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1. Introduction

Let (H; 〈·, ·〉) be a complex Hilbert space. The numerical range of an operator T
is the subset of the complex numbers C given by [9, p. 1]:

W (T ) = {〈Tx, x〉 , x ∈ H, ‖x‖ = 1} .

The numerical radius w (T ) of an operator T on H is given by [9, p. 8]:

(1.1) w (T ) = sup {|λ| , λ ∈ W (T )} = sup {|〈Tx, x〉| , ‖x‖ = 1} .

It is well known that w (·) is a norm on the Banach algebra B (H) of all
bounded linear operators T : H → H. This norm is equivalent to the operator
norm. In fact, the following more precise result holds [9, p. 9]:

(1.2) w (T ) ≤ ‖T‖ ≤ 2w (T )

for any T ∈ B (H)
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For other results on numerical radii, see [10], Chapter 11. For some recent and
interesting results concerning inequalities for the numerical radius, see [11], [12].

If A,B are two bounded linear operators on the Hilbert space (H, 〈·, ·〉) , then

(1.3) w (AB) ≤ 4w (A) w (B) .

In the case that AB = BA, then

(1.4) w (AB) ≤ 2w (A) w (B) .

The following results are also well known [9, p. 38]:
If A is a unitary operator that commutes with another operator B, then

(1.5) w (AB) ≤ w (B) .

If A is an isometry and AB = BA, then (1.5) also holds true.
We say that A and B double commute if AB = BA and AB∗ = B∗A. If the

operators A and B double commute, then [9, p. 38]

(1.6) w (AB) ≤ w (B) ‖A‖ .

As a consequence of the above, we have [9, p. 39]:
If A is a normal operator commuting with B, then

(1.7) w (AB) ≤ w (A) w (B) .

For other results and historical comments on the above see [9, pp. 39–41].
For two bounded linear operators A,B in the Hilbert space (H, 〈·, ·〉) , we

define the functional

(1.8) µ (A,B) := sup
‖x‖=1

{‖Ax‖ ‖Bx‖} (≥ 0) .

It is obvious that µ is symmetric and sub-additive in each variable, µ(A,A)=‖A‖2,
µ(A, I) = ‖A‖, where I is the identity operator, µ (αA, βB) = |αβ|µ (A, B) and
µ (A,B) ≤ ‖A‖ ‖B‖ . We also have the following inequalities

(1.9) µ (A,B) ≥ w (B∗A)

and

(1.10) µ (A,B) ‖A‖ ‖B‖ ≥ µ (AB, BA) .

Inequality (1.9) follows by the Schwarz inequality ‖Ax‖‖Bx‖≥|〈Ax,Bx〉|, x∈H,
while (1.10) can be obtained by multiplying the inequalities ‖ABx‖ ≤ ‖A‖ ‖Bx‖
and ‖BAx‖ ≤ ‖B‖ ‖Ax‖ .

From (1.9) we also get

(1.11) ‖A‖2 ≥ µ (A,A∗) ≥ w
(
A2

)
for any A.
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Motivated by the above results we establish in this paper several inequalities
for the functional µ (·, ·) under various assumptions for the operators involved, in-
cluding operators satisfying the uniform (α, β)−property and operators for which
the transform Cα,β (·, ·) is accretive.

2. General inequalities

The following result concerning some general power operator inequalities may be
stated:

Theorem 2.1 For any A, B ∈ B(H) and r ≥ 1 we have the inequality

(2.1) µr(A,B)≤1

2
‖(A∗A)r + (B∗B)r‖.

The constant
1

2
is best possible.

Proof. Using the arithmetic mean - geometric mean inequality and the convexity
of the function f (t) = tr for r ≥ 1 and t ≥ 0 we have successively

‖Ax‖ ‖Bx‖ ≤ 1

2
[〈A∗Ax, x〉+ 〈B∗Bx, x〉](2.2)

≤
[〈A∗Ax, x〉r + 〈B∗Bx, x〉r

2

] 1
r

for any x ∈ H.
It is well known that if P is a positive operator, then for any r ≥ 1 and x ∈ H

with ‖x‖ = 1 we have the inequality (see for instance [13])

(2.3) 〈Px, x〉r ≤ 〈P rx, x〉 .
Applying this inequality to the positive operators A∗A and B∗B we deduce that

(2.4)

[〈A∗Ax, x〉r + 〈B∗Bx, x〉r
2

] 1
r

≤
〈

[(A∗A)r + (B∗B)r] x

2
, x

〉 1
r

for any x ∈ H with ‖x‖ = 1.
Now, on making use of the inequalities (2.2) and (2.4) we get

(2.5) ‖Ax‖ ‖Bx‖ ≤
〈

[(A∗A)r + (B∗B)r] x

2
, x

〉 1
r

for any x ∈ H with ‖x‖ = 1. Taking the supremum over x ∈ H with ‖x‖ = 1 we
obtain the desired result (2.1).

For r = 1 and B = A we get in both sides of (2.1) the same quantity ‖A‖2

which shows that the constant 1
2

is best possible in general in the inequality (2.1).
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Corollary 2.1 For any A ∈ B (H) and r ≥ 1 we have the inequality

(2.6) µr (A,A∗) ≤ 1

2
‖(A∗A)r + (AA∗)r‖

and the inequality

(2.7) ‖A‖r ≤ 1

2
‖(A∗A)r + I‖ ,

respectively.

The following similar result for powers of operators can be stated as well:

Theorem 2.2 For any A,B ∈ B(H), any α ∈ (0, 1t) and r ≥ 1 we have the
inequality

(2.8) µ2r (A,B) ≤
∥∥∥α · (A∗A)r/α + (1− α) · (B∗B)r/(1−α)

∥∥∥ .

The inequality is sharp.

Proof. Observe that, for any α ∈ (0, 1) we have

‖Ax‖2 ‖Bx‖2 = 〈(A∗A) x, x〉 〈(B∗B) x, x〉(2.9)

=
〈[

(A∗A)1/α
]α

x, x
〉〈[

(B∗B)1/(1−α)
]1−α

x, x

〉
,

where x ∈ H.
It is well known that (see for instance [13]), if P is a positive operator and

q ∈ (0, 1) , then

(2.10) 〈P qx, x〉 ≤ 〈Px, x〉q .

Applying this property to the positive operators (A∗A)1/α and (B∗B)1/(1−α) ,
where α ∈ (0, 1) , we have

(2.11)
〈[

(A∗A)1/α
]α

x, x
〉〈[

(B∗B)1/(1−α)
]1−α

x, x

〉

≤
〈
(A∗A)1/α x, x

〉α 〈
(B∗B)1/(1−α) x, x

〉1−α

for any x ∈ H with ‖x‖ = 1.
Now, by using the weighted arithmetic mean-geometric mean inequality, i.e.,

aαb1−α ≤ αa + (1− α) b, where α ∈ (0, 1) and a, b ≥ 0,
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we get

(2.12)
〈
(A∗A)1/α x, x

〉α 〈
(B∗B)1/(1−α) x, x

〉1−α

≤ α ·
〈
(A∗A)1/α x, x

〉
+ (1− α) ·

〈
(B∗B)1/(1−α) x, x

〉

for any x ∈ H with ‖x‖ = 1.
Moreover, by the elementary inequality

αa + (1− α) b ≤ (αar + (1− α) br)1/r , where α ∈ (0, 1) and a, b ≥ 0;

we have successively

α ·
〈
(A∗A)1/α x, x

〉
+ (1− α) ·

〈
(B∗B)1/(1−α) x, x

〉
(2.13)

≤
[
α ·

〈
(A∗A)1/α x, x

〉r

+ (1− α) ·
〈
(B∗B)1/(1−α) x, x

〉r] 1
r

≤
[
α ·

〈
(A∗A)r/α x, x

〉
+ (1− α) ·

〈
(B∗B)r/(1−α) x, x

〉] 1
r
,

for any x ∈ H with ‖x‖ = 1, where for the last inequality we have used the

property (2.3) for the positive operators (A∗A)1/α and (B∗B)1/(1−α) .
Now, by making use of the identity (2.9) and the inequalities (2.11)-(2.13),

we get

‖Ax‖2 ‖Bx‖2 ≤
[〈[

α · (A∗A)r/α + (1− α) · (B∗B)r/(1−α)
]
x, x

〉] 1
r

for any x ∈ H with ‖x‖ = 1. Taking the supremum over x ∈ H with ‖x‖ = 1 we
deduce the desired result (2.8).

Notice that the inequality is sharp since for r = 1 and B = A we get in both
sides of (2.8) the same quantity ‖A‖4 .

Corollary 2.2 For any A ∈ B (H) , any α ∈ (0, 1) and r ≥ 1, we have the
inequalities

µ2r (A,A∗) ≤
∥∥∥α · (A∗A)r/α + (1− α) · (AA∗)r/(1−α)

∥∥∥ ,

‖A‖2r ≤
∥∥∥α · (A∗A)r/α + (1− α) · I

∥∥∥
and

‖A‖4r ≤
∥∥∥α · (A∗A)r/α + (1− α) · (A∗A)r/(1−α)

∥∥∥ ,

respectively.

The following reverse of inequality (1.9) may be stated as well:
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Theorem 2.3 For any A, B ∈ B (H) we have the inequality

(2.14) (0 ≤) µ (A,B)− w (B∗A) ≤ 1

2
‖A−B‖2

and the inequality

(2.15) µ

(
A + B

2
,
A−B

2

)
≤ 1

2
w (B∗A) +

1

4
‖A−B‖2 ,

respectively.

Proof. We have

‖Ax−Bx‖2 = ‖Ax‖2 + ‖Bx‖2 − 2Re 〈B∗Ax, x〉(2.16)

≥ 2 ‖Ax‖ ‖Bx‖ − 2 |〈B∗Ax, x〉| ,
for any x ∈ H, ‖x‖ = 1, which gives the inequality

‖Ax‖ ‖Bx‖ ≤ |〈B∗Ax, x〉|+ 1

2
‖Ax−Bx‖2 ,

for any x ∈ H, ‖x‖ = 1.
Taking the supremum over ‖x‖ = 1 we deduce the desired result (2.14).
By the parallelogram identity in the Hilbert space H, we also have

‖Ax‖2 + ‖Bx‖2 =
1

2

(‖Ax + Bx‖2 + ‖Ax−Bx‖2)

≥ ‖Ax + Bx‖ ‖Ax−Bx‖ ,

for any x ∈ H.
Combining this inequality with the first part of (2.16), we get

‖Ax + Bx‖ ‖Ax−Bx‖ ≤ ‖Ax−Bx‖2 + 2 |〈B∗Ax, x〉| ,
for any x ∈ H. Taking the supremum in this inequality over ‖x‖ = 1 we deduce
the desired result (2.15).

Corollary 2.3 Let A ∈ B (H) . If

Re (A) :=
A + A∗

2
and Im (A) :=

A− A∗

2i

are the real and imaginary parts of A, then we have the inequality

(0 ≤) µ (A,A∗)− w
(
A2

) ≤ 2 · ‖Im (A)‖2

and

µ (Re (A) , Im (A)) ≤ 1

2
w

(
A2

)
+ ‖Im (A)‖2 ,

respectively.
Moreover, we have

(0 ≤) µ (Re (A) , Im (A))− w (Re (A) Im (A)) ≤ 1

2
‖A‖2 .
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Corollary 2.4 For any A ∈ B (H) and λ ∈ C with λ 6= 0 we have the inequality
(see also [6])

(2.17) (0 ≤) ‖A‖ − w (A) ≤ 1

2 |λ| ‖A− λI‖2 .

For a bounded linear operator T consider the quantity

` (T ) := inf
‖x‖=1

‖Tx‖ .

We can state the following result as well.

Theorem 2.4 For any A,B ∈ B (H) with A 6= B and such that ` (B) ≥ ‖A−B‖
we have

(2.18) (0 ≤) µ2 (A,B)− w2 (B∗A) ≤ ‖A‖2 ‖A−B‖2 .

Proof. Denote r := ‖A−B‖ > 0. Then for any x ∈ H with ‖x‖ = 1 we have
‖Bx‖ ≥ r and by the first part of (2.16) we can write that

(2.19) ‖Ax‖2 +

(√
‖Bx‖2 − r2

)2

≤ 2 |〈B∗Ax, x〉|

for any x ∈ H with ‖x‖ = 1.
On the other hand, we have

(2.20) ‖Ax‖2 +

(√
‖Bx‖2 − r2

)2

≥ 2 · ‖Ax‖
√
‖Bx‖2 − r2

for any x ∈ H with ‖x‖ = 1.
Combining (2.19) with (2.20), we deduce

‖Ax‖
√
‖Bx‖2 − r2 ≤ |〈B∗Ax, x〉|

which is clearly equivalent to

(2.21) ‖Ax‖2 ‖Bx‖2 ≤ |〈B∗Ax, x〉|2 + ‖Ax‖2 ‖A−B‖2

for any x ∈ H with ‖x‖ = 1. Taking the supremum in (2.21) over x ∈ H with
‖x‖ = 1, we deduce the desired inequality (2.18).

Corollary 2.5 For any A ∈ B (H) a non-self-adjoint operator in B (H) and such
that ` (A∗) ≥ ‖Im (A)‖ we have

(2.22) (0 ≤) µ2 (A,A∗)− w2
(
A2

) ≤ 4 · ‖A‖2 ‖Im (A)‖2 .
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Corollary 2.6 For any A ∈ B (H) and λ ∈ C with λ 6= 0 and |λ| ≥ ‖A− λI‖
we have the inequality (see also [6])

(0 ≤) ‖A‖2 − w2 (A) ≤ 1

|λ|2 · ‖A‖
2 ‖A− λI‖2

or, equivalently,

(0 ≤)

√
1− ‖A− λI‖2

|λ|2 ≤ w (A)

‖A‖ (≤ 1) .

3. Inequalities for operators satisfying the uniform (α, β)-property

The following result that may be of interest in itself holds:

Lemma 3.1 Let T ∈ B (H) and α, β ∈ C with α 6= β. The following statements
are equivalent:

(i) We have

(3.1) Re 〈βy − Tx, Tx− αy〉 ≥ 0

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1;

(ii) We have

(3.2)

∥∥∥∥Tx− α + β

2
· y

∥∥∥∥ ≤
1

2
|α− β|

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Proof. This follows by the following identity

Re 〈βy − Tx, Tx− αy〉 =
1

4
|α− β|2 −

∥∥∥∥Tx− α + β

2
· y

∥∥∥∥
2

,

that holds for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Remark 3.1 For any operator T ∈ B (H) if we choose α = a ‖T‖ (1 + 2i) and
β = a ‖T‖ (1− 2i) with a ≥ 1, then

α + β

2
= a ‖T‖ and

|α− β|
2

= 2a ‖T‖
showing that ∥∥∥∥Tx− α + β

2
· y

∥∥∥∥ ≤ ‖Tx‖+

∣∣∣∣
α + β

2

∣∣∣∣ ≤ ‖T‖+ a ‖T‖

≤ 2a ‖T‖ =
1

2
· |α− β| ,

that holds for any x, y ∈ H with ‖x‖ = ‖y‖ = 1, i.e., T satisfies condition (3.1)
with the scalars α and β given above.
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Definition 3.1 For given α, β ∈ C with α 6= β and y ∈ H with ‖y‖ = 1, we
say that the operator T ∈ B (H) has the (α, β, y)-property if either (3.1) or,
equivalently, (3.2) holds true for any x ∈ H with ‖x‖ = 1. Moreover, if T has the
(α, β, y)-property for any y ∈ H with ‖y‖ = 1, then we say that this operator has
the uniform (α, β)-property.

Remark 3.2 The above Remark 3.1 shows that any bounded linear operator has
the uniform (α, β)-property for infinitely many (α, β) appropriately chosen. For
a given operator satisfying an (α, β)-property, it is an open problem to find the
possibly nonzero lower bound for the quantity |α− β| .

The following results may be stated:

Theorem 3.1 Let A,B ∈ B(H) and α, β, γ, δ ∈ K with α 6= β and γ 6= δ . For
y ∈ H with ‖y‖ = 1 assume that A∗ has the (α, β, y)-property while B∗ has the
(γ, δ, y)-property. Then

(3.3) |‖Ay‖ ‖By‖ − ‖BA∗‖| ≤ 1

4
|β − α| |γ − δ| .

Moreover, if A∗ has the uniform (α, β)-property and B∗ has the uniform (γ, δ)-
property, then

(3.4) |µ (A,B)− ‖BA∗‖| ≤ 1

4
|β − α| |γ − δ| .

Proof. A∗ has the (α, β, y)-property while B∗ has the (γ, δ, y)-property, then on
making use of Lemma 3.1 we have that

∥∥∥∥A∗x− α + β

2
· y

∥∥∥∥ ≤
1

2
|β − α| and

∥∥∥∥B∗z − γ + δ

2
· y

∥∥∥∥ ≤
1

2
|γ − δ|

for any x, z ∈ H with ‖x‖ = ‖z‖ = 1.
Now, we make use of the following Grüss type inequality for vectors in inner

product spaces obtained by the author in [1] (see also [2] or [7, p. 43]:
Let (H, 〈·, ·〉) be an inner product space over the real or complex number field

K, u, v, e ∈ H, ‖e‖ = 1, and α, β, γ, δ ∈ K such that

(3.5) Re 〈βe− u, u− αe〉 ≥ 0, Re 〈δe− v, v − γe〉 ≥ 0

or, equivalently,

(3.6)

∥∥∥∥u− α + β

2
e

∥∥∥∥ ≤
1

2
|β − α| ,

∥∥∥∥v − γ + δ

2
e

∥∥∥∥ ≤
1

2
|δ − γ| .

Then

(3.7) |〈u, v〉 − 〈u, e〉 〈e, v〉| ≤ 1

4
|β − α| |δ − γ| .
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Applying (3.7) for u = A∗x, v = B∗z and e = y we deduce

(3.8) |〈BA∗x, z〉 − 〈x,Ay〉 〈By, z〉| ≤ 1

4
|β − α| |δ − γ| ,

for any x, z ∈ H, ‖x‖ = ‖z‖ = 1, which is an inequality of interest in itself.
Observing that

||〈BA∗x, z〉| − |〈x,Ay〉 〈z, By〉|| ≤ |〈BA∗x, z〉 − 〈x,Ay〉 〈By, z〉| ,

then by (3.8) we deduce the inequality

||〈BA∗x, z〉| − |〈x,Ay〉 〈z,By〉|| ≤ 1

4
|β − α| |δ − γ|

for any x, z ∈ H, ‖x‖ = ‖z‖ = 1. This is equivalent with the following two
inequalities

(3.9) |〈BA∗x, z〉| ≤ |〈x,Ay〉 〈z, By〉|+ 1

4
|β − α| |δ − γ|

and

(3.10) |〈x,Ay〉 〈z, By〉| ≤ |〈BA∗x, z〉|+ 1

4
|β − α| |δ − γ|

for any x, z ∈ H, ‖x‖ = ‖z‖ = 1.
Taking the supremum over x, z ∈ H, ‖x‖ = ‖z‖ = 1, in (3.9) and (3.10) we

get the inequalities

(3.11) ‖BA∗‖ ≤ ‖Ay‖ ‖By‖+
1

4
|β − α| |δ − γ|

and

(3.12) ‖Ay‖ ‖By‖ ≤ ‖BA∗‖+
1

4
|β − α| |δ − γ| ,

which are clearly equivalent to (3.3).
Now, if A∗ has the uniform (α, β)-property and B∗ has the uniform (γ, δ)-

property, then the inequalities (3.11) and (3.12) hold for any y ∈ H with ‖y‖ = 1.
Taking the supremum over y ∈ H with ‖y‖ = 1 in these inequalities we deduce

‖BA∗‖ ≤ µ (A, B) +
1

4
|β − α| |δ − γ|

and

µ (A,B) ≤ ‖BA∗‖+
1

4
|β − α| |δ − γ| ,

which are equivalent to (3.4).
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Corollary 3.7 Let A ∈ B(H) and α, β, γ, δ ∈ K with α 6= β and γ 6= δ. For
y ∈ H with ‖y‖ = 1 assume that A has the (α, β, y)-property while A∗ has the
(γ, δ, y)-property. Then

∣∣‖A∗y‖ ‖Ay‖ −
∥∥A2

∥∥∣∣ ≤ 1

4
|β − α| |γ − δ| .

Moreover, if A has the uniform (α, β)-property and A∗ has the uniform (γ, δ)-
property, then ∣∣µ (A,A∗)−

∥∥A2
∥∥∣∣ ≤ 1

4
|β − α| |γ − δ| .

The following results may be stated as well:

Theorem 3.2 Let A,B ∈ B(H) and α, β, γ, δ ∈ K with α + β 6= 0 and γ + δ
6= 0. For y ∈ H with ‖y‖ = 1 assume that A∗ has the (α, β, y)-property while B∗

has the (γ, δ, y)-property. Then

(3.13) |‖Ay‖‖By‖−‖BA∗‖|≤1

4
· |β−α||δ−γ|√

|β+α||δ+γ|
√

(‖A‖+‖Ay‖)(‖B‖+‖By‖).

Moreover, if A∗ has the uniform (α, β)-property and B∗ has the uniform (γ, δ)-
property, then

(3.14) |µ (A,B)− ‖BA∗‖| ≤ 1

2
· |β − α| |δ − γ|√

|β + α| |δ + γ|
√
‖A‖ ‖B‖.

Proof. We make use of the following inequality obtained by the author in [5] (see
also [7, p. 65]):

Let (H, 〈·, ·〉) be an inner product space over the real or complex number field
K, u, v, e ∈ H, ‖e‖ = 1, and α, β, γ, δ ∈ K with α + β 6= 0 and γ + δ 6= 0 and such
that

Re 〈βe− u, u− αe〉 ≥ 0, Re 〈δe− v, v − γe〉 ≥ 0

or, equivalently,
∥∥∥∥u− α + β

2
e

∥∥∥∥ ≤
1

2
|β − α| ,

∥∥∥∥v − γ + δ

2
e

∥∥∥∥ ≤
1

2
|δ − γ| .

Then

(3.15) |〈u, v〉 − 〈u, e〉 〈e, v〉|
≤ 1

4
· |β − α| |δ − γ|√

|β + α| |δ + γ|
√

(‖u‖+ |〈u, e〉|) (‖v‖+ |〈v, e〉|).

Applying (3.15) for u = A∗x, v = B∗z and e = y we deduce

|〈BA∗x, z〉 − 〈x,Ay〉 〈By, z〉|
≤ 1

4
· |β − α| |δ − γ|√

|β + α| |δ + γ|
√

(‖A∗x‖+ |〈x,Ay〉|) (‖B∗z‖+ |〈z, By〉|)
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for any x, y, z ∈ H, ‖x‖ = ‖y‖ = ‖z‖ = 1.
Now, on making use of a similar argument to the one from the proof of

Theorem 3.1, we deduce the desired results (3.13) and (3.14). The details are
omitted.

Corollary 3.8 Let A ∈ B(H) and α, β, γ, δ ∈ K with α + β 6= 0 and γ + δ 6= 0.
For y ∈ H with ‖y‖ = 1 assume that A has (α, β, y)-property while A∗ has the
(γ, δ, y)-property. Then

∣∣‖A∗y‖ ‖Ay‖− ∥∥A2
∥∥∣∣≤1

4
· |β−α| |δ−γ|√

|β+α| |δ+γ|
√

(‖A‖+ ‖A∗y‖) (‖A‖+ ‖Ay‖).

Moreover, if A has the uniform (α, β)-property and A∗ has the uniform (γ, δ)-
property, then

∣∣µ (A,A∗)−
∥∥A2

∥∥∣∣ ≤ 1

2
· |β − α| |δ − γ|√

|β + α| |δ + γ| ‖A‖ .

4. The transform Cα,β (·, ·) and other inequalities

For two given operators T, U ∈ B (H) and two given scalars α, β ∈ C consider the
transform

Cα,β (T, U) = (T ∗ − ᾱU∗) (βU − T ) .

This transform generalizes the transform

Cα,β (T ) := (T ∗ − ᾱI) (βI − T ) = Cα,β (T, I) ,

where I is the identity operator, which has been introduced in [8] in order to pro-
vide some generalizations of the well known Kantorovich inequality for operators
in Hilbert spaces.

We recall that a bounded linear operator T on the complex Hilbert space
(H, 〈·, ·〉) is called accretive if Re 〈Ty, y〉 ≥ 0 for any y ∈ H.

Using the following identity

Re 〈Cα,β (T, U) x, x〉 = Re 〈Cβ,α (T, U) x, x〉(4.1)

=
1

4
|β − α|2 ‖Ux‖2 −

∥∥∥∥Tx− α + β

2
· Ux

∥∥∥∥
2

,

that holds for any scalars α, β and any vector x ∈ H, we can give a simple
characterization result that is useful in the following:

Lemma 4.2 For α, β ∈ C and T, U ∈ B(H) the following statements are equi-
valent:

(i) The transform Cα,β (T, U) (or, equivalently, Cβ,α (T, U)) is accretive;
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(ii) We have the norm inequality

(4.2)

∥∥∥∥Tx− α + β

2
· Ux

∥∥∥∥ ≤
1

2
|β − α| ‖Ux‖

for any x ∈ H.

As a consequence of the above lemma, we can state

Corollary 4.9 Let α, β ∈ C and T, U ∈ B(H). If Cα,β (T, U) is accretive, then

(4.3)

∥∥∥∥T − α + β

2
· U

∥∥∥∥ ≤
1

2
|β − α| ‖U‖ .

Remark 4.3 In order to give examples of linear operators T, U ∈ B(H) and
numbers α, β ∈ C such that the transform Cα,β (T, U) is accretive, it suffices to
select two bounded linear operator S and V and the complex numbers z, w (w 6= 0)
with the property that ‖Sx− zV x‖ ≤ |w| ‖V x‖ for any x ∈ H, and, by choosing

T = S, U = V, α =
1

2
(z + w) and β =

1

2
(z − w), we observe that T and U satisfy

(4.2), i.e., Cα,β (T, U) is accretive.

We are able now to give the following result concerning other reverse ine-
qualities for the case when the involved operators satisfy the accretivity property
described above.

Theorem 4.1 Let α, β ∈ C and A, B ∈ B(H). If Cα,β (A,B) is accretive, then

(4.4) (0 ≤) µ2 (A,B)− w2 (B∗A) ≤ 1

4
· |β − α|2 ‖B‖4 .

Moreover, if α + β 6= 0, then

(4.5) (0 ≤) µ (A,B)− w (B∗A) ≤ 1

4
· |β − α|2
|β + α| ‖B‖

2 .

In addition, if Re
(
αβ̄

)
> 0 and B∗A 6= 0, then also

(4.6) (1 ≤)
µ (A,B)

w (B∗A)
≤ 1

2
· |β + α|√

Re
(
αβ̄

)

and

(4.7) (0 ≤) µ2 (A,B)− w2 (B∗A) ≤
(
|β + α| − 2 ·

√
Re

(
αβ̄

))
w (B∗A) ‖B‖2 ,

respectively.
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Proof. By Lemma 4.2, since Cα,β (A,B) is accretive, then

(4.8)

∥∥∥∥Ax− α + β

2
·Bx

∥∥∥∥ ≤
1

2
|β − α| ‖Bx‖

for any x ∈ H.

We use the following reverse of the Schwarz inequality in inner product spaces
obtained by the author in [3] (see also [7, p. 4]):

If γ, Γ ∈ K (K = C, R) and u, v ∈ H are such that

(4.9) Re 〈Γv − u, u− γv〉 ≥ 0

or, equivalently,

(4.10)

∥∥∥∥u− γ + Γ

2
· v

∥∥∥∥ ≤
1

2
|Γ− γ| ‖v‖ ,

then

(4.11) 0 ≤ ‖u‖2 ‖v‖2 − |〈u, v〉|2 ≤ 1

4
|Γ− γ|2 ‖v‖4 .

Now, by making use of (4.11) for u = Ax, v = Bx, x ∈ H, ‖x‖ = 1 and
γ = α, Γ = β, we can write the inequality

‖Ax‖2 ‖Bx‖2 ≤ |〈B∗Ax, x〉|2 +
1

4
|β − α|2 ‖Bx‖4 ,

for any x ∈ H, ‖x‖ = 1. Taking the supremum over ‖x‖ = 1 in this inequality
produces the desired result (4.4).

Now, by using the result from [5] (see also [7, p. 29]) namely:
If γ, Γ ∈ K with γ + Γ 6= 0 and u, v ∈ H are such that either (4.9) or,

equivalently, (4.10) holds true, then

(4.12) 0 ≤ ‖u‖ ‖v‖ − |〈u, v〉| ≤ 1

4
· |Γ− γ|2
|Γ + γ| ‖v‖

2 .

Now, by making use of (4.12) for u = Ax, v = Bx, x ∈ H, ‖x‖ = 1 and
γ = α, Γ = β and using the same procedure outlined above, we deduce the second
inequality (4.5).

The inequality (4.6) follows from the result presented below obtained in [4]
(see also [7, p. 21]):

If γ, Γ ∈ K with Re (Γγ̄) > 0 and u, v ∈ H are such that either (4.9) or,
equivalently, (4.10) holds true, then

(4.13) ‖u‖ ‖v‖ ≤ 1

2
· |Γ + γ|√

Re (Γγ̄)
|〈u, v〉| ,

by choosing u = Ax, v = Bx, x ∈ H, ‖x‖ = 1 and γ = α, Γ = β and taking the
supremum over ‖x‖ = 1.
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Finally, by making use of the inequality (see [6])

(4.14) ‖u‖2 ‖v‖2 − |〈u, v〉|2 ≤
(
|Γ + γ| − 2

√
Re (Γγ̄)

)
|〈u, v〉| ‖v‖2

that is valid provided γ, Γ ∈ K with Re (Γγ̄) > 0 and u, v ∈ H are such that either
(4.9) or, equivalently, (4.10) holds true, we obtain the last inequality (4.7). The
details are omitted.

Remark 4.4 Let M, m > 0 and A,B ∈ B(H). If Cm,M (A,B) is accretive, then

(0 ≤) µ2 (A,B)− w2 (B∗A) ≤ 1

4
· (M −m)2 ‖B‖4 ,

(0 ≤) µ (A,B)− w (B∗A) ≤ 1

4
· (M −m)2

m + M
‖B‖2 ,

(1 ≤)
µ (A,B)

w (B∗A)
≤ 1

2
· m + M√

mM

(0 ≤) µ2 (A,B)− w2 (B∗A) ≤
(√

M −√m
)2

w (B∗A) ‖B‖2 ,

respectively.

Corollary 4.10 Let α, β ∈ C and A ∈ B(H). If Cα,β (A, A∗) is accretive, then

(0 ≤) µ2 (A,A∗)− w2
(
A2

) ≤ 1

4
· |β − α|2 ‖A‖4 .

Moreover, if α + β 6= 0, then

(0 ≤) µ (A,A∗)− w
(
A2

) ≤ 1

4
· |β − α|2
|β + α| ‖A‖

2 .

In addition, if Re
(
αβ̄

)
> 0 and A2 6= 0, then also

(1 ≤)
µ (A, A∗)
w (A2)

≤ 1

2
· |β + α|√

Re
(
αβ̄

)

and

(0 ≤) µ2 (A,A∗)− w2
(
A2

) ≤
(
|β + α| − 2 ·

√
Re

(
αβ̄

))
w

(
A2

) ‖A‖2 ,

respectively.

Remark 4.5 In a similar manner, if N, n > 0, A ∈ B(H) and Cn,N (A,A∗) is
accretive, then

(0 ≤) µ2 (A, A∗)− w2
(
A2

) ≤ 1

4
· (N − n)2 ‖A‖4 ,

(0 ≤) µ (A,A∗)− w
(
A2

) ≤ 1

4
· (N − n)2

n + N
‖A‖2 ,

(1 ≤)
µ (A,A∗)
w (A2)

≤ 1

2
· n + N√

nN
(for A2 6= 0)
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and

(0 ≤) µ2 (A,A∗)− w2
(
A2

) ≤
(√

N −√n
)2

w
(
A2

) ‖A‖2 ,

respectively.
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