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Abstract. In this note first we define a hyper K-algebra S on the states of a deter-
ministic finite automaton. Then we obtain some commutative hyper K-ideals of types
3, 4, 5, 6 and 9 and also positive implicative hyper K-ideals of types 1, 2, 3, 4, 5, 6,
7, 8 and 9 of S. Also we prove some theorems and obtain some results, to show that
some properties of this hyper K-algebra. Then we define another hyper K-algebra on
the states of a deterministic finite automaton which is simple and normal. Finally, we
introduce a hyper K-algebra on the set of all equivalence classes of an equivalence rela-
tion on states.
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1. Introduction

The hyper algebraic structure theory was introduced by F. Marty [7] in 1934. Imai
and Iseki [6] in 1966 introduced the notion of BCK-algebra. Borzooei, Jun and
Zahedi et.al. [1], [2], [13] applied the hyper structure to BCK-algebra and intro-
duced the concept of hyper K-algebra which is a generalization of BCK-algebra.
Roodbari and Zahedi [12] introduced 27 different types of positive implicative
hyper K-ideals, also they introduced 9 different types of commutative hyper K-
ideals. Corsini and Leoreanu [4] found some connections between a deterministic
finite automaton and the hyper algebraic structure theory. Now, in this note we
define two hyper K-algebras on the states of a deterministic finite automaton.
Then we obtain some properties of these hyper K-algebras. Finally, we define a
hyper K-algebra on the set of all equivalence classes of an equivalence relation on
states.
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2. Preliminaries

Let H be a nonempty set and o be a hyper operation on H, that is o is a function
from H ×H to P∗(H) = P(H)\φ.

Definition 2.1 [2] We say that H is a hyper K-algebra if it contains a constant
0 and satisfies the following axioms:

(HK1) (xoz)o(yoz) < xoy,

(HK2) (xoy)oz = (xoz)oy,

(HK3) x < x,

(HK4) x < y, y < x ⇒ x = y,

(HK5) 0 < x.

For all x, y, z ∈ H, where x < y is defined by 0 ∈ xoy and for every A,B ⊆ H,
A < B is defined by ∃a ∈ A, ∃b ∈ B such that a < b. Note that if A,B ⊆ H, then
by AoB we mean the subset

⋃
a∈A,b∈B

aob of H.

Definition 2.2 [10] Let (H, o, 0) be a hyper K-algebra. Then H is called:

(i) A weak implicative, if for all x, y ∈ H, x < xo(yox),

(ii) An implicative, if for all x, y ∈ H, x ∈ xo(yox),

(iii) A strong implicative, if for all x, y ∈ H, xo0 ⊆ xo(yox).

Definition 2.3 [9] Let (H, o, 0) be a hyper K-algebra and I be a subset of H
and φ 6= S ⊆ H. Then we say that I is an S-absorbing set, whenever x ∈ I and
y ∈ S imply that xoy ⊆ I.

Definition 2.4 [10] Let I be a nonempty subset of a hyper K-algebra H. Then
we say that I is closed, whenever x < y and y ∈ I imply that x ∈ I, for all
x, y ∈ H.

Definition 2.5 [2], [10] Let I be a nonempty subset of a hyper K-algebra H and
0 ∈ I. Then,

(i) I is called a weak hyper K-ideal of H if xoy ⊆ I and y ∈ I imply that x ∈ I,
for all x, y ∈ H.

(ii) I is called a hyper K-ideal of H if xoy < I and y ∈ I imply that x ∈ I, for
all x, y ∈ H.

(iii) I is called a strong hyper K-ideal of H if (xoy) ∩ I 6= φ and y ∈ I imply
that x ∈ I, for all x, y ∈ H.

(iv) I is called an implicative hyper K-ideal, if for all x, y, z∈H, (xoz)o(yox) < I
and z ∈ I imply that x ∈ I.
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(v) I is called a weak implicative hyper K-ideal, if for all x, y, z ∈ H,
(xoz)o(yox) ⊆ I and z ∈ I imply that x ∈ I.

Theorem 2.6 [2] Any strong hyper K-ideal of a hyper K-algebra H is a hyper
K-ideal and a weak hyper K-ideal. Also any hyper K-ideal of a hyper K-algebra
H is a weak hyper K-ideal.

Definition 2.7 [12] Let I be a nonempty subset of a hyper K-algebra H and
0 ∈ I. Then I is called a commutative hyper K-ideal of

(i) type 1, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and z ∈ I imply that
(xo(yo(yox))) ⊆ I,

(ii) type 2, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and z ∈ I imply that
(xo(yo(yox))) ∩ I 6= φ,

(iii) type 3, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and z ∈ I imply that
(xo(yo(yox))) < I,

(iv) type 4, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and z ∈ I imply that
(xo(yo(yox))) ⊆ I,

(v) type 5, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and z ∈ I imply that
(xo(yo(yox))) ∩ I 6= φ,

(vi) type 6, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and z ∈ I imply that
(xo(yo(yox))) < I,

(vii) type 7, if for all x, y, z ∈ H, ((xoy)oz) < I and z ∈ I imply that
(xo(yo(yox))) ⊆ I,

(viii) type 8, if for all x, y, z ∈ H, ((xoy)oz) < I and z ∈ I imply that
(xo(yo(yox))) ∩ I 6= φ,

(ix) type 9, if for all x, y, z ∈ H, ((xoy)oz) < I and z ∈ I imply that
(xo(yo(yox))) < I,

Definition 2.8 [10] Let I be a nonempty subset of a hyper K-algebra H and
0 ∈ I. Then the following statements hold:

(i) If I is a commutative hyper K-ideal of type 4, then I is a commutative
hyper K-ideal of type 6,

(ii) If I is a commutative hyper K-ideal of type 6, then I is a commutative
hyper K-ideal of type 9,

(iii) If I is a commutative hyper K-ideal of type 5, then I is a commutative
hyper K-ideal of type 6,
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(iv) If I is a commutative hyper K-ideal of type 9, then I is a commutative
hyper K-ideal of type 3.

Definition 2.9 [12] Let I be a nonempty subset of H such that 0 ∈ I. Then I is
called a positive implicative hyper K-ideal of

(i) type 1, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and (yoz) ⊆ I imply that
(xoz) ⊆ I,

(ii) type 2, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and (yoz) ⊆ I imply that
(xoz) ∩ I 6= φ,

(iii) type 3, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and (yoz) ⊆ I imply that
(xoz) < I,

(iv) type 4, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and (yoz) ∩ I 6= φ imply that
(xoz) ⊆ I,

(v) type 5, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and (yoz) ∩ I 6= φ imply that
(xoz) ∩ I 6= φ,

(vi) type 6, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and (yoz) ∩ I 6= φ imply that
(xoz) < I,

(vii) type 7, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and (yoz) < I imply that
(xoz) < I,

(viii) type 8, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and (yoz) < I imply that
(xoz) ∩ I 6= φ,

(ix) type 9, if for all x, y, z ∈ H, ((xoy)oz) ⊆ I and (yoz) < I imply that
(xoz) ⊆ I,

(x) type 10, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and (yoz) ⊆ I imply that
(xoz) ∩ I 6= φ,

(xi) type 11, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and (yoz) ⊆ I imply that
(xoz) ⊆ I,

(xii) type 12, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and (yoz) ⊆ I imply that
(xoz) < I,

(xiii) type 13, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and (yoz) ∩ I 6= φ imply
that (xoz) ⊆ I,

(xiv) type 14, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and (yoz) ∩ I 6= φ imply
that (xoz) ∩ I 6= φ,

(xv) type 15, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and (yoz) ∩ I 6= φ imply
that (xoz) < I,
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(xvi) type 16, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and (yoz) < I imply that
(xoz) < I,

(xvii) type 17, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and (yoz) < I imply that
(xoz) ∩ I 6= φ,

(xviii) type 18, if for all x, y, z ∈ H, ((xoy)oz) ∩ I 6= φ and (yoz) < I imply that
(xoz) ⊆ I,

(xix) type 19, if for all x, y, z ∈ H, ((xoy)oz) < I and (yoz) ∩ I 6= φ imply that
(xoz) < I,

(xx) type 20, if for all x, y, z ∈ H, ((xoy)oz) < I and (yoz) ∩ I 6= φ imply that
(xoz) ⊆ I,

(xxi) type 21, if for all x, y, z ∈ H, ((xoy)oz) < I and (yoz) ∩ I 6= φ imply that
(xoz) ∩ I 6= φ,

(xxii) type 22, if for all x, y, z ∈ H, ((xoy)oz) < I and (yoz) ⊆ I imply that
(xoz) ⊆ I,

(xxiii) type 23, if for all x, y, z ∈ H, ((xoy)oz) < I and (yoz) ⊆ I imply that
(xoz) < I,

(xxiv) type 24, if for all x, y, z ∈ H, ((xoy)oz) < I and (yoz) ⊆ I imply that
(xoz) ∩ I 6= φ,

(xxv) type 25, if for all x, y, z ∈ H, ((xoy)oz) < I and (yoz) < I imply that
(xoz) < I,

(xxvi) type 26, if for all x, y, z ∈ H, ((xoy)oz) < I and (yoz) < I imply that
(xoz) ∩ I 6= φ,

(xxvii) type 27, if for all x, y, z ∈ H, ((xoy)oz) < I and (yoz) < I imply that
(xoz) ⊆ I,

Definition 2.10 [10] A hyper K-algebra (H, o, 0) is called simple if for all distinct
elements a, b ∈ H − {0}, a 6< b and b 6< a.

Definition 2.11 [11] Let H be a hyper K-algebra and S be a nonempty subset
of H. Then the sets

l1S = {x ∈ H|a < (aox), ∀a ∈ S}, l2S = {x ∈ H|a ∈ (aox),∀a ∈ S},
Sr1 = {x ∈ H|x < (xoa),∀a ∈ S} and Sr2 = {x ∈ H|x ∈ (xoa),∀a ∈ S}

are called left hyper K-stabilizer of type 1 of S, left hyper K-stabilizer of type 2
of S, right hyper K-stabilizer of type 1 of S and right hyper K-stabilizer of type
2 of S.
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Definition 2.12 [11] A hyper K-algebra (H, o, 0) is called left (right) hyper nor-
mal of type 1(2) if lia(ari) of any element a ∈ H is a hyper K-ideal of H for i = 1
or 2. Also if H is both left and right hyper normal of type 1 (2), then H is called
hyper normal K-algebra of type 1 (2).

Definition 2.13 [5] A deterministic finite automaton consists of:

(i) A finite set of states, often denoted by S.

(ii) A finite set of input symbols, often denoted by M .

(iii) A transition function that takes as arguments a state and an input symbol
and returns a state. The transition function will commonly be denoted by
t, and in fact t : S ×M → S is a function.

(iv) A start state, one of the states in S such as s0.

(v) A set of final or accepting states F . The set F is a subset of S.

For simplicity of notation, we write (S, M, s0, F, t) for a deterministic finite au-
tomaton.

Remark 2.14 [5] Let (S, M, s0, F, t) be a deterministic finite automaton. A word
of M is the product of a finite sequence of elements in M , λ is empty word and
M∗ is the set of all words on M . We define recursively the extended transition
function, t∗ : S ×M∗ → S, as follows:

∀s ∈ S, ∀a ∈ M, t∗(s, a) = t(s, a),

∀s ∈ S, t∗(s, λ) = s,

∀s ∈ S, ∀x ∈ M∗,∀a ∈ M, t∗(s, ax) = t∗(t(s, a), x).

Note that the length `(x) of a word x ∈ M∗ is the number of its letters; so `(λ) = 0
and `(a1a2) = 2, where a1, a2 ∈ M .

Definition 2.15 [4] The state s of S− s0 will be called connected to the state s0

of S if there exists x ∈ M∗, such that s = t∗(s0, x).

3. Hyper K-algebras induced by a deterministic finite automaton

In this paragraph, we present some relationships between hyper K-algebras and
deterministic finite automata.

Definition 3.1 Let (S, M, s0, F, t) be a deterministic finite automaton.
If s ∈ S − {s0} is connected to s0, then the order of a state s is the natural

number l + 1, where l = min{`(x)|t∗(s0, x) = s, x ∈ M∗}, and if s ∈ S − {s0} is
not connected to s0 we suppose that the order of s is 1. Also we suppose that the
order of s0 is 0.

We denote the order of a state s by ord s.
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Now, we define the relation ∼ on the set of states S, as follows:

s1 ∼ s2 ⇔ ords1 = ords2.

It is obvious that this relation is an equivalence relation on S.
Note that we denote the equivalence class of s by s̄. Also we denote the set

of all these classes by S̄.

Theorem 3.2 Let (S, M, s0, F, t) be a deterministic finite automaton. We define
the following hyper operation on S:

∀(s1, s2) ∈ S2, s1os2 =





⋃
ords≤ords2

s̄ , if ords1 < ords2, s1, s2 6= s0, s1 6= s2

⋃
s0 6=s,ords≤ords1

s̄ , if ords1 ≥ ords2, s1, s2 6= s0, s1 6= s2

⋃
ords≤ords1

s̄ , if s1 = s2

s0 , if s1 = s0, s2 6= s0

s1 , if s2 = s0, s1 6= s0.

Then (S, o, s0) is a hyper K-algebra and s0 is the zero element of S.

Proof. It is easy to see that (S, o, s0) satisfies (HK3). Since tot =
⋃

ords≤ordt

s̄, we

conclude that s0 ∈ tot. So
t < t, ∀t ∈ S (1)

By the definition of the hyper operation o, we know that s1 ∈ s1os2, and so,
s1os2 6= φ for any s1, s2 ∈ S.

Since s1 ∈ s1os3 and s2os3 6= φ, we obtain that s1 ∈ (s1os3)o(s2os3).
So, by (1) we get that

(s1os3)o(s2os3) < s1os2

That is (HK1) holds.
Now, we have to consider the following situations to prove (HK2).

(i) Let s1, s2, s3 6= s0 and ords1 < ords2 < ords3. Then

(s1os2)os3 =

( ⋃

ords≤ords2

s̄

)
os3 =

⋃

ords≤ords3

s̄,

and

(s1os3)os2 =

( ⋃

ords≤ords3

s̄

)
os2 =

⋃

ords≤ords3

s̄.

So, in this case (HK2) holds.
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(ii) Let s1, s2, s3 6= s0 and ords2 < ords1 < ords3. Then

(s1os2)os3 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os3 =

⋃

ords≤ords3

s̄,

and

(s1os3)os2 =

( ⋃

ords≤ords3

s̄

)
os2 =

⋃

ords≤ords3

s̄,

since s2 ∈
⋃

ords≤ords3

s̄.

Hence, in this case (HK2) holds.

(iii) Let s1, s2, s3 6= s0 and ords2 < ords3 < ords1. Then

(s1os2)os3 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os3 =

⋃

ords≤ords1

s̄,

since s3 ∈
⋃

s0 6=s,ords≤ords1

s̄, and

(s1os3)os2 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os2 =

⋃

ords≤ords1

s̄,

since s2 ∈
⋃

s0 6=s,ords≤ords1

s̄. Thus, in this case (HK2) holds.

The proofs of the following three situations are the same as (i), (ii) and (iii)
respectively.

(iv) s1, s2, s3 6= s0 and ords1 < ords3 < ords2,

(v) s1, s2, s3 6= s0 and ords3 < ords1 < ords2,

(vi) s1, s2, s3 6= s0 and ords3 < ords2 < ords1.

(vii) Let s1, s2, s3 6= s0, ords1 = ords2 < ords3 and s1 6= s2. Then

(s1os2)os3 =

( ⋃

s0 6=s,ords≤ords2

s̄

)
os3 =

⋃

ords≤ords3

s̄,

and

(s1os3)os2 =

( ⋃

ords≤ords3

s̄

)
os2 =

⋃

ords≤ords3

s̄.

Therefore, in this case (HK2) holds.
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(viii) Let s1, s2, s3 6= s0 ,ords1 = ords2 > ords3 and s1 6= s2. Then

(s1os2)os3 =

( ⋃

s0 6=s,ords≤ords2

s̄

)
os3 =

⋃

ords≤ords2

s̄,

since s3 ∈
⋃

s0 6=s,ords≤ords2

s̄, and

(s1os3)os2 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os2 =

⋃

ords≤ords2

s̄,

since s2 ∈
⋃

s0 6=s,ords≤ords1

s̄. So, in this case (HK2) holds.

The proofs of the following two situations are the same as (vii) and (viii), respec-
tively.

(ix) s1, s2, s3 6= s0, ords1 = ords3 < ords2 and s1 6= s3,

(x) s1, s2, s3 6= s0, ords1 = ords3 > ords2 and s1 6= s3.

(xi) Let s1, s2, s3 6= s0, ords2 = ords3 > ords1 and s2 6= s3. Then

(s1os2)os3 =

( ⋃

ords≤ords2

s̄

)
os3 =

⋃

ords≤ords2

s̄,

and

(s1os3)os2 =

( ⋃

ords≤ords3

s̄

)
os2 =

⋃

ords≤ords2

s̄.

Hence, in this case (HK2) holds.

(xii) Let s1, s2, s3 6= s0, ords2 = ords3 < ords1 and s2 6= s3. Then

(s1os2)os3 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os3 =

⋃

ords≤ords1

s̄,

and

(s1os3)os2 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os2 =

⋃

ords≤ords1

s̄.

Thus, in this case (HK2) holds.

(xiii) Let s1, s2, s3 6= s0, ords1 = ords2 = ords3 and s1 6= s2 6= s3 6= s1. Then

(s1os2)os3 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os3 =

⋃

ords≤ords1

s̄,
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since s3 ∈
⋃

s0 6=s,ords≤ords1

s̄, and

(s1os3)os2 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os2 =

⋃

ords≤ords1

s̄,

since s2 ∈
⋃

s0 6=s,ords≤ords1

s̄. Therefore, in this case (HK2) holds.

(xiv) Let s1, s2, s3 6= s0, ords1 = ords3, s1 6= s3 and s1 = s2. Then

(s1os2)os3 =

( ⋃

ords≤ords2

s̄

)
os3 =

⋃

ords≤ords2

s̄,

and

(s1os3)os2 =

( ⋃

s0 6=s,ords≤ords3

s̄

)
os2 =

⋃

ords≤ords2

s̄.

So, in this case (HK2) holds.

The proof of the following situation is the same as (xiv).

(xv) s1, s2, s3 6= s0, ords1 = ords2, s1 6= s2 and s1 = s3.

(xvi) Let s1, s2, s3 6= s0, ords1 = ords2, s1 6= s2 and s2 = s3. Then

(s1os2)os3 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os3 =

⋃

ords≤ords1

s̄,

and

(s1os3)os2 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os2 =

⋃

ords≤ords1

s̄.

Hence, in this case (HK2) holds.

(xvii) Let s1, s2, s3 6= s0, ords1 < ords3 and s1 = s2. Then

(s1os2)os3 =

( ⋃

ords≤ords2

s̄

)
os3 =

⋃

ords≤ords3

s̄,

and

(s1os3)os2 =

( ⋃

ords≤ords3

s̄

)
os2 =

⋃

ords≤ords3

s̄.

Thus, in this case (HK2) holds.
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(xviii) Let s1, s2, s3 6= s0, ords1 > ords3 and s1 = s2. Then

(s1os2)os3 =

( ⋃

ords≤ords2

s̄

)
os3 =

⋃

ords≤ords2

s̄,

and

(s1os3)os2 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os2 =

⋃

ords≤ords2

s̄,

since s2 ∈
( ⋃

s0 6=s,ords≤ords1

s̄

)
. Therefore, in this case (HK2) holds.

The proofs of the following two situations are the same as (xvii) and (xviii) re-
spectively.

(xix) s1, s2, s3 6= s0, ords1 < ords2 and s1 = s3,

(xx) s1, s2, s3 6= s0, ords1 > ords2 and s1 = s3.

(xxi) Let s1, s2, s3 6= s0, ords1 < ords2 and s2 = s3. Then

(s1os2)os3 =

( ⋃

ords≤ords2

s̄

)
os3 =

⋃

ords≤ords3

s̄,

and

(s1os3)os2 =

( ⋃

ords≤ords3

s̄

)
os2 =

⋃

ords≤ords3

s̄.

So, in this case (HK2) holds.

(xxii) Let s1, s2, s3 6= s0, ords1 > ords2 and s2 = s3. Then

(s1os2)os3 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os3 =

⋃

ords≤ords1

s̄,

and

(s1os3)os2 =

( ⋃

s0 6=s,ords≤ords1

s̄

)
os2 =

⋃

ords6=ords1

s̄.

Hence, in this case (HK2) holds.

(xxiii) Let s1 = s2 = s3. Then

(s1os2)os3 = (s1os1)os1 = (s1os3)os2.

Thus, in this case (HK2) holds.
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(xxiv) Let s1 = s0 and s2, s3 6= s0. Then (s1os2)os3 = (s0os2)os3 = (s0os3) = s0

and (s1os3)os2 = (s0os3)os2 = (s0os2) = s0. Therefore, in this case (HK2)
holds.

(xxv) Let s2 = s0 and s1, s3 6= s0. Then (s1os2)os3 = (s1os0)os3 = s1os3 and
(s1os3)os2 = (s1os3)os0 = s1os3. So, in this case (HK2) holds.

The proof of the following situation is the same as (xxv).

(xxvi) s3 = s0 and s1, s2 6= s0.

(xxvii) Let s1 6= s0 and s2 = s3 = s0. Then (s1os2)os3 = (s1os0)os0 = (s1os0) = s1

and (s1os3)os2 = (s1os0)os0 = (s1os0) = s1. Hence, in this case (HK2)
holds.

(xxviii) Let s3 6= s0 and s1 = s2 = s0. Then (s1os2)os3 = (s0os0)os3 = s0os3 = s0

and (s1os3)os2 = (s0os3)os0 = s0os0 = s0. Thus, in this case (HK2) holds.

The proof of the following situation is the same as (xxviii).

(xxix) s2 6= s0 and s1 = s3 = s0. So, we obtain that (S, o, s0) satisfies (HK2).

To prove (HK4), Let s1 < s2 and s2 < s1. If s1 = s2, then we are done.
Otherwise, since s1 < s2, there exist two cases:

(i) ords1 < ords2. Then s2os1 =
⋃

s0 6=s,ords≤ords2

s̄. Therefore, s2 6< s1, which is a

contradiction.

(ii) s1 = s0, s2 6= s0. Then, s2os1 = s2os0 = s2. Thus, s2 6< s1, which is a
contradiction.

Now, to complete the proof, we should prove that (S, o, s0) satisfies (HK5).
By the definition of the hyper operation o, we know that for any s1 in S,

s0os1 = s0. Hence, s0 < s1.

Example 3.3 Let A = (S, M, s0, F, t) be a deterministic finite automaton such
that S = {q0, q1, q2, q3}, M = {a, b}, s0 = q0, F = {q1, q3} and t is defined by

t(q0, a) = q1, t(q0, b) = q2, t(q1, a) = q1, t(q1, b) = q3

t(q2, a) = q1, t(q2, b) = q3, t(q3, a) = q1, t(q3, b) = q0

It is clearly that ordq1 = ordq2 = 2, ordq3 = 3 and ordq0 = 0
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According to the definition of the hyper operation ”o”, which is defined in
Theorem 3.2, we have the following table.

o q0 q1 q2 q3

q0 q0 q0 q0 q0

q1 q1 {q0, q1, q2} {q1, q2} {q0, q1, q2, q3}
q2 q2 {q1, q2} {q0, q1, q2} {q0, q1, q2, q3}
q3 q3 {q1, q2, q3} {q1, q2, q3} {q0, q1, q2, q3}

Thus, (S, o, s0) is a hyper K-algebra.
From now on, we let (S, o, s0) be the hyper K-algebra, which is defined in

Theorem 3.2.

Theorem 3.4 (S, o, s0) is a (weak, strong) implicative hyper K-algebra.

Proof. By the definition of the hyper operation ”o”, we know that s1 ∈ s1os2

and s1os2 6= φ for all s1, s2 in S. So s1 ∈ s1o(s2os1), which implies that (S, o, s0)
is implicative.

Also, we show that s0 ∈ s1os1 and s1 ∈ s1o(s2os1) for any s1, s2 in S. So,
s1 < s1o(s2os1) and we obtain that (S, o, s0) is weak implicative.

On the other hand, by the definition of the hyper operation ”o”, we have
s1o 0 = s1 and s1 ∈ s1o(s2os1). Thus, s1o 0 ⊆ s1o(s2os1), which implies that
(S, o, s0) is strong implicative.

Remark 3.5 In (S, o, s0), let F be a nonempty subset of S̄, s0 = s0 ∈ F ,

I =
⋃

t̄∈F

t̄ and C be a nonempty subset of S. Then, I may not be a C-absorbing

set. Because s1, s2 6= s0, ords1 < ords2, F = s0 ∪ s1 and s2 ∈ C, then s1 ∈ I and

s1os2 =
⋃

ords≤ords2

s̄. So, s2 ∈ s1os2 but s2 /∈ I.

Theorem 3.6 In (S, o, s0), any nonempty subset of S is an {s0}-absorbing set.

Proof. By definition of hyper operation ”o” we know that for any s1 in S,
s1os0 = s1. So it is clearly that for any nonempty subset I of S we have:
If x ∈ I and y = s0 ⇒ xoy ⊆ I.

Notation. We denote the class of all states which their order is n by sn.

Theorem 3.7 For any n ∈ N , let In = {s ∈ S|s ∈ ⋃n
i=0 si}. Then In is:

(i) closed,

(ii) weak hyper K-ideal,

(iii) weak implicative hyper K-ideal for all n ≥ 1.

Proof.

(i) Suppose that s1 < s2 and s2 ∈ In. Then s0 ∈ s1os2. We have three cases:
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1. s1, s2 6= s0 and ords1 < ords2.
By definition of In, we can easily see that s1 ∈ In.

2. s1 = s2.
It is clear.

3. s1 = s0.
By definition of In, it is obvious that s1 ∈ In.

(ii) Assume that s1os2 ⊆ In and s2 ∈ In, then we have to consider the following
situations:

1. s1 6= s2, s2 6= s0 and ords2 < ords1.

Since s1os2 =
⋃

s0 6=s,ords≤ords1

s̄ ⊆ In, we obtain that ords1 ≤ n. Hence

s1 ∈ In.

2. s1 6= s2, s2 6= s0 and ords2 = ords1.
By definition of In and the hyper operation ”o”, it is obvious that
s1 ∈ In.

3. s1 6= s2, s2 6= s0 and ords1 < ords2.
By definition of In and the hyper operation ”o”, it is easy to see that
s1 ∈ In.

4. s1 = s2.
It is clear.

5. s2 = s0.
Since s1os2 = s1os0 = s1 and s1os2 ⊆ In, we obtain s1 ∈ In.

6. s1 = s0.
By definition of In, it is obvious that s1 ∈ In.

(iii) Let (s1os3)o(s2os1) ⊆ In and s3 ∈ In. Since s1 ∈ s1os3 and s2os1 6= φ for
any s1, s2, s3 in S, we obtain that s1 ∈ (s1os3)o(s2os1). Therefore s1 ∈ In.

Theorem 3.8 Let In be a set, which is defined in Theorem 3.7. Then, In is a
commutative hyper K-ideal of types 3,4, 5, 6 and 9.

Proof. Let (s1os2)os3 ⊆ In and s3 ∈ In. Then, we should consider the following
situations to prove that In is a commutative hyper K-ideal of type 4.

1. s1 6= s2, s1, s2 6= s0 and ords1 < ords2.
Since In is a weak hyper K-ideal, (s1os2)os3 ⊆ In and s3 ∈ In, we obtain

that s1os2 =
⋃

ords≤ords2

s̄ ⊆ In. Also we have: s2os1 =
⋃

s0 6=s,ords≤ords2

s̄, so

s2o(s2os1) = s2o

( ⋃

s0 6=s,ords≤ords2

s̄

)
=

⋃

ords≤ords2

s̄
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and

s1o(s2o(s2os1)) = s1o

( ⋃

ords≤ords2

s̄

)
=

⋃

ords≤ords2

s̄.

It follows that s1o(s2o(s2os1)) ⊆ In.

2. s1 6= s2, s1, s2 6= s0 and ords1 > ords2.

Since s0 ∈ In and s1os2 =
⋃

s0 6=s,ords≤ords1

s̄ ⊆ In, we obtain that

⋃

ords≤ords1

s̄ ⊆ In.

Also we have:

s2os1 =
⋃

ords≤ords1

s̄, s2o(s2os1) = s2o

( ⋃

ords≤ords1

s̄

)
=

⋃

ords≤ords1

s̄

and
s1o(s2o(s2os1)) =

⋃

ords≤ords1

s̄.

Hence, s1o(s2o(s2os1)) ⊆ In.

3. s1 6= s2, s1, s2 6= s0 and ords1 = ords2.

Since s0 ∈ In and s1os2 =
⋃

s0 6=s,ords≤ords1

s̄ ⊆ In, we get that

⋃

ords≤ords1

s̄ ⊆ In.

Also we have:

s2os1 =
⋃

s0 6=s,ords≤ords1

s̄, s2o(s2os1) = s2o

( ⋃

s0 6=s,ords≤ords1

s̄

)
=

⋃
ords≤ords1

s̄

and

s1o(s2o(s2os1)) = s1o

( ⋃

ords≤ords1

s̄

)
=

⋃

ords≤ords1

s̄.

It follows that s1o(s2o(s2os1)) ⊆ In.

4. s1 = s2.
We know that s1os2 =

⋃

ords≤ords1

s̄ ⊆ In and we have:

s2os1 =
⋃

ords≤ords1

s̄, s2o(s2os1) = s2o

( ⋃

ords≤ords1

s̄

)
=

⋃

ords≤ords1

s̄
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and

s1o(s2o(s2os1)) =
⋃

ords≤ords1

s̄.

Hence, s1o(s2o(s2os1)) ⊆ In.

5. s1 = s0, s2 6= s0.
Since s0 ∈ In,

s2os1 = s2os0 = s2, s2o(s2os1) = s2o(s2os0) = s2os2 =
⋃

ords≤ords2

s̄

and

s1o(s2o(s2os1)) = s0o

( ⋃

ords≤ords2

s̄

)
= s0,

we obtain that s1o(s2o(s2os1)) ⊆ In.

6. s1 6= s0, s2 = s0.
Since s1os2 = s1os0 = s1 ⊆ In, we get that s1 ∈ In. On the other hand
we have: (s2os1) = s0os1 = s0, s2o(s2os1) = s0o(s0os1) = s0os0 = s0 and
s1o(s2o(s2os1)) = s1os0 = s1. It follows that s1o(s2o(s2os1)) ⊆ In. So we
obtain that In is a commutative hyper K-ideal of type 4.

Since s1o(s2o(s2os1)) 6= φ and In is a commutative hyper K-ideal of type 4,
we get that In is a commutative hyper K-ideal of type 5.

On the other hand, by Theorem 2.8 we can easily see that In is a commutative
hyper K-ideal of types 6, 9 and 3.

Theorem 3.9 Let In be a set, which is defined in Theorem 3.7. Then In is a
positive implicative hyper K-ideal of types 1, 2, 3, 4, 5, 6, 7, 8 and 9.

Proof. Let for all s1, s2, s3 in S, (s1os2)os3 ⊆ In. By definition of hyper K-
algebra we know that (s1os2)os3 = (s1os3)os2. So (s1os3)os2 ⊆ In, and also we
have for any s1, s2, s3 in S, if s1os2 ⊆ In, then s1 ∈ In, because s1 ∈ s1os2. So if
(s1os3)os2 ⊆ In, then s1os3 ⊆ In. Therefore In is a positive implicative hyper K-
ideal of types 1, 4 and 8. Also since for any s1, s3 in S, s1os3 6= φ and s1os3 ⊆ In,
we obtain that s1os3∩In 6= φ and s1os3 < In. So In is a positive implicative hyper
K-ideal of types 2, 3, 5, 6, 7 and 9.

Remark 3.10 In (S, o, s0), let ∃n,m ∈ N such that sn 6= φ, sm 6= φ and m > n.
Here we give a subset In of S, which is not a positive implicative hyper K-ideal
of types 10, 11, 12, , 26 and 27 but it is similar to the set In which is defined in
Theorem 3.7.

Let In =
n⋃

i=0

si, y ∈ sn, x ∈ sm and z = s0, then we have:
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1. Since ((xoy)oz) = (xoy)os0 = xoy =
⋃

s0 6=s,ords≤ordx

s̄, then y ∈
⋃

s0 6=s,ords≤ordx

s̄.

On the other hand we know that y < y. Thus ((xoy)oz) ∩ In 6= φ and
(xoy)oz < In.

2. Since yoz = yos0 = y, we obtain that yoz ⊆ In, yoz < In and yoz ∩ In 6= φ.

3. Since xoz = xos0 = x and x /∈ In, we get that xoz 6⊆ In, xoz ∩ In = φ and
x 6< In.

By (1), (2), (3) and definition of the positive implicative hyper K-ideals of types
10, 11, 12,..., 26 and 27, we conclude that In is not a positive implicative hyper
K-ideal of types 10,..., 27.

Theorem 3.11 (S, o, s0) is a hyper normal K-algebra of types 1 and 2 but it may
not be simple.

Proof. Since a ∈ a and a < a, for any a, t in S, we have:

l1a = {t ∈ S|a < aot} = S, l2a = {t ∈ S|a ∈ aot} = S, ∀a ∈ S,
ar1 = {t ∈ S|t < toa} = S and ar2 = {t ∈ S|t ∈ toa} = S, ∀a ∈ S.

On the other hand, it is clear that S is a hyper K-ideal. So, (S, o, s0) is a hyper
normal K-algebra of types 1 and 2.

But, in Example 3.3, we saw that q0 ∈ q1oq3 and q0 /∈ q3oq1. So q1 < q3 and
q3 6< q1. Hence, (S, o, s0) may not be simple.

Theorem 3.12 Let (S ′,M, s′0, F, t) be a deterministic finite automaton. We de-
fine the following hyper operation on S ′:

∀(s′1, s′2) ∈ S ′2, s′1os
′
2 =





s′1 , if s′1 6= s′2, s′1, s
′
2 6= s0

s′1 , if s′2 = s′0, s′1 6= s′0
s′0 , if s′1 = s′0, s′2 6= s′0
s′0 ∪ s′1 , if s′1 = s′2.

Then (S ′, o, s′0) is a hyper K-algebra and s′0 is the zero element of S ′.

Proof. It is easy to see that (S ′, o, s′0) satisfies (HK3), (HK4) and (HK5). Also the
proof of (HK1) is similar to the proof of (HK1) in Theorem 3.2 by some suitable
modifications. Now we consider the following situations to show that (S ′, o, s′0)
satisfies (HK2).

(i) Let s′1, s
′
2, s

′
3 6= s′0 and s′2 6= s′3 6= s′1 6= s′2. Then (s′1os

′
2)os

′
3 = s′1os

′
3 = s′1 and

(s′1os
′
3)os

′
2 = s′1os

′
2 = s′1. So, in this case (HK2) holds.

(ii) Let s′1, s
′
2, s

′
3 6= s′0 and s′3 6= s′1 = s′2. Then (s′1os

′
2)os

′
3 = (s′0∪s′1)os

′
3 = s′0∪s′1

and (s′1os
′
3)os

′
2 = s′1os

′
2 = s′0 ∪ s′1. Hence, in this case (HK2) holds.

The proof of the following case is the same as (ii).
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(iii) s′1, s
′
2, s

′
3 6= s′0 and s′2 6= s′1 = s′3.

(iv) Let s′1, s
′
2, s

′
3 6= s′0 and s′1 6= s′2 = s′3. Then, (s′1os

′
2)os

′
3 = (s′1os

′
2)os

′
2 and

(s′1os
′
3)os

′
2 = (s′1os

′
2)os

′
2. Thus, in this case (HK2) holds.

(v) Let s′1 = s′2 = s′3. Then (s′1os
′
2)os

′
3 = (s′1os

′
1)os

′
1 = (s′1os

′
3)os

′
2.

Therefore, in this case (HK2) holds.

(vi) Let s′1 = s′0. Then (s′1os
′
2)os

′
3 = (s′0os

′
2)os

′
3 = s′0os

′
3 = s′0 and (s′1os

′
3)os

′
2 =

(s′0os
′
3)os

′
2 = s′0os

′
2 = s′0. So in this case (HK2) holds.

(vii) Let s′2 = s′0. Then (s′1os
′
2)os

′
3 = (s′1os

′
0)os

′
3 = s′1os

′
3 and (s′1os

′
3)os

′
2 =

(s′1os
′
3)os

′
0 = s′1os

′
3. Hence, in this case (HK2) holds.

The proof of the following case is the same as (vii).

(viii) s′3 = s′0.

(ix) Let s′1 = s′2 = s′0. Then (s′1os
′
2)os

′
3 = (s′0os

′
0)os

′
3 = s′0os

′
3 = s′0 and

(s′1os
′
3)os

′
2 = (s′0os

′
3)os

′
0 = s′0os

′
0 = s′0. Thus, in this case (HK2) holds.

The proof of the following case is the same as (ix).

(x) s′1 = s′3 = s′0.

(xi) Let s′2 = s′3 = s′0. Then (s′1os
′
2)os

′
3 = (s′1os

′
0)os

′
0 = s′1os

′
0 = s′1 and

(s′1os
′
3)os

′
2 = (s′1os

′
0)os

′
0 = s′1os

′
0 = s′1. So, in this case (HK2) holds.

Finally, we conclude that (S ′, o, s′0) is a hyper K-algebra.

Example 3.13 Consider the deterministic finite automaton A = (S,M, s0, F, t)
in Example 3.3. Then the structure of the hyper K-algebra (S, o, s0) induced on
the states of this automaton according to Theorem 3.12 is as follows:

o q0 q1 q2 q3

q0 q0 q0 q0 q0

q1 q1 {q0, q1, q2} q1 q1

q2 q2 q2 {q0, q1, q2} q2

q3 q3 q3 q3 {q0, q3}
Note that, if we compare the above table with the table of the Example 3.3,

we see that the induced structures of the hyper K-algebras are different. So, the
two methods give two different structures.

Theorem 3.14 Let (S ′, o, s′0) be the hyper K-algebra, which is defined in Theorem

3.12, F be a nonempty subset of S ′ and s′0 = s′0 ∈ F . Also, suppose that I =
⋃

t̄∈F

t̄

and C be a nonempty subset of S ′. Then I is a C-absorbing set.

Proof. Let s′ ∈ I and t ∈ C. then s′ot = s′ or s′ot = s′0 ∪ s′. Since s′ ∈ I, by
definition of I we know that s′ ⊆ I and s′0 ∈ I. Hence s′ot ⊆ I.
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Theorem 3.15 Let (S ′, o, s′0) be the hyper K-algebra, which is defined in Theorem
3.12. Then (S ′, o, s′0) is

1. a hyper normal K-algebra of types 1 and 2,

2. a simple hyper K-algebra

Proof.

1. Since a ∈ aot and a < a, for any a, t in S ′, we have:

l1a = {t ∈ S ′|a < (aot)} = S ′, l2a = {t ∈ S ′|a ∈ (aot)} = S ′, ∀a ∈ S ′,
ar1 = {t ∈ S ′|t < (toa)} = S ′ and ar2 = {t ∈ S|t ∈ (toa)} = S ′, ∀a ∈ S ′.

We know that S ′ is a hyper K-ideal. So, (S ′, o, s′0) is a hyper normal K-
algebra of types 1 and 2.

2. Let s′1 6= s′2 and s′1, s
′
2 6= s′0, then s′1os

′
2 = s′1 and s′2os

′
1 = s′2. Hence, s′1 6< s′2

and s′2 6< s′1. So (S ′, o, s′0) is a simple hyper K-algebra.

Theorem 3.16 Let (S, M, s0, F, t) be a deterministic finite automaton. We define
the following hyper operation on S̄ :

∀(s1, s2) ∈ S̄2, s1os2 =





{s1, s2}, if s1 6= s2, s1 6= s0 6= s2

{s1, s0}, if s1 = s2

{s2, s0}, if s1 = s0, s2 6= s0

s1, if s1 6= s0, s2 = s0.

Then, (S̄, o, s0) is a hyper K-algebra and s0 is the zero element of S̄.

Proof. It is easy to see that (S̄, o, s0) satisfies (HK3), (HK4) and (HK5). Also the
proof of (HK1) is similar to the proof of (HK1) in Theorem 3.2 by some suitable
modifications. Now we consider the following situations to show that (S̄, o, s0)
satisfies (HK2).

(i) Let s1, s2, s3 6= s0 and s1 6= s2 6= s3 6= s1. Then
(s1os2)os3 = {s1, s2}os3 = {s1, s2, s3} and
(s1os3)os2 = {s1, s3}os2 = {s1, s2, s3}.
So, in this case (HK2) holds.

(ii) Let s1, s2, s3 6= s0 and s1 = s2 6= s3. Then
(s1os2)os3 = {s1, s0}os3 = {s1, s2, s0} and
(s1os3)os2 = {s1, s3}os1 = {s1, s3, s0}.
Hence, in this case (HK2) holds.

(iii) Let s1, s2, s3 6= s0 and s1 = s3 6= s2. Then
(s1os2)os3 = {s1, s2}os1 = {s1, s2, s0} and
(s1os3)os2 = {s1, s0}os2 = {s1, s2, s0}.
Thus, in this case (HK2) holds.
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(iv) Let s1, s2, s3 6= s0 and s2 = s3 6= s1. Then
(s1os2)os3 = {s1, s2}os2 = {s1, s2, s0} and
(s1os3)os2 = {s1, s2}os2 = {s1, s2, s0}.
Therefore, in this case (HK2) holds.

(v) Let s1, s3 6= s0, s1 = s0 and s2 6= s3. Then
(s1os2)os3 = {s0, s2}os3 = {s2, s3, s0} and
(s1os3)os2 = {s0, s3}os2 = {s2, s3, s0}.
So, in this case (HK2) holds.

(vi) Let s1, s3 6= s0, s2 = s0 and s1 6= s3. Then,
(s1os2)os3 = s1os3 = {s1, s3} and (s1os3)os2 = {s1, s3}os0 = {s1, s3}.
Hence, in this case (HK2) holds.

The proof of the following case is the same as (vi).

(vii) s1, s2 6= s0, s3 = s0 and s1 6= s2.

(viii) Let s2, s3 6= s0, s1 = s0 and s2 = s3 Then
(s1os2)os3 = {s0, s2}os2 = {s0, s2} and (s1os3)os2 = {s0, s2}os2 = {s0, s2}.
Thus in this case (HK2) holds.

(ix) Let s1, s3 6= s0, s2 = s0 and s1 = s3. Then
(s1os2)os3 = s1os1 = {s0, s1} and (s1os3)os2 = {s0, s1}os0 = {s0, s1}.
So in this case (HK2) holds.

The proof of the following case is the same as (ix).

(x) s1, s2 6= s0, s3 = s0 and s1 = s2.

(xi) Let s1 = s2 = s0 and s3 6= s0 Then
(s1os2)os3 = s0os3 = {s0, s3} and (s1os3)os2 = {s0, s3}os0 = {s0, s3}.
Hence, in this case (HK2) holds.

(xii) Let s1 = s3 = s0 and s2 6= s0 Then
(s1os2)os3 = {s0, s2}os0 = {s0, s2} and (s1os3)os2 = s0os2 = {s0, s2}.
Thus, in this case (HK2) holds.

(xiii) Let s2 = s3 = s0 and s1 6= s0 Then
(s1os2)os3 = s1os0 = s1 and (s1os3)os2 = s1os0 = s1.
Hence, in this case (HK2) holds.

(xiv) Let s1 = s2 = s3. Then
(s1os2)os3 = (s1os1)os1 = (s1os3)os2.
Hence, in this case (HK2) holds.

Finally, we obtain that (S̄, o, s0) is a hyper K-algebra.
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Theorem 3.17 Consider the deterministic finite automaton A = (S,M, s0, F, t)
in Example 3.3. Then the structure of the hyper K-algebra (S̄, o, s0) induced on S̄
according to Theorem 3.16 is as follows:

o q0 q1 q3

q0 q0 {q0, q1} {q0, q3}
q1 q1 {q0, q1} {q1, q3}
q3 q3 {q3, q1} {q0, q3}

Theorem 3.18 Let (S̄, o, s0) be the hyper K-algebra, which is defined in Theorem
3.16. Then (S̄, o, s0) is

(1) a hyper normal K-algebra of types 1 and 2,

(2) a simple hyper K-algebra.

Proof.

1. Since ā ∈ āot̄ and ā < ā, for any ā, t̄ in S̄, we have:

l1a = {t̄ ∈ S̄|ā < āot̄} = S̄, l2a = {t̄ ∈ S̄|ā ∈ āot̄} = S̄, ∀ā ∈ S̄,
ār1 = {t̄ ∈ S̄|t̄ < t̄oā} = S̄ and ar2 = {t̄ ∈ S̄|t̄ ∈ t̄oā} = S̄, ∀ā ∈ S̄.

It is easy to see that S̄ is a hyper K-ideal. So (S̄, o, s0) is a hyper normal
K-algebra of types 1 and 2.

2. Let s1 6= s2 and s1, s2 6= s0, then s1os2 = {s1, s2} and s2os1 = {s1, s2}.
Hence, s1 6< s2 and s2 6< s1. So (S̄, o, s0) is a simple hyper K-algebra.
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