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1. Introduction

Let (H;(-,-)) be a complex Hilbert space. The numerical range of an operator T'
is the subset of the complex numbers C given by [9, p. 1]:

W(T) ={(Tz,z), z € H, |z =1}.
The numerical radius w (T') of an operator T' on H is given by [9, p. 8]:
(1.1) w(T) = sup {[Al, A € W(T)} = sup {[{Tz, z)], ||| = 1} .

It is well known that w () is a norm on the Banach algebra B (H) of all
bounded linear operators T' : H — H. This norm is equivalent to the operator
norm. In fact, the following more precise result holds [9, p. 9]:

(1.2) w(T) < |7 < 2w (T)

for any '€ B (H)
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For other results on numerical radii, see [10], Chapter 11. For some recent and
interesting results concerning inequalities for the numerical radius, see [11], [12].
If A, B are two bounded linear operators on the Hilbert space (H, (-,-)), then

(1.3) w(AB) < 4w (A)w (B).
In the case that AB = BA, then
(1.4) w(AB) <2w (A)w (B).

The following results are also well known [9, p. 38]:
If A is a unitary operator that commutes with another operator B, then

(1.5) w(AB) < w(B).

If Ais an isometry and AB = BA, then (1.5) also holds true.
We say that A and B double commute if AB = BA and AB* = B*A. If the
operators A and B double commute, then [9, p. 38|

(1.6) w(AB) <w (B)[|A].

As a consequence of the above, we have [9, p. 39]:
If A is a normal operator commuting with B, then

(1.7) w (AB) < w (A)w(B).

For other results and historical comments on the above see [9, pp. 39-41].
For two bounded linear operators A, B in the Hilbert space (H,{-,-)), we
define the functional

(1.8) p (A B) := sup {||Az[||[Bz|[} (= 0).

flzf|=1

It is obvious that u is symmetric and sub-additive in each variable, u(A, A)=||AJ?,
(A, I) = ||Al|, where I is the identity operator, u (A, BB) = |af| 1 (A, B) and
(A, B) <||A||l ||B||. We also have the following inequalities

(1.9) w(A,B) > w(B*A)
and
(1.10) 1 (A, BYIAI|IBIl = 1 (AB, BA).

Inequality (1.9) follows by the Schwarz inequality ||Az||||Bzx|>|(Az, Bx)|, = € H,
while (1.10) can be obtained by multiplying the inequalities ||ABz|| < ||A|| || Bz||
and | BAz| < || B || Asl].

From (1.9) we also get

(1.11) IA|? > p (A, A%) > w (A%) for any A.
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Motivated by the above results we establish in this paper several inequalities
for the functional p (-, -) under various assumptions for the operators involved, in-
cluding operators satisfying the uniform («, 3) —property and operators for which
the transform C, 5 (-, ) is accretive.

2. General inequalities

The following result concerning some general power operator inequalities may be
stated:

Theorem 2.1 For any A, B € B(H) and r > 1 we have the inequality

@2.1) WA BY<L (A AY + (B'BY'|.

1
The constant 5 1s best possible.

Proof. Using the arithmetic mean - geometric mean inequality and the convexity
of the function f () =¢" for r > 1 and ¢ > 0 we have successively

(2.2) | Ax][|1B2) < 5 (A° Az, ) + (B* B, )]

1
T

(A*Az,z)" + (B*Bzx,z)"
- 2

for any z € H.
It is well known that if P is a positive operator, then for any r > 1 and z € H
with ||z|| = 1 we have the inequality (see for instance [13])

(2.3) (P, z)" < (P"z,x).

Applying this inequality to the positive operators A*A and B*B we deduce that

S =

(2.4)

<A*Ax,$)r—12-<B*Bx,x)r} g <[(A*A)r +2(B*B)T]$7x>;

for any » € H with ||z| = 1.
Now, on making use of the inequalities (2.2) and (2.4) we get

(A"A) + (B"B)']= x>i
2 Y

(25 Azl | Ba]| < <

for any € H with ||z|| = 1. Taking the supremum over z € H with ||z|| = 1 we
obtain the desired result (2.1).

For r = 1 and B = A we get in both sides of (2.1) the same quantity ||A*
which shows that the constant % is best possible in general in the inequality (2.1). =
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Corollary 2.1 For any A € B(H) and r > 1 we have the inequality

r * 1 * r *\T
(2.6) p(A, A7) < S (A7A) + (A47)
and the inequality
S TR
(27) A" < 5 IA" 4y + 1),
respectively.

The following similar result for powers of operators can be stated as well:

Theorem 2.2 For any A,B € B(H), any a € (0,1t) and r > 1 we have the
imequality

(2.8) p* (A, B) < Ha : (A*A)T/a +(1—-a)- (B*B)T/(lfa)

The inequality s sharp.

Proof. Observe that, for any o € (0,1) we have

(2.9) 1Az |* || Bx|* = {(A*A) @, 2) ((B*B) 2, )

_ <[(A*A)1/arx,x> <[(B*B)1/““’)} 1_ax’x>’
where z € H.

It is well known that (see for instance [13]), if P is a positive operator and
q € (0,1), then

(2.10) (Piz,z) < (Px,z)?.

Applying this property to the positive operators (A*4)Y* and (B*B)Y"~%,
where o € (0, 1), we have

(2.11) <[(A*A)1/O‘rx,x> <[(B*B)1/(1_"‘)} B :I;:c>
< <(A*A)1/°‘ T, x>a <(B*B)1/(1_O‘) x, x>

-«

for any x € H with ||z| = 1.
Now, by using the weighted arithmetic mean-geometric mean inequality, i.e.,

a®b'™* < aa+ (1 —a)b, where a € (0,1) and a,b >0,
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we get

11—«

(2.12) <(A*A)1/a:c,:c>a<(B*B)1/(1_a)x,x>
<a- <(A*A)1/O‘:L’,x> +(1—a)- <(B*B)l/(1_a) x,x>

for any x € H with ||z| = 1.
Moreover, by the elementary inequality

aa+ (1 —a)b< (aa" + (1—a)b")", where a € (0,1) and a,b > 0;
we have successively

(2.13) a- <(A*A)1/°‘ m> Y (1-a)- <(B*B)1/(1’a) z, w>

1
r

< [a_ <(A*A)1/a xm> +(1—a)- <(B*B>1/(1—a>x7x>r]

S =

< [o-{(ray ezl + (1= a) - (BB 0,2)] "

for any x € H with ||z|| = 1, where for the last inequality we have used the
property (2.3) for the positive operators (A*A)Y* and (B*B)Y~*)

Now, by making use of the identity (2.9) and the inequalities (2.11)-(2.13),
we get

1Az |]* || Bz|* < [< [a S(ATA) L (1—a)- (B*B)r/u—a)] “J"ﬂ :

for any € H with ||z|| = 1. Taking the supremum over z € H with ||z|| = 1 we
deduce the desired result (2.8).

Notice that the inequality is sharp since for r = 1 and B = A we get in both
sides of (2.8) the same quantity ||A[*. .

Corollary 2.2 For any A € B(H), any o € (0,1) and r > 1, we have the
inequalities

lu2r (A,A*) < Ha . (A*A)T/a + (1 _ Ck) . (AA*)T/(I—a)

)

JAIP" < [la- (a2 + (1 =) - 1|

and
JAN” < [Ja- anay’ 4 (1= ) - (a7 ay 0=

9

respectively.

The following reverse of inequality (1.9) may be stated as well:
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Theorem 2.3 For any A, B € B (H) we have the inequality
1
(2.14) 0<)n(A4,B)~w(BA) < ¢ |4~ BI?

and the inequality

A+B A-B
(2.15) u( B A )g

1
w(BA)+ ;14— B,

respectively.

Proof. We have

(2.16) |Az — Bz||* = ||Az||” + || Bz||* — 2Re (B* Az, x)
> 2|[Az||[|Bz|| — 2|(B* Az, z)],

for any = € H,||z|| = 1, which gives the inequality
. 1
| Az]| | Bxl| < |[(B*Ax, 2)| + 5 || Az — Ba||*,

for any z € H, ||z|| = 1.
Taking the supremum over ||z|| = 1 we deduce the desired result (2.14).
By the parallelogram identity in the Hilbert space H, we also have

1
| Azl + |[Bx]* = 5 (| Az + Ba|* + || Az — Ba|")

> ||Az + Bzx|| ||Ax — Bz||,

for any x € H.
Combining this inequality with the first part of (2.16), we get

||Az + Bz|| ||Ax — Bz|| < ||Ax — B$H2 +2[(B* Az, )|,

for any « € H. Taking the supremum in this inequality over ||z|| = 1 we deduce
the desired result (2.15). .
Corollary 2.3 Let A€ B(H). If
A+ A* A— A
Re (A) == —; and Im (A) = 5
i

are the real and imaginary parts of A, then we have the inequality
(0 <) p(A A" —w(A?) <2 |Im (A)]

and

pu(Re (A),Im (4)) <

< S (42) + [ (A)°

respectively.
Moreover, we have

(0<) 4 (Re (4), Tm (4)) — w (Re (A) Tm (4)) < 7 AP
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Corollary 2.4 For any A € B(H) and A\ € C with A # 0 we have the inequality
(see also [6])

1

(2.17) (0 ) [JA} = w (A) < 30

(eI

For a bounded linear operator 1" consider the quantity

0(T) = Hlﬂlfl | Tx|| .

We can state the following result as well.

Theorem 2.4 For any A, B € B(H) with A # B and such that ¢ (B) > ||A — B]|
we have

(2.18) (0<)1* (A, B) —w? (B"A) < ||A|* |A - B

Proof. Denote r := ||A — B|| > 0. Then for any x € H with ||z|| = 1 we have
||Bx|| > r and by the first part of (2.16) we can write that

2
(2.19) JAz]? + (\/qunQ —r2) < 2((B* Az, )

for any x € H with ||z| = 1.
On the other hand, we have

2
(2.20) x| + (\/ |Ba? —r?) > 9. | Ac| /| Bz|* —

for any z € H with ||z|| = 1.
Combining (2.19) with (2.20), we deduce

| Az|| /|| Bz || — 12 < |(B" Az, )]
which is clearly equivalent to
(2.21) | Az|* | Bz || < [(B* Az, z)|" + || Az|* | A - B|

for any © € H with ||z|| = 1. Taking the supremum in (2.21) over z € H with
|z|| = 1, we deduce the desired inequality (2.18). .

Corollary 2.5 For any A € B (H) a non-self-adjoint operator in B (H) and such
that ¢ (A*) > ||Im (A)|| we have

(2.22) (0 <) (A, A7) — w? (A7) < 4 [JAP [Im (A)].
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Corollary 2.6 For any A € B(H) and A € C with A # 0 and |A| > ||A — ||
we have the inequality (see also [6])

1
(0 ) JA]* = w? (4) < N IA|? A = M)

1A = AL|® _ w(A)

or, equivalently,

3. Inequalities for operators satisfying the uniform («, 3)-property

The following result that may be of interest in itself holds:

Lemma 3.1 Let T € B(H) and o, 8 € C with a # (3. The following statements
are equivalent:

(i) We have
(3.1) Re(By — Tx,Tx —ay) >0
for any x,y € H with ||z|| = ||ly|]| = 1;

(ii) We have

_a—l—ﬁ‘
2

(3.2) HTas yH <gla—p

for any x,y € H with ||z|| = |ly|| = 1.
Proof. This follows by the following identity

a—l—ﬁ.
9 Yy

that holds for any x,y € H with ||z| = |ly|| = 1. .

Re (fy — Tz, Tx — ay) = }1 lav —5|2 — HT;E—

Remark 3.1 For any operator T' € B (H) if we choose o = a||T|| (1 + 2i) and
B =al|T|(1—2i) witha > 1, then

B _ il and =P oaymy
2 2
showing that
a+f + 73

Tx —

that holds for any x,y € H with ||z| = ||y||
with the scalars o and (3 given abowve.

(0%
o <izat+ |52 < iri+alm

<2a|T| =3 - fe—=5l,

1, i.e., T satisfies condition (3.1)

DO | —
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Definition 3.1 For given a,3 € C with o # § and y € H with ||y|| = 1, we
say that the operator T' € B (H) has the («, 3, y)-property if either (3.1) or,
equivalently, (3.2) holds true for any x € H with ||z|| = 1. Moreover, if T" has the
(e, B,y)-property for any y € H with ||y|| = 1, then we say that this operator has
the uniform («, 3)-property.

Remark 3.2 The above Remark 3.1 shows that any bounded linear operator has
the uniform (a, 3)-property for infinitely many («, 3) appropriately chosen. For
a given operator satisfying an («, 3)-property, it is an open problem to find the
possibly nonzero lower bound for the quantity |a — /.

The following results may be stated:

Theorem 3.1 Let A,B € B(H) and o, 3,7,0 € K with o # 3 and v # 6 . For
y € H with ||y|| = 1 assume that A* has the («, 3,y)-property while B* has the
(7,0, y)-property. Then

|
(3.3) Ayl [ Byl = 1 BA™Il < 7 18 — al |y —4].

Moreover, if A* has the uniform («, 3)-property and B* has the uniform (v, ¢)-
property, then

|
(3.4) (4, B) = |BA™||| < 716 — ally —9].

Proof. A* has the (o, 3, y)-property while B* has the (v, d, y)-property, then on
making use of Lemma 3.1 we have that

1 ) 1
‘A*ﬁ—agﬁ'y"ﬁgw—ﬂ and HB*Z—%'?JHS§’7—5|
for any z,z € H with ||z| = ||z]| = 1.

Now, we make use of the following Griiss type inequality for vectors in inner
product spaces obtained by the author in [1] (see also [2] or [7, p. 43]:

Let (H,(-,-)) be an inner product space over the real or complex number field
K, u,v,e € H, |le]| =1, and a, 8,7, d € K such that

(3.5) Re (fe — u,u — ae) >0, Re (0e —v,v —ve) >0

or, equivalently,

23

(3.6) 7+

1
<165 —~l.
e _2| ol

Then

(3.7 {u,0) = (€} (e, )] < 718 = al 5 =91,
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Applying (3.7) for u = A*x, v = B*z and e = y we deduce
. 1
(3.8) (BA"z,z) — (2, Ay) (By, 2)| < 7 |6 — alld =l

for any =,z € H, ||z|| = ||z|| = 1, which is an inequality of interest in itself.
Observing that

[(BA™, 2)| = |(x, Ay) (2, By)|| < (BA™x, 2) — (x, Ay) (By, 2)|,

then by (3.8) we deduce the inequality

1
[{BA", )| = [(z, Ay) (2, By)|| < 716 — ol |6 =]

for any z,z € H, ||z|| = ||z|]| = 1. This is equivalent with the following two
inequalities
. 1
(3.9) [(BA™z, 2)| < [{z, Ay) (=, By)| + 7 18 — o [d =]
and
. 1
(3.10) |, Ay) (2, By)| < [(BA™@, 2)| + 76 — o] [ =]
for any z,z € H, ||z|| = ||z]| = 1.
Taking the supremum over x,z € H, ||z|| = ||z]| = 1, in (3.9) and (3.10) we
get the inequalities
. 1
(3.11) IBA™| < lAy[ | Byll + 7 16 =l [6 =
and
. 1
(3.12) IAyI[ Byl < |1BA™[[ + 7 15 = a6 =~

which are clearly equivalent to (3.3).

Now, if A* has the uniform («, §)-property and B* has the uniform (v, d)-
property, then the inequalities (3.11) and (3.12) hold for any y € H with ||y|| = 1.
Taking the supremum over y € H with |y|| = 1 in these inequalities we deduce

. 1
|BA"| < (4, B)+ ;18— al |5 ]

and .
1 (A, B) < ||BA™[| + 1 18 —alld =],

which are equivalent to (3.4). n
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Corollary 3.7 Let A € B(H) and «,3,7,6 € K with a # 3 and v # 6. For
y € H with ||y|| = 1 assume that A has the («, 3,y)-property while A* has the
(7,0, y)-property. Then

1
Ayl Ayl = (| 4%]] < 718 = ol v =4l

Moreover, if A has the uniform («, 3)-property and A* has the uniform (vy,0)-
property, then

. 1
(A, A7) — [l < 15— al - a1,
The following results may be stated as well:

Theorem 3.2 Let A,B € B(H) and «,3,7,0 € K witha+ (5 # 0 and v+ §
# 0. Fory € H with ||y|| =1 assume that A* has the (o, 3,y)-property while B*
has the (v, d,y)-property. Then

L 18-alli—|
1 ey Y AIHIAWDAB I+ IBy]).

Moreover, if A* has the uniform (a,ﬁ)-pmperty and B* has the uniform (v,9)-
property, then

. 1 |f—alld—7
310 |u(aB) - B < 5 POy

(3-13) [l Ayl Byl -l BA™[[[<

VIB+allo+7|
Proof. We make use of the following inequality obtained by the author in [5] (see
also [7, p. 65]):

Let (H, (-,-)) be an inner product space over the real or complex number field
K, u,v,e € H, |le]| =1, and o, 8,7, € K with a+ 3 # 0 and 7+ ¢ # 0 and such
that
Re (fe — u,u — ae) >0, Re (de —v,v —ve) >0

or, equivalently,

H a—+f
u_

7+5e
2

<

1
| <518-al. e <ol

1
2

Then

(3.15)  [(u,v) — (u,e) (e,

<

\/ (el + [€u, 1) (vl + (v, e)1)-

v)
1 |8=alls =]
4

VIB+alld+7]

Applying (3.15) for u = A*z, v = B*z and e = y we deduce

[(BA™z, z) = {z, Ay) (By, 2)]
SO ) | e

4 /1B +alld +1]

\/ ([A*z ]| + |(z, Ay)|) (I[B*z]| + [(z, By)|)
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for any z,y,z € H, [lzf| = [lyl = ||z]| = 1.

Now, on making use of a similar argument to the one from the proof of
Theorem 3.1, we deduce the desired results (3.13) and (3.14). The details are
omitted. 0

Corollary 3.8 Let A € B(H) and o, 3,7,6 € K with a + 3 # 0 and v+ 9 # 0.
For y € H with ||y|| = 1 assume that A has (o, 3, y)-property while A* has the
(7,6, y)-property. Then

1 [f=allo—-

Ayl 1| Ayl — || A2 gl Al + [ A A+ A
[IIA*y || [| Ayl — || |H54 ol oty \/H |+ [[A*yll) (IJA[l + [ Ayl])-

Moreover, if A has the uniform («, 3)-property and A* has the uniform (vy,0)-
property, then

J1 18-allp-al

=3 VIB+allo+7]|

(4, 47) = |47 4]

4. The transform C, 3 (-,-) and other inequalities

For two given operators T, U € B (H) and two given scalars «, 3 € C consider the
transform

Cop (T.U) = (T* —aU*) (BU — T) .

This transform generalizes the transform
Cop(T):=T"—al)(BI—-T)=Cup(T,1),

where [ is the identity operator, which has been introduced in [8] in order to pro-
vide some generalizations of the well known Kantorovich inequality for operators
in Hilbert spaces.

We recall that a bounded linear operator 7" on the complex Hilbert space
(H,(-,-)) is called accretive if Re (Ty,y) > 0 for any y € H.

Using the following identity

(4.1) Re (Cop (T U)z,z) = Re (Cp o (T,U) x,x)

a+p
2

1
= Lo o sl - HT _otB o,

that holds for any scalars o, and any vector x € H, we can give a simple
characterization result that is useful in the following:

Lemma 4.2 For o, € C and T,U € B(H) the following statements are equi-
valent:

(i) The transform Co 5 (T,U) (or, equivalently, Cg . (T,U)) is accretive;
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(ii) We have the norm inequality

_oH—ﬁ_

as Ire -

1
vz < 316 ol U]

for any x € H.
As a consequence of the above lemma, we can state
Corollary 4.9 Let o, € C and T,U € B(H). If Co 5 (T, U) is accretive, then

a+ 3
U
2

(43) HT— Hs%W—awm«

Remark 4.3 In order to give examples of linear operators T,U € B(H) and
numbers o, 3 € C such that the transform C, 5 (T,U) is accretive, it suffices to
select two bounded linear operator S and V' and the complex numbers z,w (w # 0)
with the property that ||Sx — zVz| < |w|||Vz| for any v € H, and, by choosing

1 1
T=SU=V, a= 3 (z+w) and § = 5 (z —w), we observe that T and U satisfy
(4.2), i.e., Cop(T,U) is accretive.
We are able now to give the following result concerning other reverse ine-

qualities for the case when the involved operators satisfy the accretivity property
described above.

Theorem 4.1 Let o, € C and A,B € B(H). If C, 5 (A, B) is accretive, then

(4.4) (0<) 4% (A, B) —? (B°A) < - |8 — ol | BI".
Moreover, if a+ 3 # 0, then

* 1 ’ﬁ - Oé|2 2
(4.5) (0<) (A, B) —w(B'4) < - = |BIP.

In addition, if Re (ozB) >0 and B*A #£ 0, then also

p(AB) _ 1
(4.6) (1<) w (B A) <3

6+ a
Re (045)

and
(4.7) msm%AB%wﬂwvns(w+m—2-fwmm)wwvmww,

respectively.
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Proof. By Lemma 4.2, since C, g (A, B) is accretive, then

a—l—ﬁ‘
2

1
(1) \px— lﬁH§§W—ame

for any z € H.

We use the following reverse of the Schwarz inequality in inner product spaces
obtained by the author in [3] (see also [7, p. 4]):

Ifv,I'e K(K=C, R) and u,v € H are such that
(4.9) Re (I'v —u,u —yv) >0

or, equivalently,

I 1
(4.10) R | | NN T
2 2
then
1
(4.11) 0 < [l ]l = s, o) < 3 1T = ol

Now, by making use of (4.11) for u = Az, v = Bz, z € H, ||z|]| = 1 and
v =a,' = [, we can write the inequality

. 1
| Az|* | Bz||* < |{B" Az, z)[* + 116- o || Ba||*,

for any x € H, ||z|| = 1. Taking the supremum over ||z|| = 1 in this inequality
produces the desired result (4.4).

Now, by using the result from [5] (see also [7, p. 29]) namely:

If v,' € K with v+ T" # 0 and u,v € H are such that either (4.9) or,
equivalently, (4.10) holds true, then

T =4/
T+

(4.12) 0 < full floll = I(u, v)] < ol

| =

Now, by making use of (4.12) for u = Az, v = Bz, v € H, ||z|]| = 1 and
v = «a,' = ( and using the same procedure outlined above, we deduce the second
inequality (4.5).

The inequality (4.6) follows from the result presented below obtained in [4]
(see also [7, p. 21]):

If v,I' € K with Re(I'y) > 0 and uw,v € H are such that either (4.9) or,
equivalently, (4.10) holds true, then

(4.13) [l vl <

by choosing u = Az, v = Bz, x € H, ||z|| =1 and v = o,T" = /8 and taking the
supremum over |z|| = 1.
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Finally, by making use of the inequality (see [6])
(4.14) el o> = I, 0} < (0 + 41 = 2¢/Re (T7) ) |, )] o]

that is valid provided v,I" € K with Re (I'y) > 0 and u,v € H are such that either
(4.9) or, equivalently, (4.10) holds true, we obtain the last inequality (4.7). The
details are omitted. n

Remark 4.4 Let M,m >0 and A, B € B(H). If C,, m (A, B) is accretive, then

(0<)42 (A, B)—w? (B'A) < - (M—m)}|B]',
O nB) —wEa < ¢ g
(A, B) 1 m+M
<1§)w(B*A) = 2 /mM
(0<) 12 (4.B) —w? (B'4) < (VI —vm) w(B'4)|BI*,

respectively.

Corollary 4.10 Let o, € C and A € B(H). If C, 5 (A, A*) is accretive, then
1
(0 <) (A, A7) —w? (A7) < -8 = al* || A]I".
Moreover, if a+ 3 # 0, then

* 1 |6—al
0 n(AA) —w (4) < 3T

In addition, if Re (aﬁ_) > 0 and A% # 0, then also
(1 S) M(A—’/;l) < 1 . M
w (A2) 2 Re (045)

A"

and
090 (4.4~ u? (4 < (15 +a] - 2 /Re (a5) ) w (42) A,

respectively.

Remark 4.5 In a similar manner, if Nyn > 0, A € B(H) and C,, n (A, A*) is
accretive, then

(0<)p* (A, A7) —w? (A7) < - (N —n)’ |4,

MHAHz
n+ N ’
n+ N

vnN

(0 <) (A, A7) = w (42)

(A A)
TV

IN IN
D= = =

(for A* #0)
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(007 (4, A7) —u? (42) < (VN = ) w (42) 47,

respectively.
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