the collection {Ge(g) : g∈G}.

Then, each Ge(g) is also an open subspace of G. Moreover, if G is locally arcwise
connected and semilocally simply connected, then each Ge(g) is an arcwise con-
nected, locally arcwise connected and semilocally simply connected topological
group.

Now, by Proposition 3.1, Ge(g) has a universal cover, say φg : G̃g → Ge(g),
which is unique up to isomorphism.

Note that, by Proposition 3.1, G̃g is connected and simply connected topolo-

gical group. Also, G̃g is locally arcwise connected. This implies that G̃g × G̃g is
also connected, locally arcwise connected and simply connected topological space.
Therefore, by Proposition 3.2, the mapping m ◦ (φg × φg) : G̃g × G̃g → Ge(g), has

a unique lifting m̃ : G̃g × G̃g → G̃g such that m̃(ẽg, ẽg) = ẽg, where ẽg is the unit

element of G̃g.

Proposition 3.4. G̃g with the multiplication defined by m̃ is also a topological
group. Moreover, its structure group with product m̃ is the same as to its original
structure group up to isomorphism.

Proof. First, we have

φg ◦ (m̃ ◦ (idG̃g
× m̃)) = m ◦ (φg × φg) ◦ (idG̃g

× m̃)

= m ◦ (φg ◦ m̃× φg)

= m ◦ ((m ◦ (φg × φg))× φg)

= m ◦ (m× idGe(g)
) ◦ (φg × φg × φg)

and
φg ◦ (m̃ ◦ (m̃× idG̃g

)) = m ◦ (φg × φg) ◦ (m̃× idG̃g
)

= m ◦ (φg ◦ m̃× φg)

= m ◦ ((m ◦ (φg × φg))× φg)

= m ◦ (m× idGe(g)
) ◦ (φg × φg × φg).
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Since the multiplication on G is associative, it follows that m̃ ◦ (idG̃g
× m̃) and

m̃ ◦ (m̃ × idG̃g
) are the lifts of the space map from G̃g × G̃g × G̃g into Ge(g).

Since both maps map (ẽg, ẽg, ẽg) into ẽg, it follows that they are identical, i.e., the
operation m̃ is associative.

Also, we have

φg(m̃(g̃, ẽg)) = m(φg(g̃, e(g))) = φg(g̃).

Therefore, g̃ 7→ m̃(g̃, ẽg) is the lifting of φg : G̃g → Ge(g). Since m̃(ẽg, g̃) = ẽg, this

map is the identity on G̃g, i.e., m̃(g̃, ẽg) = g̃, for all g̃ ∈ G̃g.
Analogously, we have

φg(m̃(ẽg, g̃)) = m(e(g); φg(g̃)) = φg(g̃).

Hence, g̃ 7→ m̃(ẽg, g̃) is the lifting of φg : G̃g → Ge(g). Since m̃(ẽg, g̃) = ẽg, this

map is the identity on G̃g, i.e., m̃(ẽg, g̃) = g̃ for all g̃ ∈ G̃g.

It follows that ẽg is the identity in G̃g. Let m̃′ : G̃g → G̃g be the lifting of the

map m′ ◦ φg : G̃g → G̃e(g) such that m̃′(ẽg) = ẽg.
Then we have

φg(m̃(g̃, m̃′(g̃))) = m(φg(g̃); φg(m̃
′(g̃)))

= m(φg(g̃), (φg(g̃))−1)

= e(g).

Therefore, g̃ 7→ m̃(g̃, m̃′(g̃)) is the lifting of constant map of G̃g into e(g).
Since m̃(ẽg, m̃

′(ẽg) = ẽg, we conclude that this map is constant and its value
is equal to ẽg.

Therefore, we have

m̃(g̃, m̃′(g̃)) = ẽg, for all g̃ ∈ g̃g.

Analogously, we have

φg(m̃
′(g̃), g̃) = m(φg(m̃

′(g̃)), φg(g̃))

= m((φg(g̃)))−1

= e(g).

Therefore, g̃ 7→ m̃(m̃′(g̃), g̃) is the lifting of the constant map of G̃g into e(g) ∈ G.
Since m̃(m̃′(ẽg), ẽg) = ẽg, we conclude that this map is constant and its value is
equal to ẽg.

Therefore, we have m̃(m̃′(g̃), g̃) = g̃, for all g̃ ∈ G̃g. This implies that any

element g̃ ∈ G̃g has an inverse m̃′(g) = g̃′1. Therefore, G̃g with operation m̃ is

a group. Moreover, since m̃ and m̃′ are continuous, G̃g with this operation is a
topological group, which we denote it by Gg. It is easy to see that φg : Gg → Ge(g)

is a cover and G is a connected and simply connected topological group. Then, by
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Proposition 3.1, since Ge(g) is semilocally simply connected, the topological groups

G̃g and Gg are the same up to isomorphism (from now on we use the notation G̃g

for both of them).

Now, we construct a new normal topological generalized groups G̃ such as
follows:

Let G̃ be the disjoint union of G̃g, where g ∈ G. We consider a topology on G̃

which is coherent with the collection C = {Ĝg : g ∈ G}, provided a set U is open

in G̃ if and only if U ∩ G̃g is open in G̃g, for each G̃g ∈ C. Clearly, the topology

of G̃g as a subspace of G̃ is equivalent to original topology of G̃g, see [6]. So, G̃g

is connected, locally path connected and simply connected as a subspace of G̃.
This implies that G̃g× G̃h is also connected, locally arcwise connected and simply

connected. Then, by Proposition 3.2, the mapping m◦(φg×φh) : G̃g×G̃h → Ge(gh)

has a unique lifting m̃gh × G̃h → G̃gh such that m̃gh(ẽg, ẽh) = ẽgh. In this way, we

can define the product m̃ on G̃× G̃ by m̃(g̃, h̃) = m̃gh(g̃, h̃).

Proposition 3.5. (g̃, m̃) is a normal topological generalized group.

Proof. First, we show that m̃ is associative. We have

φg(hk) ◦ (m̃g(hk) ◦ (idG̃ × m̃hk)) = m ◦ (φg × φhk) ◦ (idG̃ × m̃hk)

= m ◦ (φgh ◦ m̃× φk)

= m ◦ (m ◦ (m ◦ φg × φh)× φk)

= m ◦ (m× idG) ◦ (φg × φh × φk)

and
φghk ◦ (m̃ ◦ (m̃× idG̃)) = m ◦ (φgh × φk) ◦ (m̃× idG̃)

= m ◦ (φghk ◦ m̃× φk)

= m ◦ ((m ◦ (φg × φh))× φk)

= m ◦ (m× idG) ◦ (φg × φh × φk).

Since the multiplication on G is associative, it follows that m̃ ◦ (idG̃ × m̃) and

m̃ ◦ (m̃ × idG̃) are the lifts of the same map from G̃g × G̃h × G̃k into Ge(ghk).
Since both maps map (ẽg, ẽh, ẽk) into ẽe(ghk), it follows that they are identical,

i.e., the operation m̃ is associative. Also, for each h̃ ∈ G̃, there exist g ∈ G such
that h̃ ∈ G̃g. Therefore, m̃(h̃, ẽg) = m̃(ẽg, h̃) = h̃ and h̃ has a unique inverse

in G̃g. (Note that G̃g’s are disjoint.) Clearly, the product m̃ and the mapping

m̃′ : G̃ → G̃, g̃ 7→ g̃−1 are continuous and this implies that G̃ with product m̃ is
a normal topological generalized group.

We note that, the mapping φ : G̃ → G defined by φ(g̃) = φg(g̃), where g̃ ∈ G̃

for some g ∈ G, is a homomorphism of topological generalized groups G̃ and G.

If we define the kernel of φ by ker φ =
⋃
g∈G

ker φg, then ker φ is discrete. More-

over, φ is an open mapping. For, let Ũ ⊂ G̃ be open in G̃. Then, since the
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topology of G̃ is coherent with the collection {G̃g : g ∈ G}, Ũ ∩ G̃g is open in G̃g,

for each g ∈ G. On the other hand, φg is an open mapping. Therefore, φg(Ũ ∩ G̃)

is open in Ge(g). Since φ(Ũ) =
⋃
g∈G

φg(Ũ ∩ G̃g), this implies that φ(Ũ) is open in G,

i.e., φ is an open mapping. Hence, φ is an open epimorphism with discrete kernel
and restriction of φ to each G̃g is a universal cover of G̃g to Ge(g). Therefore, φ

is a universal generalized cover between topological generalized groups G̃ and G.
This complete the proof of Theorem 2.1.

In the sequel, we need the following result of [1] (see Corollary 85).

Proposition 3.6. If G is a topological group, φ : G̃ → G is a universal cover,
and G̃ is arcwise connected and π1(G̃) = e, then π1(G) is absolutely isomorphic
to ker φ.

Now, we consider the universal covers φg : G̃g → Ge(g), for each g ∈ G. As we

have already seen that, G̃g is connected, locally arcwise connected and simply con-

nected. So, G̃g is also arcwise connected and Proposition 3.2 implies that π1(Ge(g))

is absolutely isomorphic to ker φg. Then, ker φ =
⋃
g∈G

ker φg '
⋃
g∈G

π1(Ge(g)). It is

easy to see that ker φ is also a topological generalized subgroup of G̃. Therefore,
the assertion of Corollary 2.4 holds.

Proposition 3.7. Let G be a locally arcwise connected and semilocally simply
connected normal topological generalized group such that its topology is coherent
with the collection {Ge(g) : g ∈ Gg}. If (G̃, φ) and (G̃, ψ) be two upper topological
generalized groups of G, then ker φ is isomorphic to ker ψ.

Proof. Since the topology of G is coherent with {Ge(g) : g ∈ Gg}, then Ge(g) is
open in G, for each g ∈ G. This implies that Ge(g) is semilocally simply connected,
connected and locally arcwise connected. Therefore, by Proposition 3.2, the uni-
versal cover (G̃g, φg) is unique up to isomorphism. Then, ker φg is isomorphic to
ker ψg and this implies that ker φ is also isomorphic to ker ψ.

4. Locally compact topological generalized groups

In this section, we consider the locally compact topological generalized groups and
we use a generalization notion of universal cover which is developed by Berestivskii
and Plaut, that is φ : G̃ → G is a cover of topological groups G and G̃ if φ is an
open epimorphism whose kernel is central and prodiscrete (i.e., the inverse limit
of discrete groups), see [2]. They proved that, for any topological group G there

is a topological group G̃ and a natural homomorphism φ : G̃ → G. In particular,
if G is coverable then G̃ is coverable and φ is a universal cover in the category of
coverable groups and covers. In the sequel, we use the following results of [2].
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Theorem 4.1. Let G be a locally compact topological group. Then the following
are equivalent:

(1) G is coverable,

(2) φ : G̃ → G is a cover,

(3) φ : G̃ → G is open and G is connected,

(4) φ : G̃ → G is surjective,

(5) G is connected and locally arcwise connected.

Moreover, if G is metrizable, then G is coverable if and only if G is connected and
locally connected.

Proof of Theorem 2.3. By Theorem 4.1, if G is connected, locally arcwise
connected and locally compact topological group then G is coverable and natural
homomorphism φ : G̃ → G is a cover.

Moreover, G̃ is simply connected, see [1]. Therefore, if G is connected, locally
arcwise connected and locally compact topological group, then by Proposition 3.2,
the mapping m ◦ (φ× φ) : G̃× G̃ → G has a unique lifting m̃ : G̃× G̃ → G̃ such

that m̃(ẽ, ẽ) = ẽ, where ẽ is the unit element of G̃. Now, Proposition 3.4 implies

that G̃ with product m̃ is a topological group. Moreover, its structure group with
product m̃ is the same as its original structure group up to isomorphism (we note
that the Proposition 3.2 also holds for covers in the sense of Berestovskii and
Plaut).

Now, suppose that G be a locally arcwise connected and locally compact topo-
logical generalized group with its topology coherent with the collection {Ge(g) :
g ∈ G}. Then, each Ge(g) is connected, locally arcwise connected and locally

compact topological group and therefore has a natural cover φg : G̃g → Ge(g).

Now, we construct a new normal topological generalized group G̃ as follows:
Let G̃ be the disjoint union of G̃g, where g ∈ G. We consider a topology

on G̃ which is coherent with the collection C = {G̃g : g ∈ Gg}. Therefore, the

topology of G̃g as a subspace of G̃ is equivalent to original topology of G̃g. Since

φg is surjective and Ge(g) is connected, then G̃g is also connected. Moreover,

Theorem 3 of [2] implies that G̃g is locally arcwise connected. We have already

seen that G̃g is simply connected. Therefore, G̃g × G̃h is also connected, locally
arcwise connected and simply connected. Then, by Proposition 3.2, the mapping
m ◦ (φg × φh) : G̃g × G̃h → Ge(gh) has a unique lifting m̃gh : G̃g × G̃h → G̃gh such

that m̃gh(ẽg, ẽh) = ẽgh. In this way, we can define the product m̃ on G̃ × G̃ by

m̃(eg, eh) = m̃gh(g̃, h̃), where g̃ ∈ G̃g and h̃ ∈ G̃h. Now, Proposition 3.5 implies

that (G̃, m̃) is a normal topological generalized group. Clearly, the mapping φ :

G̃ → G defined by φ(g̃) = φg(g̃), where g̃ ∈ G̃g for some g ∈ G is an algebraic

homomorphism of topological generalized groups G̃ and G. We define the kernel
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of φ by ker φ =
⋃
g∈G

ker φg. Moreover, φ is an open mapping (for proof, see the

argument used in proof of Theorem 2.1). Hence, φ is a generalized cover. This
complete the proof of Theorem 4.1.

Proposition 4.2. The kernel of φ, ker φ, is totally disconnected.

Proof. By Lemma 32 of [1], prodiscrete topological groups are totally discon-

nected. So, for each g ∈ G, ker φg is totally disconnected. Since ker φ =
⋃
g∈G

ker φg

and topology of G̃ is coherent with {G̃g : g ∈ G}, then ker φ is also totally
disconnected.

Now, we need the following results of [2].

Proposition 4.3. If G is locally compact topological group, then π1(G) is ab-

stractly isomorphic to the prodiscrete topological group ker φ, where φ : G̃ → G is
the natural homomorphism.

If we consider the universal covers φg : G̃g → Ge(g), for each g ∈ G, as we have
already seen, Ge(g) is locally compact topological group and then, by Proposition
4.3, π1(G) absolutely isomorphic to the prodiscrete topological group ker φg. Then,
ker φ = ∪ ker φg ' ∪π1(Ge(g)), which is also a topological generalized subgroup of

G̃. Therefore, Corollary 2.4 holds.

Theorem 4.4. Let G be a normal topological generalized group. Then Ge(g) and
Ge(h) are homomorphic, for each g, h ∈ G.

Proof. By Lemma 2.1 of [4], if G is a topological generalized group, then
e(g)G = gG for each g ∈ G. Let g, h ∈ G. Then e(g)h = gg′, for some g′ ∈ G,

e(g)e(h) = e(e(g)h) = e(gg′) = e(g)e(g′) =⇒ e(h) = e(g′).

So,

gg′h−1 = e(g)hh−1 = e(g)e(h) = e(g)e(g′) = e(gg′).

Therefore, (gg′)−1 = h−1, that is gg′ = h.

Now, we define Rg′ : Ge(g) → Ge(h), by right translation, k 7→ kg′. Then
mapping Rg′ is well-defined, since

e(kg′) = e(k)e(g′) = e(g)e(g′) = e(gg′) = e(h).

On the other hand, since product on G is continuous, then Rg′ is continuous.
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Also (Rg′)
−1 = Rg′−1. For,

Rg′ ◦Rg′−1(k) = Rg′(kg′−1)

= (kg′−1)g′

= k(g′−1g′)

= ke(g′)

= ke(h)

= ke(k)

= k.

Similarly, Rg′−1 ◦ Rg′ = idGe(g)
. So, Rg′ is a homeomorphism and Ge(g) is homeo-

morphic to Ge(h).

Remark 4.5. We note that, if G is a normal topological generalized group that
satisfies the assumptions of Theorem 2.1 or 2.3, then, for each g ∈ G, Ge(g) is
a path component of G. Therefore, by the above theorem, path components of
G are homeomorphic. This implies that the fundamental group of G does not
depend on the base point.

Remark 4.6. We note that Biss [3] puts a topology on the fundamental groups of
topological spaces. Let (X, x) be a pointed space. He equipped the space of con-
tinuous based maps Hom((S1, 1), (X, x)) with the compact-open topology. Then
by using the surjection Hom((S1, 1), (X, x)) → π1(X, x), he defined a quotient
topology on π1(X, x). As we saw here, by using the notion of universal covers for
coverable topological groups in the sense of Berestovskii and Plaut, the fundamen-
tal groups admit a natural prodiscrete topology as the kernel of their universal
covers. The fundamental groups with this topology are always Hausdorff, however
with the compact-open topology introduced by Biss, in general, they would not
be a Hausdorff topological space. So, in general, these two topology are not the
same.
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