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1. Introduction

Throughout the paper, (X, τ) (or simply X) will always denote a topological
space. For a subset A of X, the closure, interior and complement of A in X are
denoted by Cl(A), Int(A) and X − A, respectively. By PO(X, τ) and PC(X, τ)
we denote the collection of all preopen sets and the collection of all preclosed
sets of (X, τ), respectively. Let A be a subset of a topological space (X, τ). A is
preopen [4] or locally dense [1] if A ⊂ Int(Cl(A)). A is preclosed [4] if X − A is
preopen or equivalently if Cl(Int(A)) ⊂ A. The intersection of all preclosed sets
containing A is called the preclosure of A [2] and is denoted by pCl(A).
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Definition 1.

(1) A generalized pre-closure space is a pair (X, pCl) consisting of a set X and
a pre-closure function pCl, a function from the power set of X to itself.

(2) The pre-closure of a subset A of X, denoted pCl, is the image of A under
pCl.

(3) The pre-exterior of A is pExt(A) = X\pCl(A), and the pre-Interior of A is
pInt(A) = X\pCl(X\A).

(4) We say that A is pre-closed if A = pCl(A), A is pre-open if A = pInt(A)
and N is a pre-neighborhood of x if x ∈ pInt(N).

Definition 2. We say that a pre-closure function pCl defined on X is:

(1) pre-grounded if pCl(∅) = ∅.
(2) pre-isotonic if pCl(A) ⊆ pCl(B) whenever A ⊆ B.

(3) pre-enlarging if A ⊆ pCl(A) for each subset A of X.

(4) pre-idempotent if pCl(A) = pCl(pCl(A)) for each subset A of X.

(5) pre-sub-linear if pCl(A ∪B) ⊆ pCl(A) ∪ pCl(B) for all A,B ⊆ X.

(6) pre-additive if ∪i∈IpCl(Ai) = pCl(∪i∈IAi) for Ai ⊆ X.

Throughout this paper, we will assume that pCl is pre-enlarging.

Definition 3.

(1) Subsets A and B of X are said to be pre-closure-separated in a generalized
pre-closure space (X, pCl) (or simply, pCl-separated) if A∩pCl(B) = ∅ and
pCl(A) ∩B = ∅, or equivalently, if A ⊆ pExt(B) and B ⊆ pExt(A).

(2) pExterior points are said to be pre-closure-separated in a generalized pre-
closure space (X, pCl) if for each A ⊆ X and for each x ∈ pExt(A), {x}
and A are pCl-separated.

Theorem 1.1. Let (X, pCl) be a generalized pre-closure space in which pExterior
points are pCl-separated and let S be the pairs of pCl-separated sets in X. Then,
for each subset A of X, the pre-closure of A is pCl(A) = {x ∈ X : {{x}, A} /∈ S}.

Proof. In any generalized pre-closure space pCl(A)) ⊆ {x ∈ X : {{x}, A} /∈ S}.
Really suppose that y /∈ {x ∈ X : {{x}, A} /∈ S}, that is, {{y}, A} ∈ S. Then
{y} ∩ pCl(A) = ∅, and so y /∈ pCl(A).

Suppose now that y /∈ pCl(A). By hypothesis, {{y}, A} ∈ S, and hence,

y /∈ {x ∈ X : {{x}, A} /∈ S}.
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2. Some fundamental properties

Definition 4. A pre-closure function pCl defined on a set X is said to be pointwise
pre-symmetric when, for all x, y ∈ X, if x ∈ pCl({y}), then y ∈ pCl({x}).

A generalized pre-closure space (X, pCl) is said to be pre-R0 when, for all
x, y ∈ X, if x is in each pre-neighborhood of y, then y is in each pre-neighborhood
of x.

Corollary 2.1. Let (X, pCl) a generalized pre-closure space in which pExterior
points are pCl-separated. Then pCl is pointwise pre-symmetric and (X, pCl) is
pre-R0.

Proof. Suppose that pExterior points are pCl-separated in (X, pCl).
If x ∈ pCl({y}), then {x} and {y} are not pCl-separated and hence,

y ∈ pCl({x}). Hence, pCl is pointwise pre-symmetric.
Suppose that x belongs to every pre-neighborhood of y, that is, x ∈ M

whenever y ∈ pInt(M). Letting A = X\M and rewriting contrapositively,
y ∈ pCl(A) whenever x ∈ A.

Suppose x ∈ pInt(N). x /∈ pCl(X\N), so x is pCl-separated from X\N .
Hence pCl({x}) ⊆ N . x ∈ {x}, so y ∈ pCl({x}) ⊆ N. Hence (X, pCl) is pre-R0.

While these three axioms are not equivalent in general, they are equivalent
when the pre-closure function is pre-isotonic:

Theorem 2.2. Let (X, pCl) be a generalized pre-closure space with pCl pre-
isotonic. Then the following are equivalent:

(1) pExterior points are pCl-separated.

(2) pCl is pointwise pre-symmetric.

(3) (X, pCl) is pre-R0.

Proof. Suppose that (2) is true. Let A ⊆ X, and suppose x ∈ pExt(A). Then,
as pCl is pre-isotonic, for each y ∈ A, x /∈ pCl({y}), and hence, y /∈ pCl({x}).
Hence A ∩ pCl({x}) = ∅. Hence (2) implies (1), and by the previous corollary,
(1) implies (2).

Suppose now that (2) is true and let x, y ∈ X such that x is in every pre-neigh-
borhood of y, that is, x ∈ N whenever y ∈ pInt(N). Then y ∈ pCl(A) whenever
x ∈ A, and in particular, since x ∈ {x}, y ∈ pCl({x}). Hence x ∈ pCl({y}).
Thus if y ∈ B, then x ∈ pCl({y}) ⊆ pCl(B), as pCl is pre-isotonic. Hence, if
x ∈ pInt(C), then y ∈ C, that is, y is in every pre-neighborhood of x. Hence,
(2) implies (3).

Finally, suppose that (X, pCl) is pre-R0 and suppose that x ∈ pCl({y}). Since
pCl is pre-isotonic, x ∈ pCl(B) whenever y ∈ B, or, equivalently, y is in every pre-
neighborhood of x. Since (X, pCl) is pre-R0, x ∈ N whenever y ∈ pInt(N). Hence,
y ∈ pCl(A) whenever x ∈ A, and in particular, since x ∈ {x}, y ∈ pCl({x}).
Hence (3) implies (2).
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Theorem 2.3. Let S be a set of unordered pairs of subsets of a set X such that,
for all A,B, C ⊆ X,

(1) if A ⊆ B and {B,C} ∈ S, then {A,C} ∈ S and

(2) if {{x}, B} ∈ S for each x ∈ A and {{y}, A} ∈ S for each y ∈ B, then
{A,B} ∈ S.

Then the pre-closure function pCl on X, defined by pCl(A)={x ∈ X:{{x}, A}/∈S}
for every A ⊆ X, is pointwise pre-symmetric pre-isotonic and also, pre-closure-
separates the elements of S.

Proof. Define pCl by pCl(A) = {x ∈ X : {{x}, A} /∈ S} for every A ⊆ X.
If A ⊆ B ⊆ X and x ∈ pCl(A), then {{x}, A} /∈ S. Hence, {{x}, B} /∈ S,
that is, x ∈ pCl(B). Hence pCl is pre-isotonic. Also, x ∈ pCl({y}) if and only
if {{x}, {y}} /∈ S if and only if y ∈ pCl({x}), and thus pCl is pointwise pre-
symmetric.

Suppose that {A,B} ∈ S. Then A∩pCl(B) = A∩{x ∈ X : {{x}, B} /∈ S} =
{x ∈ A : {{x}, A} /∈ S} = ∅. Similarly, pCl(A) ∩ B = ∅. Hence, if {A,B} ∈ S,
then A and B are pCl-separated.

Now suppose that A and B are pCl-separated.
Then {x ∈ A : {{x}, B} /∈ S}=A∩ pCl(B)=∅ and {x ∈ B : {{x}, A} /∈ S} =

pCl(A) ∩ B = ∅. Hence, {{x}, B} ∈ S for each x ∈ A and {{y}, A} ∈ S for each
y ∈ B, and thus, {A,B} ∈ S.

Furthermore, many properties of pre-closure functions can be expressed in
terms of the sets they separate:

Theorem 2.4. Let S be the pairs of pCl-separated sets of a generalized pre-closure
space (X, pCl) in which pExterior points are pre-closure-separates. Then pCl is

(1) pre-grounded if and only if for all x ∈ X {{x}, ∅} ∈ S.

(2) pre-enlarging if and only if for all {A,B} ∈ S, A and B are disjoint.

(3) pre-sub-linear if and only if {A,B ∪ C} ∈ S whenever {A,B} ∈ S and
{A,C} ∈ S.

Moreover, if pCl is pre-enlarging and for all A,B ⊆ X, {{x}, A} /∈ S whenever
{{x}, B} /∈ S and {{y}, A} /∈ S for each y ∈ B, then pCl is pre-idempotent.
Also, if pCl is pre-isotonic and pre-idempotent, then {{x}, A} /∈ S whenever
{{x}, B} /∈ S and {{y}, A} /∈ S for each y ∈ B.

Proof. Recall that, by Theorem 1.1, pCl(A) = {x ∈ X : {{x}, A} /∈ S} for every
A ⊆ X. Suppose that for all x ∈ X, {{x}, ∅} ∈ S. Then pCl(∅) = {x ∈ X :
{{x}, ∅} /∈ S} = ∅. Hence pCl is pre-grounded.

Conversely, if ∅ = pCl(∅) = {x ∈ X : {{x}, ∅} /∈ S}, then {{x}, ∅} ∈ S, for
all x ∈ X.
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Suppose that for all {A,B} ∈ S, A and B are disjoint. Since {{a}, A} /∈ S
if a ∈ A, A ⊆ pCl(A) for each A ⊆ X. Hence, pCl is pre-enlarging. Conversely,
suppose that pCl is pre-enlarging and {A, B} ∈ S. Then A∩B ⊆ pCl(A)∩B = ∅.

Suppose that {A,B∪C} ∈ S whenever {A, B}∈S and {A,C}∈S. Let x∈X
and B, C ⊆ X such that {{x}, B ∪ C} /∈ S . Then {{x}, B}/∈S or {{x}, C}/∈S.
Hence pCl(B ∪C) ⊆ pCl(B)∪ pCl(C), and therefore, pCl is pre-sub-linear. Con-
versely, suppose that pCl is pre-sub-linear, and let {A, B}, {A,C} ∈ S. Then
pCl(B ∪ C) ∩ A⊆(pCl(B) ∪ pCl(C)) ∩ A=(pCl(B) ∩ A) ∪ (pCl(C)) ∩ A)=∅ and
(B ∪ C) ∩ pCl(A) = (B ∩ pCl(A)) ∪ (C ∩ pCl(A)) = ∅. Suppose that pCl is pre-
enlarging and suppose that {{x}, A} /∈ S whenever {{x}, B}/∈S and {{y}, A}/∈S
for each y ∈ B. Then pCl(pCl(A)) ⊆ pCl(A) : If x ∈ pCl(pCl(A)), then
{{x}, pCl(A)} /∈ S. {{y}, A} /∈ S, for each y ∈ pCl(A); hence {{x}, A} /∈ S. And
since pCl is pre-enlarging, pCl(A) ⊆ pCl(pCl(A)). Thus pCl(pCl(A)) = pCl(A),
for each A ⊆ X.

Finally, suppose that pCl is pre-isotonic and pre-idempotent. Let x ∈ X and
A,B ⊆ X such that {{x}, B} /∈ S and, for each y ∈ B, {{y}, A} /∈ S. Then
x ∈ pCl(B) and for each y ∈ B, y ∈ pCl(A), that is, B ⊆ pCl(A). Hence,
x ∈ pCl(B) ⊆ pCl(pCl(A)) = pCl(A).

Definition 5. If (X, pClX) and (Y, pClY ) are generalized pre-closure spaces, then
a function f : X → Y is said to be

(1) pre-closure-preserving if f(pClX(A)) ⊆ pClY (f(A)) for each A ⊆ X.

(2) pre-continuous if pClX(f−1(B)) ⊆ f−1(pClY (B)) for each B ⊆ Y.

In general, neither condition implies the other. However, we easily obtain the
following result:

Theorem 2.5. Let (X, pClX) and (Y, pClY ) be generalized pre-closure spaces and
let f : X → Y.

(1) If f is pre-closure-preserving and pClY is pre-isotonic,
then f is pre-continuous.

(2) If f is pre-continuous and pClX is pre-isotonic,
then f is pre-closure-preserving.

Proof. Suppose that f is pre-closure-preserving and pClY is pre-isotonic.

Let B ⊆ Y . f(pClX(f−1(B))) ⊆ pClY (f(f−1(B))) ⊆ pClY (B) and hence,

pClX(f−1(B)) ⊆ f−1(f(pClX(f−1(B)))) ⊆ f−1(pClY (B)).

Suppose that f is pre-continuous and pClX is pre-isotonic.

Let A ⊆ X. pClX(A) ⊆ pClX(f−1(f(A))) ⊆ f−1(pClY (f(A))), and hence

f(pClX(A)) ⊆ f(f−1(pClY (f(A)))) ⊆ pClY (f(A)).
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Definition 6. Let (X, pClX) and (Y, pClY ) be generalized pre-closure spaces
and let f : X → Y be a function. If for all A,B ⊆ X, f(A) and f(B) are not
pClY -separated whenever A and B are not pClX-separated, then we say that f is
non-preseparating.

Note that f is non-preseparating if and only if A and B are pClX-separated
whenever f(A) and f(B) are pClY -separated.

Theorem 2.6. Let (X, pClX) and (Y, pClY ) be generalized pre-closure spaces,
and let f : X → Y .

(1) If pClY is pre-isotonic, and f is non-preseparating, then f−1(C) and f−1(D)
are pClX-separated whenever C and D are pClY -separated.

(2) If pClX is pre-isotonic, and f−1(C) and f−1(D) are pClX-separated when-
ever C and D are pClY -separated, then f is non-preseparating.

Proof. Let C and D be pClY -separated subsets, where pClY is pre-isotonic. Let
A = f−1(C) and let B = f−1(D). f(A) ⊆ C and f(B) ⊆ D, and since pClY
is pre-isotonic, f(A) and f(B) are also pClY -separated. Hence, A and B are
pClX-separated in X.

Suppose that pClX is pre-isotonic, and let A,B ⊆ X such that C = f(A)
and D = f(B) are pClX-separated. Then f−1(C) and f−1(D) are pClX-separated
and since pClX is pre-isotonic, A ⊆ f−1(f(A)) = f−1(C) and B ⊆ f−1(f(B)) =
f−1(D) are pClX-separated as well.

Theorem 2.7. Let (X, pClX) and (Y, pClY ) be generalized pre-closure spaces
and let f : X → Y be a function. If f is pre-closure-preserving, then f is non-
preseparating.

Proof. Suppose that f is pre-closure-preserving and A,B ⊆ X are not pClX-
separated. Suppose that pClX(A) ∩ B 6= ∅. Then ∅ 6= f(pClX(A) ∩ B) ⊆
f(pClX(A)) ∩ f(B) ⊆ pClY (f(A)) ∩ f(B). Similarly, if A ∩ pClX(B) 6= ∅, then
f(A) ∩ pClY (f(B)) 6= ∅. Hence f(A) and f(B) are not pClY -separated.

Corollary 2.8. Let (X, pClX) and (Y, pClY ) be generalized pre-closure spaces
with pClX pre-isotonic and let f : X → Y . If f is pre-continuous, then f is
non-preseparating.

Proof. If f is pre-continuous and pClX pre-isotonic, then, by Theorem 2.5 (2),
f is pre-closure-preserving. Hence, by Theorem 2.7, f is non-preseparating.

Theorem 2.9. Let (X, pClX) and (Y, pClY ) be generalized pre-closure spaces
which pExterior points pClY -separated in Y and let f : X → Y be a function.
Then f is pre-closure-preserving if and only if f non-preseparating.

Proof. By Theorem 2.7, if f is pre-closure-preserving, then f is non-preseparating.
Suppose that f is non-preseparating and let A ⊆ X. If pClX = ∅, then

f(pClX(A)) = ∅ ⊆ pClY (f(A).
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Suppose pClX(A) 6= ∅. Let SX and SY denote the pairs of pClX-separated
subsets of X and the pairs of pClY -separated subsets of Y , respectively. Let
y∈f(pClX(A)), and let x∈pClX(A)∩f−1({y}). Since x∈pClX(A), {{x}, A}/∈SX ,
and since f non-preseparating, {{y}, f(A)} /∈ SY . Since pExterior points are
pClY -separated, y∈pClY (f(A)). Thus f(pClX(A))⊆pClY (f(A)), for each A⊆X.

Corollary 2.10. Let (X, pClX) and (Y, pClY ) be generalized pre-closure spaces
with pre-isotonic closure functions and with pClY -pointwise-presymmetric and let
f : X → Y. Then f is pre-continuous if and only if f non-preseparating.

Proof. Since pClY is pre-isotonic and pointwise-presymmetric, pExterior points
are pre-closure separated in (Y, pClY ) (Theorem 2.2 (1)). Since both pre-closure
functions are pre-isotonic, f is pre-closure-preserving (Theorem 2.5) if and only if
f is pre-continuous. Hence, we can apply the Theorem 2.9.

3. Preconnected generalized pre-closure spaces

Definition 7. Let (X, pCl) be a generalized pre-closure space. X is said to be
preconnected if X is not a union of disjoint nontrivial pre-closure-separated pair
of sets.

Theorem 3.1. Let (X, pCl) be a generalized pre-closure space with pre-grounded
pre-isotonic pre-enlarging pCl. Then, the following are equivalent:

(1) (X, pCl) is preconnected,

(2) X can not be a union of nonempty disjoint preopen sets.

Proof. (1)⇒(2): Let X be a union of nonempty disjoint preopen sets A and B.
Then, X = A ∪B and this implies that B = X\A and A is a preopen set. Thus,
B is preclosed and hence A ∩ pCl(B) = A ∩ B = ∅. By using similar way, we
obtain pCl(A) ∩B = ∅. Hence, A and B are pre-closure-separated and hence X
is not preconnected. This is a contradiction.

(2)⇒(1): Suppose that X is not preconnected. Then X = A ∪ B, where A,
B are disjoint pre-closure-separated sets, i.e A ∩ pCl(B) = pCl(A) ∩ B = ∅. We
have pCl(B) ⊂ X\A ⊂ B. Since pCl is pre-enlarging, we obtain pCl(B) = B and
hence, B is preclosed. By using pCl(A) ∩ B = ∅ and similar way, it is obvious
that A is preclosed. This is a contradiction.

Definition 8. Let (X, pCl) be a generalized pre-closure space with pre-grounded
pre-isotonic pCl. Then, (X, pCl) is called a T1-pre-grounded pre-isotonic space if
pCl({x}) ⊂ {x} for all x ∈ X.

Theorem 3.2. Let (X, pCl) be a generalized pre-closure space with pre-grounded
pre-isotonic pCl. Then, the following are equivalent:
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(1) (X, pCl) is preconnected,

(2) Any precontinuous function f : X → Y is constant for all T1-pre-grounded
pre-isotonic spaces Y = {0, 1}.

Proof. (1)⇒(2): Let X be preconnected. Suppose that f : X → Y is pre-
continuous and it is not constant. Then there exists a set U ⊂ X such that
U = f−1({0}) and X\U = f−1({1}). Since f is precontinuous and Y is T1-pre-
grounded pre-isotonic space, then we have pCl(U) = pCl(f−1({0})) ⊂ f−1(pCl{0})
⊂ f−1({0}) = U and hence pCl(U) ∩ (X\U) = ∅. By using similar way we have
U ∩ pCl(X\U) = ∅. This is a contradiction. Thus, f is constant.

(2)⇒(1): Suppose that X is not preconnected. Then there exist pre-closure-
separated sets U and V such that U ∪ V = X. We have pCl(U) ⊂ U and
pCl(V ) ⊂ V and X\U ⊂ V . Since pCl is pre-isotonic and U and V are pre-
closure-separated, then pCl(X\U) ⊂ pCl(V ) ⊂ X\U . If we consider the space
(Y, pCl) by Y = {0, 1}, pCl(∅) = ∅, pCl({0}) = {0}, pCl({1}) = {1} and
pCl(Y ) = Y , then the space (Y, pCl) is a T1-pre-grounded pre-isotonic space. We
define the function f : X → Y as f(U) = {0} and f(X\U) = {1}. Let A 6= ∅
and A ⊂ Y . If A = Y , then f−1(A) = X and hence pCl(X) = pCl(f−1(A)) ⊂
X = f−1(A) = f−1(pCl(A)). If A = {0}, then f−1(A) = U and hence pCl(U) =
pCl(f−1(A)) ⊂ U = f−1(A) = f−1(pCl(A)). If A = {1}, then f−1(A) = X\U
and hence pCl(X\U) = pCl(f−1(A)) ⊂ X\U = f−1(A) = f−1(pCl(A)). Hence,
f is precontinuous. Since f is not constant, this is a contradiction.

Theorem 3.3. Let f : (X, pCl) → (Y, pCl) and g : (Y, pCl) → (Z, pCl) be
precontinuous functions. Then, gof : X → Z is precontinuous.

Proof. Suppose that f and g are precontinuous. For all A ⊂ Z we have
pCl(gof)−1(A) = pCl(f−1(g−1(A))) ⊂ f−1(pCl(g−1(A))) ⊂ f−1(g−1(pCl(A))) =
(gof)−1(pCl(A)). Hence, gof : X → Z is precontinuous.

Theorem 3.4. Let (X, pCl) and (Y, pCl) be generalized pre-closure spaces with
pre-grounded pre-isotonic pCl and f : (X, pCl) → (Y, pCl) be a precontinuous
function onto Y . If X is preconnected, then Y is preconnected.

Proof. Suppose that {0, 1} is a generalized pre-closure spaces with pre-grounded
pre-isotonic pCl and g : Y → {0, 1} is a precontinuous function. Since f is
precontinuous, by Theorem 3.3, gof : X → {0, 1} is precontinuous. Since X is
preconnected, gof is constant and hence g is constant. By Theorem 3.2, Y is
preconnected.

Definition 9. Let (Y, pCl) be a generalized pre-closure space with pre-grounded
pre-isotonic pCl and more than one element. A generalized pre-closure space
(X, pCl) with pre-grounded pre-isotonic pCl is called Y -preconnected if any pre-
continuous function f : X → Y is constant.
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Theorem 3.5. Let (Y, pCl) be a generalized pre-closure space with pre-grounded
pre-isotonic pre-enlarging pCl and more than one element. Then every Y -pre-
connected generalized pre-closure space with pre-grounded pre-isotonic is precon-
nected.

Proof. Let (X, pCl) be a Y -preconnected generalized pre-closure space with pre-
grounded pre-isotonic pCl. Suppose that f : X → {0, 1} is a precontinuous func-
tion, where {0, 1} is a T1-pre-grounded pre-isotonic space. Since Y is a generalized
pre-closure space with pre-grounded pre-isotonic pre-enlarging pCl and more than
one element, then there exists a precontinuous injection g : {0, 1} → Y . By Theo-
rem 3.3, gof : X → Y is precontinuous. Since X is Y -preconnected, then gof is
constant. Thus, f is constant and hence, by Theorem 3.2, X is preconnected.

Theorem 3.6. Let (X, pCl) and (Y, pCl) be generalized pre-closure spaces with
pre-grounded pre-isotonic pCl and f : (X, pCl) → (Y, pCl) be a precontinuous
function onto Y . If X is Z-preconnected, then Y is Z-preconnected.

Proof. Suppose that g : Y → Z is a precontinuous function. Then gof : X → Z
is precontinuous. Since X is Z-preconnected, then gof is constant. This implies
that g is constant. Thus, Y is Z-preconnected.

Definition 10. A generalized pre-closure space (X, pCl) is strongly preconnected
if there is no countable collection of pairwise pre-closure-separated sets {An} such
that X = ∪An.

Theorem 3.7. Every strongly preconnected generalized pre-closure space with
pre-grounded pre-isotonic pCl is preconnected.

Theorem 3.8. Let (X, pCl) and (Y, pCl) be generalized pre-closure spaces with
pre-grounded pre-isotonic pCl and f : (X, pCl) → (Y, pCl) be a precontinuous
function onto Y . If X is strongly preconnected, then Y is strongly preconnected.

Proof. Suppose that Y is not strongly preconnected. Then, there exists a coun-
table collection of pairwise pre-closure-separated sets {An} such that Y = ∪An.
Since f−1(An)∩pCl(f−1(Am)) ⊂ f−1(An)∩f−1(pCl(Am)) = ∅ for all n 6= m, then
the collection {f−1(An)} is pairwise pre-closure-separated. This is a contradiction.
Hence, Y is strongly preconnected.

Theorem 3.9. Let (X, pClX) and (Y, pClY ) be generalized pre-closure spaces.
Then, the following are equivalent for a function f : X → Y

(1) f is pre-continuous,

(2) f−1(pInt(B)) ⊆ pInt(f−1(B)) for each B ⊆ Y .

Theorem 3.10. Let (X, pCl) be a generalized pre-closure space with pre-grounded
pre-isotonic pre-additive pCl. Then (X, pCl) is strongly preconnected if and only
if (X, pCl) Y -preconnected for any countable T1-pre-grounded pre-isotonic space
(Y, pCl).



90 miguel caldas, erdal ekici, saeid jafari

Proof. (⇒): Let (X, pCl) be strongly connected. Suppose that (X, pCl) is not
Y -preconnected for some countable T1-pre-grounded pre-isotonic space (Y, pCl).
There exists a precontinuous function f : X → Y which is not constant and hence
K = f(X) is a countable set with more than one element. For each yn ∈ K, there
exists Un ⊂ X such that Un = f−1({yn}) and hence Y = ∪Un.

Since f is precontinuous and Y is pre-grounded, then for each n 6= m,
Un ∩ pCl(Um) = f−1({yn}) ∩ pCl(f−1({ym})) ⊂ f−1({yn}) ∩ f−1(pCl({ym})) ⊂
f−1({yn}) ∩ f−1({ym}) = ∅. This contradict with the strong preconnectedness
of X. Thus, X is Y -preconnected.

(⇐): Let X be Y -preconnected for any countable T1-pre-grounded pre-isotonic
space (Y, pCl). Suppose that X is not strongly preconnected. There exists a coun-
table collection of pairwise pre-closure-separated sets {Un} such that X = ∪Un.
We take the space (Z, pCl), where Z is the set of integers and pCl : P (Z) → P (Z)
is defined by pCl(K) = K for each K ⊂ Z. Clearly (Z, pCl) is a countable
T1-pre-grounded pre-isotonic space. Put Uk ∈ {Un}. We define a function
f : X → Z by f(Uk) = {x} and f(X\Uk) = {y} where x, y ∈ Z and x 6= y.
Since pCl(Uk) ∩ Un = ∅ for all n 6= k, then pCl(Uk) ∩ ∪n 6=kUn = ∅ and
hence pCl(Uk) ⊂ Uk. Let ∅ 6= K ⊂ Z. If x, y ∈ K then f−1(K) = X and
pCl(f−1(K)) = pCl(X) ⊂ X = f−1(K) = f−1(pCl(K)). If x ∈ K and y /∈ K,
then f−1(K) = Uk and pCl(f−1(K)) = pCl(Uk) ⊂ Uk = f−1(K) = f−1(pCl(K)).
If y ∈ K and x /∈ K then f−1(K) = X\Uk. On the other hand, for all
n 6= k, Uk ∩ pCl(Un) = ∅ and hence Uk ∩ ∪n6=kpCl(Un) = ∅. This implies that
Uk ∩ pCl(∪n 6=kUn) = ∅. Thus, pCl(X\Uk) ⊂ X\Uk. Since pCl(K) = K for each
K ⊂ Z, we have pCl(f−1(K)) = pCl(X\Uk) ⊂ X\Uk = f−1(K) = f−1(pCl(K)).
Hence we obtain that f is precontinuous. Since f is not constant, this is a con-
tradiction with the Z-preconnectedness of X. Hence, X is strongly preconnected.
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